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Vitamin C reduces vancomycin-related nephrotoxicity through the 
inhibition of oxidative stress, apoptosis, and inflammation in mice
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Background: Vancomycin (VCM) is an antibiotic widely used to treat a range of serious bacterial 
infections; however, it is associated with nephrotoxicity. Vitamin C (VC) is a classical antioxidant that can 
alleviate various organ injuries and inflammatory responses by reducing inflammation and oxidative stress. 
This study aimed to examine the effect of VC on VCM-related nephrotoxicity in mice.
Methods:  Mice were randomized into four groups: control, VCM (400 mg/kg/day), VCM  
(400 mg/kg/day) + VC (200 mg/kg/day), and VC (200 mg/kg/day) groups. Both VCM and VC were 
administered via intraperitoneal injection for 7 d, after which kidney and blood samples were collected and 
evaluated. Creatinine (Cr), blood urea nitrogen (BUN), superoxide dismutase (SOD), malondialdehyde 
(MDA), interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and nuclear factor-κB (NF-κB) were 
measured.
Results: In the VCM group, kidney index, renal injury score, cell apoptosis, serum Cr and BUN, and 
kidney Cr, BUN, MDA, IL-1β, IL-6, TNF-α, and NF-κB were higher compared to the control group (all 
P<0.05), while body weight and kidney SOD activity were lower (both P<0.05). By contrast, no differences 
were observed between the control and VC groups (VC and VCM + VC groups) for all these indicators.
Conclusions: The antioxidant VC reduces VCM-related renal injury by reducing oxidative stress, cell 
apoptosis, and inflammation.
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Introduction

Vancomycin (VCM) is an antibiotic that has been applied 
since 1954 in the treatment of Gram-positive bacterial 

infections, especially methicillin-resistant Staphylococcus 

aureus (MRSA) (1,2). It acts by inhibiting polymerization 

of the peptidoglycans on the bacterial cell wall (2). A 
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concentration of 15–20 mg/L VCM is usually recommended 
for patients with infection (3); yet, at certain doses, VCM 
has also been associated with a high risk of VCM-related 
nephrotoxicity (4,5). For example, a previous study showed 
that the incidence of VCM-related acute kidney injury (AKI) 
in patients treated with 10–15, 15–20, 20–35, and >35 mg/L 
VCM was 3.1%, 10.6%, 23.6%, and 81.8%, respectively (6).

Oxidative stress induced by reactive oxygen species 
(ROS) is considered one of the main mechanisms 
associated with VCM-related nephrotoxicity (7,8). Cell 
death and inflammatory events generated by oxidative 
stress might cause tubular cell damage and result in VCM-
related nephrotoxicity (9,10). In addition, VCM can alter 
mitochondrial function and induce a dose-dependent 
proliferation of proximal tubular cells.

The use of antioxidants may decrease the risk of 
VCM-related AKI (11,12). Vitamin C (VC) is a classical 
antioxidant that can alleviate various organ injuries and 
inflammatory responses by reducing inflammation and 
oxidative stress (13-15). It can reduce drug-induced 
apoptosis by scavenging the superoxide anion produced by 
dysfunctional mitochondria (16).

Water-solubility is one characteristic of VC, and 
it can be safely administered at high amounts in vivo  
(100–200 mg/kg/day) (17,18). A high-dose (4 g/kg) VC pre-
administration study revealed reduced VCM-associated 
nephrotoxicity in mice via the reduction of renal cell 
apoptosis (19). Yet, the study did not investigate VC’s exact 
mechanism of action (19). A clinical trial in China showed 
that high-dose VC reduces VCM-related nephrotoxicity 
and hospital stay (20). Conversely, some studies have 
suggested that an overdose of VC is associated with a high 
risk of acute oxalate nephropathy (21,22).

In this study, we examined the effect of high-dose VC 
on VCM-induced AKI in mice. The results indicated that 
VC was a safe, effective, and inexpensive method to prevent 
VCM-induced renal injury and is suitable for clinical use. 
We present the following article in accordance with the 
ARRIVE reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-3294).

Methods

Chemicals

Lilly (Eli Lilly Japan K.K, Seishin Laboratories, Kobe, 
Hyogo, Japan) provided the VCM, and Sangon Biotech 

(Shanghai, China) provided the VC.

