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Key immune-related gene ITGB2 as a prognostic signature for 
acute myeloid leukemia
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Background: The tumor microenvironment (TME) has an essential role in tumorigenesis, progression, and 
therapeutic response in many cancers. Currently, the role of TME in acute myeloid leukemia (AML) is unclear. 
This study investigated the correlation between immune-related genes and prognosis in AML patients.
Methods: Transcriptome RNA-Seq data for 151 AML samples were downloaded from TCGA database 
(https://portal.gdc.cancer.gov/), and the immune related genes (irgs) were selected from Immport database. 
Bioinformatics screening was used to identify irgs for AML, and genes with a critical role in the prognosis 
of AML were selected for further analysis. To confirm the prognostic role of irgs in AML, we undertook 
protein-protein interaction (PPI) network analysis of the top 30 interacting genes. We then investigated 
associations between immune cell infiltration and prognosis in AML patients. Immunohistochemistry was 
used to validate protein expression levels between AML and normal bone marrow samples. Analysis of the 
drug sensitivity of the selected gene was then performed.
Results: The integrin lymphocyte function-associated antigen 1 (CD11A/CD18; ITGAL/ITGB2) 
was identified as the key immune-related gene that significantly influenced prognosis in AML patients. 
Overexpression of ITGB2 indicated poor prognosis in AML patients (P=0.007). Risk modeling indicated that 
a high-risk score led to poor outcomes (P=3.076e−08) in AML patients. The risk model showed accuracy 
for predicting prognosis in AML patients, with area under curve (AUC) at 1 year, 0.816; AUC at 3 years, 
0.82; and AUC at 5 years, 0.875. In addition, we found that ITGB2 had a powerful influence on immune 
cell infiltration into AML TME. The results of immunohistochemistry showed that AML patients had 
significantly higher ITGB2 protein expression than normal samples. The AML patients were divided into 
2 groups based on ITGB2 risk scores. Drug sensitivity test results indicated that the high-risk group was 
sensitive to cytarabine, axitinib, bosutinib, and docetaxel, but resistant to cisplatin and bortezomib.
Conclusions: In the present study, we found that ITGB2 may be able to serve as a biomarker for assessing 
prognosis and drug sensitivity in AML patients.

Keywords: Acute myeloid leukemia (AML); ITGB2; tumor microenvironment (TME)

Submitted Jun 29, 2021. Accepted for publication Aug 12, 2021.

doi: 10.21037/atm-21-3641

View this article at: https://dx.doi.org/10.21037/atm-21-3641

1386

Original Article

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-21-3641


Wei et al. Screening significant prognostics irgs for AML

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(17):1386 | https://dx.doi.org/10.21037/atm-21-3641

Page 2 of 17

Introduction

Acute myeloid leukemia (AML) is a hematological 
ma l ignancy  charac te r i zed  by  c lona l  e xpans ion , 
differentiation arrest, and evasion of apoptosis, leading to 
inhibition of normal hematopoiesis. Since leukemia stem 
cells display diversity in expression, immunophenotype, 
and differentiation, it is considered a heterogeneous 
hematological malignancy (1). In 2020, there were an 
estimated 19,940 new diagnoses and 11,180 deaths from 
AML in the United States (2). The primary therapeutic 
protocol for AML is chemotherapy. However, many 
elderly AML patients are unable to tolerate intensive 
chemotherapeutic treatment (3). Further, despite advances 
in treatment approaches, relapse remains a substantial 
challenge for AML patients (4). Effective and personalized 
therapy regimens for AML patients are urgently needed.

In the 1970s, conventional chemotherapeutic regimens 
for AML patients consisted of cytarabine and daunorubicin. 
Subsequently, homoharringtonine (HHT) was combined 
with cytarabine and anthracycline to treat AML patients 
(5,6). Currently, there are no therapeutic regimens for 
AML patients that prevent relapse and achieve sustained 
remission. Many cancers, including AML, typically arise 
from genetic aberrations and immune system deficiency, 
and strategies to regulate immune function have been 
introduced in the treatment of cancer. Hematopoietic 
stem cell transplantation (HSCT) has shown that donor T 
cells and natural killer (NK) cells can inhibit and eliminate 
leukemia cells (7), providing a theoretical foundation for 
cellular immunotherapy in AML. Several studies have found 
that the tumor microenvironment (TME) of AML plays a 
key role in disease progression and therapeutic resistance 
(8,9). However, the TME of AML remains insufficiently 
understood.