Animals

We obtained 6-week-old C57BL/6J male mice, weighing 
22–24 g, from the Laboratory Animal Center of Shanghai 
Jiao Tong University School of Medicine, Shanghai, 
China. All animals were housed in an environment with 
a temperature of 22±1 ℃, relative humidity of 50%±1%, 
a light/dark cycle of 12/12 hr, and had free access to food 
and water. All animal studies (including the mice euthanasia 
procedure) were conducted in compliance with the 
regulations and guidelines of Shanghai Jiao Tong University 
School of Medicine institutional animal care and according 
to the Association for Assessment and Accreditation of 
Laboratory Animal Care (AAALAC) and the Institutional 
Animal Care and Use Committee (IACUC) guidelines. 
This study was approved by the Ethics Committee of 
Ruijin Hospital, Shanghai Jiao Tong University School of 
Medicine. A protocol was prepared before the study without 
registration.

The mice were acclimated to their new environment 
for 7 d before the experiments. They were then randomly 
divided into four groups with 7 mice in each: control, 
VC (200 mg/kg/day), VCM (400 mg/kg/day), and VCM  
(400 mg/kg/day) + VC (200 mg/kg/day). Both VCM and 
VC were injected intraperitoneally for 7 d, and the control 
group received the same volume of saline.

The mice were weighed and sacrificed under anesthesia 
with sodium pentobarbital on day 8. Blood was harvested 
through the eyeballs and centrifuged at 3,000 rpm at 4 ℃ 
for 10 min. The serum was stored at –80 ℃ until analysis. 
The kidneys were collected, weighed, and stored at –80 ℃ 
for further analysis.

Histological detection of tubular injury and apoptosis

The kidney tissue samples were fixed in 10% formalin 
buffer, embedded in paraffin, and cut into 4-μm sections. 
Hematoxylin and eosin (HE, Servicebio Technology, 
Wuhan, Hubei, China) staining was used for the histological 
detection of tubular necrosis. We scored the tubular damage 
by calculating the percentage of tubules that displayed 
tubular epithelial cell necrosis, vacuolization, brush border 
loss, tubular dilatation, atrophy, casts, and interstitial 
inflammatory cell infiltration. At least 10 fields for each 
section were reviewed and scored. All histopathological 

https://dx.doi.org/10.21037/atm-21-3294
https://dx.doi.org/10.21037/atm-21-3294


Annals of Translational Medicine, Vol 9, No 16 August 2021 Page 3 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(16):1319 | https://dx.doi.org/10.21037/atm-21-3294

parameters were scored as follows: 0, none; 1, injury ≤25%; 
2, injury 26–50%; 3, injury 51–75%; and 4, injury ≥76%. 
Study personnel who participated in injection, scoring, and 
data analysis were blind to group allocation.

Tubular cell apoptosis detection

Tubular cell apoptosis was detected with 4’,6-diamidino-
2-phenylindole (DAPI) stain (Servicebio Technology) and 
terminal deoxynucleotidyl transferase-mediated dUTP nick 
end-labeling (TUNEL) stain using an In Situ Cell Death 
Detection Kit (Roche Molecular Systems, Mannheim, 
Germany).

Measurement of creatinine (Cr), blood urea nitrogen 
(BUN), malondialdehyde (MDA) levels, and superoxide 
dismutase (SOD) activity

Sections of kidney tissue were homogenized in nine 
volumes of cold saline, and 10% (w/v) tissue homogenate 
was prepared. The supernatants of kidney sections were 
obtained from 3,000 rpm at 4 ℃ for 10 min centrifugation 
and were used to measure Cr and BUN levels (Changchun 
Huili Biotech, Changchun, Jilin, China), SOD activity, and 
MDA levels (Nanjing Jiancheng Bioengineering, Nanjing, 
China) using commercial assay kits, according to the 
manufacturer’s instructions. The serum was also used to 
measure Cr and BUN levels.

Measurement of interleukin (IL)-1β, IL-6, tumor necrosis 
factor (TNF)-α, and nuclear factor (NF)-κB levels

The supernatants of kidney tissues were used to determine 
IL-1β, IL-6, TNF-α (Thermo Fisher Scientific, Vienna, 
Austr ia) ,  and NF-κB levels  (Cloud-Clone Corp. , 
Wuhan, Hubei, China) using commercial enzyme-
linked immunosorbent assay (ELISA) kits, according to 
manufacturers’ instructions.

Statistical analysis

Numerical variables were summarized as mean ± standard 
deviation (SD). Data were analyzed using the software SPSS 
version 25.0 (IBM Corp., Armonk, NY, USA). The groups 
were compared with analysis of variance (ANOVA) followed 
by the post-hoc Student’s t-test or the Mann-Whitney U-test. 
A P value <0.05 was considered statistically significant.