In the present study, we aimed to explore the key 
irgs involved in AML. Our study involved a discovery 
phase and 2 validation phases. In the discovery phase, 
bioinformatics screening was used to identify irgs that 
had a significant association with AML prognosis. In the 
prognostics validation phase, the relationship between 
the screened genes and AML prognosis was evaluated in a 
cohort from the Cancer Genome Atlas (TCGA) program. 
In the immunity validation phase, the integrin lymphocyte 
function-associated antigen 1 (CD11A/CD18; ITGAL/
ITGB2) was selected for further bioinformatics analysis 
to assess associations between ITGB2 and expression 
levels, immune cell infiltrates, and prognostic values for 

AML. Finally, we confirmed the protein expression levels 
of ITGB2 via bone marrow immunohistochemistry. 
Compared to the Wang et al. study (34148032), we 
further explored the mRNA expression level of ITGB2 via 
immunohistochemistry, further drug sensitivity analysis was 
performed based on the expression of ITGB2.

We present the following article in accordance with the 
REMARK reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-3641).

Methods

Raw data

Transcriptome RNA-Seq data for 151 AML samples were 
downloaded from TCGA database (https://portal.gdc.
cancer.gov/).

Analysis of immune, stromal, and estimate scores

The ESTIMATE algorithm in R version 4.0.3 (https://
www.r-project.org/) was used to estimate the ratio of 
immune-stromal component in the TME, including 
immune, stromal, and estimate scores.

Survival analysis and Cox risk regression 

The survminer R package was used to perform survival 
analysis. Univariate Cox regression analysis and Kaplan-
Meier were used to assess the prognostic role of differential 
expression genes (DEGs) in AML patients. Kaplan-Meier 
was used to estimate a survival curve, with log-rank P<0.05 
considered significant. Cox regression analysis combined 
with stepwise regression was performed to establish a Cox 
risk model.

Analysis of DEGs in high- and low-score groups via 
immune and stromal scores

The 151 AML samples were divided into high- and low-risk 
score groups based on median immune and stromal scores. 
DEGs in the high- and low-score groups were analyzed 
using the R LIMMA package. A fold change >1 and false 
discovery rate (FDR) <0.05 were considered significant.

Enrichment function analysis

The biological functions and pathways of the DEGs 

https://dx.doi.org/10.21037/atm-21-3641
https://dx.doi.org/10.21037/atm-21-3641
https://www.r-project.org/
https://www.r-project.org/
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were investigated using the R packages clusterProfiler, 
enrichplot, and ggplot2. A P value and Q-value of <0.05 
were considered significant.

Heat map construction

A heat map of DEGs was generated using the pheatmap R 
package.

Constructing the protein-protein interaction (PPI) network

We used STRING datasets to generate a PPI network, 
which was reconstructed via Cytoscape (Version 3.8.1) with 
a confidence interval of more than 0.95.

Tumor-infiltrating immune cell (TIC) profile

The TIC abundance profile for each AML sample was 
analyzed using CIBERSORT analysis, with the 134 AML 
samples with P<0.05 chosen for further analysis.

Analysis of ITGB2 expression levels in normal and AML 
bone marrow via immunohistochemistry

We collected bone marrow samples from 3 normal and 
3 newly diagnosed AML patients in our department to 
conduct immunohistochemistry.

Analysis of drug sensitivity

Drug sensitivity analysis was performed via the R pRRophetic 
package.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Statistical analysis

Difference expressed genes analysis is carried out by limma 
package and with a log2 fold change |logFC| >1 and false 
discovery rate (FDR) <0.05 were deemed as significant. The 
Kaplan-Meier method was used to perform the survival 
curves. The cluterProfiler packages and enrichplot packages 
were used for enrichment functions analysis. The R package 
CIBERSORT was used to estimate the tumor infiltrating 
immune cells. P value <0.05 was seem as the significant 

difference.