Results

VC reduces VCM-induced nephrotoxicity

To determine the effects of VC on renal injury induced by 
VCM, we first observed the kidney’s histological status and 
the serum and kidney biochemical indicators in different 
animal groups. The mean body weight of the VCM group 
was significantly lower (Figure 1A), while the mean kidney 
index was significantly higher compared to other groups 
(Figure 1B, all P<0.05). In addition, the BUN and Cr levels 
in the kidney tissue or in the plasma of VCM-treated 
mice were significantly higher compared with those in 
the control, VC, and VCM + VC groups (Figure 1C-1F, 
P<0.05). In contrast, no differences in body weight, kidney 
index, and biochemical indicators were found between the 
VC group, VCM + VC groups, and the control group (all 
P>0.05).

The HE staining of kidney sections from VCM-treated 
mice revealed obvious renal tubular damage, including 
epithelial cell degeneration (necrosis, vacuolization, and 
brush border loss), tubular degeneration (dilatation, atrophy, 
and casts), and interstitial inflammatory cell infiltration 
(Figure 2A, left bottom panel). Moreover, compared to the 
VCM group, tubular damage was significantly relieved in 
the tissue sections of the VCM + VC group (Figure 2A, 
right bottom panel), as supported by the tubular injury 
score (Figure 2B).

These findings suggest a significant protective effect 
of VC co-administration against renal injury induced by 
VCM.

VC reverses VCM-induced oxidative stress in kidney tissue

Significant induction of oxidative stress, with markedly 
decreased SOD activity and increased MDA levels, was 
observed in the kidney tissues of the VCM group compared 
to other groups (Figure 3, all P<0.05). Meanwhile, no 
differences in oxidative stress indicators were found among 
the control, VC, and VCM + VC group.

VC attenuates inflammatory cytokine production in 
kidneys activated by VCM

To investigate how VC protects renal injury from VCM, 
we examined the inflammatory mediators and NF-κB levels 
in each group (Figure 4). Compared to the control group, 
significant increases in IL-1β, IL-6, TNF-α, and NF-
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κB were observed in the VCM group (all P<0.05 vs. the 
control group). These markers were all lower in the VCM 
+ VC group compared to the VCM group. Hence, these 
data suggest that VC significantly alleviates VCM-induced 
inflammatory response in the kidney in vivo. This effect of 
VC might be related to the inhibition of NF-κB signaling.

VC reduces VCM-induced cell apoptosis in kidneys

The results of TUNEL analysis are shown in Figure 5. We 
used DAPI staining to localize the kidney cells' nucleus 

in each group. Briefly, a high number of apoptotic nuclei 
were found in the kidneys of the VCM-treated mice. Co-
treatment with VC significantly reduced the number of 
positive cells caused by VCM in the kidneys. Moreover, 
only very few TUNEL-positive cells (white arrow) were 
found in the VCM + VC group. In summary, VC treatment 
significantly ameliorated VCM-induced renal cell apoptosis.

Discussion

Precl inica l  s tudies  have demonstrated that  drug 

Figure 1 VC attenuated VCM-induced nephrotoxicity in mice. (A) Body weight. (B) Kidney index. (C) Kidney BUN. (D) Kidney Cr. (E) 
Serum BUN. (F) Serum Cr. The results are presented as group means ± SD (n=7 mice/group). *, P>0.05 vs. the control group; #, P<0.05 vs. 
the control group. VC, vitamin C; VCM, vancomycin; BUN, blood urea nitrogen; Cr, creatinine; SD, standard deviation.
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accumulation in proximal tubule cells, resulting in cellular 
oxidative stress and apoptosis, is a major cause of VCM-
related nephrotoxicity. The nephrotoxicity of VCM can 
be reduced by extending the infusion time, reducing 
the maximum concentration, using antioxidants, and 
using drugs that reduce cell aggregation (23). Rahmani 
reviewed clinical and preclinical evidences regarding new 

strategies for prevention of VCM-induced nephrotoxicity. 
Evidence from 2014 to end of 2019, including twelve 
animal studies and one clinical trial, were evaluated. The 
conclusion shows that, although incidence of VCM-induced 
nephrotoxicity was not reduced significantly in the clinical 
trial, antioxidants reduced incidence of VCM-induced 
nephrotoxicity in preclinical studies. In preclinical studies, 