Results

The association between immune scores, stromal scores, 
and AML patients’ prognosis

The immune scores, stromal scores, and clinical features 
of the TCGA cohort of AML patients were extracted. The 
results of immune and stromal scores indicated that higher 
estimates (P=0.066) and immune scores (P=0.087) led to poor 
prognosis in AML patients, while stromal scores did not 
appear to have an influence on prognosis (Figure 1A-1C).

Screening DEGs associated with immune scores and 
stromal scores in AML

Based on immune and stromal scores, we divided the 
TCGA cohort of AML patients into either a high- or 
low-score group. We then analyzed the differential gene 
expression of the 2 groups by generating a heat map of 
DEGs (Figure 2A,2B). The results revealed that there were 
222 downregulated genes and 655 upregulated genes based 
on immune scores (high vs. low), and 567 upregulated 
genes and 218 downregulated genes based on high and low 
stromal scores (Figure 3A,3B). Genes that were significantly 
associated with immune and stromal cells were screened 
via Venn analysis, with the results showing that there were 
502 upregulated and 122 downregulated genes in the 
intersection (Figure 3A,3B). The intersectional genes were 
further analyzed to determine their potential biological 
function and prognostics value in AML patients.

Enrichment functions of DEGs in the intersection

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis were used to 
investigate the biological functions of DEGs. The results 
of enrichment function analysis revealed that the top 10 
biological processes (BP) included neutrophil activation, 
neutrophil activation involved in immune response, 
neutrophil degranulation, neutrophil-mediated immunity, 
positive regulation of cytokine production, cytokine 
secretion, regulation of cytokine secretion, regulation 
of tumor necrosis factor (TNF) superfamily cytokine 
production, TNF superfamily cytokine production, and 
TNF regulation of tumor necrosis factor. The top 10 
cellular components (CC) included secretory granule 
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lumen, specific granule membrane, tertiary granule 
lumen, tertiary granule membrane, collagen-containing 
extracellular matrix, specific granule, external side of plasma 
membrane, secretory granule membrane, cytoplasmic 
vesicle lumen, and tertiary granule. The molecular 
functions (MF) included lipopeptide binding, carbohydrate 
binding, immunoglobulin G (IgG) binding, cytokine 
receptor activity, proteoglycan binding, cytokine binding, 
immunoglobulin binding, immune receptor activity, cargo 
receptor activity, and amide binding (Figure 4A,4B). The 
results of KEGG pathway analysis indicated that the DEGs 
were involved in cytokine−cytokine receptor interaction, 
tuberculosis, the NOD-like receptor signaling pathway, the 
chemokine signaling pathway, hematopoietic cell lineage, 
the B cell receptor-signaling pathway, and the Toll-like 
receptor signaling pathway (Figure 4C,4D). On the basis of 
these results, we concluded that the screened DEGs were 
an essential part of the immune system.

PPI network of DEGs

We generated a PPI network of the DEGs to explore 
the interaction between the selected genes The top 30 
interacting genes were selected for further analysis. The 
results showed that ITGB2 was included in the top 30 
interacting genes (Figure 5).

The prognostic value of DEGs in AML patients

Univariate Cox regression and multivariate Cox regression 
were used to explore the relationship between the 
selected DEGs in the intersection and prognosis in AML 
patients. Eleven genes were included in the forest analysis: 
KCNE1B (P=0.007), CD4 (P=0.063), ZNF385A (P=0.058), 
GNGT2 (P=0.052), KIR2DL4 (P=0.008), and UGT3A2 
(P=0.077) appeared to be adverse biomarkers for AML, 
while ZSCAN23 (P=0.036), ABI3 (P=0.076), and ITGB2 
(P=0.083) appeared to serve a protective role (Figure 6A). 
The calibration curve of the risk model (Figure 6B-6D). The 
genes expression levels in AML patients that significantly 
influence on the prognosis of AML patients based on the 
risk model (Figure 6E). The AML patients were divided into 
low and high-risk scores groups based on the risk models 
scores (Figure 6F). And the high-risk scores indicated the 
poor outcome of AML patients (Figure 6G,6H). The risk 
model showed accuracy for predicting prognosis in AML 
patients, with area under curve (AUC) at 1 year, 0.816; 
AUC at 3 years, 0.82; and AUC at 5 years, 0.875 (Figure 6I). 
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Figure 2 The differential expression genes between high and low stromal, immune scores; heat map of the top 50 DEGs stromal (A) and immune scores (B) P<0.05; fold change >1. Red represents upregulated genes, while green represents downregulated genes. DEGs, differential expression genes.

A B



Wei et al. Screening significant prognostics irgs for AML

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(17):1386 | https://dx.doi.org/10.21037/atm-21-3641

Page 6 of 17

Down

Immune ImmuneStromal
Stromal

UpBA

Figure 3 Selected genes for further analysis based on the intersections of DEGs. The intersections of downregulated (A) and upregulated 
genes (B), immune and stromal genes. DEGs, differential expression genes.

This indicated that this model can predict the prognosis of 
AML patients.

Construction of predicted models for assessing prognosis of 
AML via 11 genes

Risk modeling indicated that a high-risk score led to poor 
outcomes (P=3.076e−08) in AML patients. The risk model 
showed accuracy for predicting prognosis in AML patients, 
with area under curve (AUC) at 1 year, 0.816; AUC at  
3 years, 0.82; and AUC at 5 years, 0.875 (Figure 7).

Immune cell infiltration in AML patients

We further analyzed the relationships between different 
immune cell infiltrates in the individual sample and the 
TCGA AML cohort (Figure 8A,8B). The results showed 
that non-activated (M0) macrophages were the most 
important negative regulator for resting dendritic cells, 
activated (M1) macrophages, activated CD4 memory 
T cells, resting CD4 memory T cells, CD8 T cells, 
monocytes, naive B cells, eosinophils, resting mast cells, 
and plasma cells, while CD8 T cells may be a positive 
regulator for memory B cells, resting dendritic cells, M1 
macrophages, activated CD4 memory T cells, resting CD4 
memory T cells, and monocytes. We then divided the AML 
patients into 2 groups based on mean ITGB2 expression and 
explored the relationship between ITGB2 expression levels 
and immune infiltrates. The association between ITGB2 
and the different immune cell infiltrates showed that higher 
ITGB2 expression levels indicated elevated monocytes 
(P<0.001) and M2 macrophages (P=0.004) infiltrates, while 

lower expression levels led to higher infiltration of resting 
mast cells (P<0.001), eosinophils (P=0.001), resting CD4 
memory cells (P<0.001), plasma cells (P<0.001), naive 
B cells (P<0.001), CD8 T cells (P=0.002), and resting 
NK cells (P=0.001) (Figure 9). We then investigated the 
prognostic role of different immune cell infiltrates in 
AML. The results showed that elevated resting mast cells 
led to favorable prognosis (P<0.001), while other immune 
cell infiltrate levels did not have a significant influence on 
prognosis (Figure 10).

Immunohistochemistry

We collected samples from newly diagnosed AML patients 
in our department and compared ITGB2 expression levels 
between AML and normal samples. The results showed that 
AML patients had significantly higher ITGB2 expression 
levels than normal samples (Figure 11).

Drug sensitivity analysis

The results of drug sensitivity analysis for ITGB2 genes 
showed that patients with high-risk scores may be sensitive 
to cytarabine (P=0.0088), axitinib (P=6.5e-05), bosutinib 
(P=0.00011), docetaxel (P=0.011), bryostatin 1 (P=0.02), 
etoposide (P=0.027), imatinib (P=0.0043), lenalidomide 
(P=0.0027), vinblastine (P=0.013), tipifarnib (P=0.038), 
nilotinib (P=0.0015), midostaurin (P=7e-06), and vorinostat 
(P=0.0025) but resistant to cisplatin (P=0.0014), bortezomib 
(P=0.037), dasatinib (P=0.024), and lapatinib (P=0.036) 
(Figure 12). These results indicated the ITGB2 has a 
significant correlation with chemotherapy and target 
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Figure 4 Enrichment functions analysis of DEGs. The top 10 GO terms (A,B) and KEGG pathways (C,D) of the DEGs in the intersections. 
DEGs, differential expression genes; GO, Genome Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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therapy regimens for AML.