Figure 2 Histopathological changes in the kidney tissues of mice treated with VCM and/or VC. (A) HE-stained mouse kidney sections from 
the control group (top left), VC group (top right), VCM group (bottom left), and VCM + VC group (bottom right), 40× magnification. (B) 
The kidney tubular injury score in each group. Tubular injury was scored by calculating the percentage of tubules that displayed tubular 
epithelial cell degeneration (necrosis, vacuolization, and brush border loss), tubular alterations (dilatation, atrophy, and casts), and interstitial 
inflammatory cell infiltration as 0, none; 1, injury percentage ≤25%; 2, injury percentage 26–50%; 3, injury percentage 51–75%; 4, injury 
percentage ≥76%. The results are presented as group means ± SD (n=7 mice/group). #, P<0.05 compared to the VCM group. VCM, 
vancomycin; VC, vitamin C; HE, hematoxylin and eosin; SD, standard deviation.
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Figure 3 VC reversed VCM-induced oxidative stress in the kidney tissues of mice. (A) SOD activity. (B) MDA levels. The results are 
presented as group means ± SD (n=7 mice/group). *, P>0.05 vs. the control group; #, P<0.05 vs. the control group. VC, vitamin C; VCM, 
vancomycin; SOD, superoxide dismutase; MDA, malondialdehyde; SD, standard deviation.

Figure 4 VC reversed VCM-induced inflammatory cytokine production in the kidney tissues of mice. (A) IL-6. (B) TNF-α. (C) IL-1β. (D) 
NF-κB. The results were presented as group means ± SD (n=7 mice/group). *, P>0.05 vs. the control group; **, P<0.05 vs. the VCM group; 
#, P<0.05 vs. the control group. VC, vitamin C; VCM, vancomycin; IL-6, interleukin-6; TNF-α, tumor necrosis factor-α; IL-1β, interleukin-
1β; NF-κB, nuclear factor-κB; SD, standard deviation.

antioxidants including VC, vitamin E, cilastatin, melatonin, 
zingerone, rutin, naringenin, saffron, silymarin and 
dexmedetomidine were nephroprotective against VCM-
induced nephrotoxicity (24).

VC as a water-soluble antioxidant plays an integral part in 
the cellular oxidative metabolism, as it efficiently scavenges 
ROS and reactive nitrogen species produced under various 
stress conditions. At present, the pharmacological effects 
and clinical application of VC have been studied deeply. 

Research shows that VC has an anti-sepsis effect by 
reducing inflammatory response and oxidative stress as well 
as suppressing immunological dysfunction (25). Besides, 
VC in pharmacological concentration can contribute to 
the suspended formation of hydroxyl radical via the Fenton 
reaction, and induce the death of cancer cells, thus serving 
as an important element of the oxidative stress therapy 
against cancer cells (26). Recently, VC has been used for 
the treatment and prevention of COVID-19 complications, 
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due to its multiple pharmacological characteristics, 
including antiviral, antioxidant, anti-inflammatory, 
and immunoregulatory effects (27,28). High doses of 
intravenous VC can reduce the risk of COVID-19 infection 
with advanced cytokine storm (29).

The antibiotic VCM can induce nephrotoxicity (4,5), 
which may be inhibited by VC (19,22). Pre-clinical 
evidence showed that VC suppresses excessive cytokine 
release leading to sepsis-induced organ dysfunction (30). 
Our data further suggested that VC reduces VCM-related 
renal injury by reducing oxidative stress, cell apoptosis, and 
inflammation.

The clinical use of VCM is limited by drug-induced 

nephrotoxicity. Oxidative stress reduction in the kidney 
is critical for suppressing VCM-related nephrotoxicity 
(31,32). A recent study showed that high-dose VC might 
reduce the nephrotoxicity of VCM in severe cases (22). 
Published study revealed high-dose VC pre-administration 
reduced VCM-associated nephrotoxicity in mice via the 
reduction of renal cell apoptosis. In this report, high-dose 
VC pre-administration decreased the plasma Cr and BUN 
levels increased by VCM, and reduced the characteristics 
of VCM-associated nephrotoxicity in histological  
evidence (19). However, it did not fully clarify the 
exact mechanism of VC in reducing VCM-associated 
nephrotoxicity. In present study, based on the observation of 

Figure 5 VC alleviated VCM-induced apoptosis in kidney sections of mice. TUNEL-positive (green) cells were observed in the kidney 
sections of mice treated with VCM. Nuclei were counterstained with DAPI (blue). The white arrows indicate the location of the positive 
cells; 90× magnification. VC, vitamin C; VCM, vancomycin; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end-
labeling; DAPI, 4’,6-diamidino-2-phenylindole.
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renal histological status and serum and kidney biochemical 
indicators in different animal groups, we further explored 
the role of VC in alleviating VCM-related renal injury by 
reducing oxidative stress, apoptosis and inflammation. In 
the VCM group, body weight decreased, and the kidney 
index increased after 7 d of VCM injection compared with 
the control group, and renal damage was considered to 
have caused these changes (19); tubular injury was observed 
in the kidney tissue sections, and BUN and Cr levels were 
increased in both serum and kidney tissue. Histologically, 
tubular casts, epithelial cell vacuolization, and brush border 
loss were evident in the VCM group. In contrast, VC 
treatment reversed VCM-induced kidney injury, which 
inferred that high-dose VC might prevent VCM-induced 
renal injury.

The transcriptional mediator NF-κB is active in a series 
of cellular processes, such as inflammation, immunity, cell 
proliferation, and apoptosis (33). The NF-κB pathway can 
be activated by ROS via upregulation of pro-inflammatory 
cytokines, including IL-1β, IL-6, and TNF-α, thereby 
further increasing intracellular ROS production and gene 
expression of pro-inflammatory cytokines in endothelial 
cells (34-36). The activation of NF-κB is associated with 
increased levels of proapoptotic protein Bcl and cell death 
effector caspase-3 (37,38), which has a pivotal role in 
damage to tubular epithelial cells. A previous study found 
that VCM may increase NF-κB expression and produce 
the pro-inflammatory cytokines IL-1β and TNF-α, which 
leads to renal damage in rats (39). In a hemorrhagic shock 
rat model, VC (100–200 mg/kg) reduced renal injury by 
regulating Sirtuin1 (SIRT1) and acetyl (Ace)-NF-κB, 
thus reducing epithelial cell inflammation and apoptosis 
associated with oxidative stress (40).

In the present study, VCM treatment alleviated SOD 
expression and increased lipid peroxidation product MDA. 
These results confirmed the relationship between VCM-
induced nephrotoxicity and oxidative stress produced by 
ROS. The levels of the pro-inflammatory cytokines IL-
1β, IL-6, and TNF-α and the transcriptional mediator NF-
κB were markedly increased, and TUNEL-positive cells 
were evident in the kidneys of VCM-treated mice. Those 
results indicated that renal cell damage induced by oxidative 
stress was associated with inflammatory cell infiltration 
and cell apoptosis, which may be related to the NF-κB 
pathway. Supplementation of high-dose VC significantly 
decreased the expression of IL-1β, IL-6, TNF-α, and 
NF-κB, increased SOD activity, and decreased the MDA 
levels. Moreover, TUNEL-positive cells were significantly 

decreased in the VCM + VC group. These results indicated 
that ROS and NF-κB were upregulated after VCM 
treatment, causing renal damage by oxidative stress, cell 
inflammation, and apoptosis. High-dose VC provided 
effective protection against these reactions.

According to the signaling pathway studies on NF-κB, 
some other factors might be involved in the ROS/NF-
κB pathway. The roles of ROS include modulation of the 
transcriptional activity of NF-κB in response to Toll-like 
receptor 4 (TLR4)-dependent signaling and activation 
of the production of pro-inflammatory cytokines and  
p38 (41). Mitogen-activated protein kinase (MAPK) (42) 
and Jun N-terminal kinase (JNK) (43), which are involved 
in inflammation, cell death, and cell survival, might be 
activated by oxidative stress and regulated by NF-κB. Heme 
oxygenase (HO)-1 and SIRT1 are upregulated by ROS and 
inhibit NF-κB expression from preventing multi-organ 
injuries in hemorrhagic shock rats (40,44). Nevertheless, 
few of these pathways have been investigated in VCM-
induced nephrotoxicity. Some scholars used the stable 
isotope labeling by amino acids in cell culture (SILAC) 
method to detect molecular interactions and analyze related 
signaling pathways in VCM-induced nephrotoxicity of 
human proximal tubule epithelial HK-2 cells. The results 
showed that more than 492 proteins in HK-2 cells interact 
with VCM, and 290 signaling pathways and cellular 
functions may be regulated by VCM. These proteins and 
pathways may regulate cell cycle, apoptosis, autophagy, 
EMT, and ROS production (45). These signaling pathways 
may be involved in the nephrotoxicity of VCM. The present 
preliminary study revealed that the renal protective activity 
of high-dose VC might be related to the ROS/NF-κB 
pathway. However, further studies are needed to explore the 
exact mechanisms of the preventive effect of VC in VCM-
induced nephropathy.

Conclusions

High-dose VC reduces VCM-related renal injury by 
inhibiting oxidative stress, inflammation, and cell apoptosis. 
Therefore, high-dose VC treatment might be an effective 
and safe therapeutic approach to prevent VCM-induced 
nephrotoxicity. Further studies are needed to more 
thoroughly examine the underlying molecular mechanism.
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