Discussion

TME plays a critical role in tumorigenesis, progression, and 
therapy resistance in various cancers. The main contents of 
TME include tumor cells, immune cells, and stromal cells. 
Among these, immune cells may be the most significant 
regulator of tumor progression (10), which has been well 

documented in multiple cancer types (11-13). Immune cell 
infiltration is influenced by several factors. irgs may be the 
main regulator of immune cell infiltrates into TME. Many 
studies have found that irgs act as a significant prognostic 
biomarker for cancer by regulating TME (14-17). There 
is considerable research on TME for solid tumors but few 
studies have investigated the correlation between TME 
and prognosis, therapy response, and disease progression in 
AML patients. This study aimed to investigate the function 
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and prognostic role of significant irgs in AML patients.
In the present study, we divided the analysis process into 

a discovery phase and 2 validation phases. First, ITGB2 was 
screened as the key immune-related gene for AML patients. 
In the validation phases, overexpression of ITGB2 was 
related to poor prognosis in AML patients. The integrin 
lymphocyte function-associated antigen 1 (CD11A/CD18; 
ITGAL/ITGB2) is an essential regulator for lymphocyte 
trafficking and activation, and increasing lymphocyte 
residence in the lymph nodes (18). ITGB2 expresses 
in various cells, including neutrophils, T-lymphocytes, 
B-lymphocytes, monocytes, and macrophages (19-23). With 
various blood cells involved in its expression, ITGB2 may 
be an important regulator for immune cell infiltration and a 
therapeutic target for hematological malignancies.

Zhang et al. found that ITGB2 was significantly 
overexpressed in cancer-associated fibroblasts and that the 
higher the expression level the more advanced the status of 
oral squamous cell carcinoma (OSCC), with ITGB2 acting 

as a promotor in OSCC (24). Puerkaiti et al. observed 
overexpression of ITGB2 in triple negative breast cancer 
(TNBC), and also that the expression level of ITGB2 was 
significantly correlated to cancer stage, local metastasis, 
and prognosis (25). In hematological malignancies, ITGB2 
has been correlated with chronic lymphocytic leukemia 
(CLL) and myeloma (26-28), with investigation into the 
role of ITGB2 in CLL currently at the preliminary stage. 
A study by Hutterer et al. revealed that ITGB2 expression 
in CLL was regulated via DNA methylation-dependent 
or -independent mechanisms, and upregulation of ITGB2 
promoted CLL cell growth (26). Blackburn et al. further 
explored ITGB2 expression levels in different hematological 
malignancy subtypes (29). However, no studies have 
investigated the underlying mechanism of ITGB2 in 
AML. The potential function and role of ITGB2 in cancer 
remains unclear and further research on the relationship 
between ITGB2 and cancer is needed.

This study found that ITGB2 acted as a key immune-
related gene and had an adverse signature in AML patients. 
We investigated the relationship between ITGB2 and 
immune cell infiltrates. The results showed that the higher 
the expression of ITGB2, the lower the infiltration of 
resting mast cells in AML, while the higher infiltration of 
resting mast cells acted as a protector in AML patients. 
Further, results of Gene Expression Profiling Interactive 
Analysis (GEPIA) also showed that overexpression of 
ITGB2 indicated poor outcomes in AML patients. These 
results indicated that ITGB2 expression levels could 
influence the prognosis of AML via regulation of immune 
cell infiltration. To date, no study has investigated the 
association between resting mast cells and cancer. Research 
by Frossi et al. has revealed mast cells as a significant 
regulator for innate and adaptive immune responses (30). 
Further research exploring the relationship between mast 
cells and AML is still needed. To confirm the difference 
in protein expression levels of ITGB2 between AML and 
normal samples, we collected AML and normal bone 
marrow for immunohistochemistry. The results showed that 
ITGB2 had higher expression levels in AML bone marrow 
than normal samples.

The final objective of this study was to provide useful 
information for clinicians in choosing reasonable therapy 
regimens for cancer patients. Therapy response in AML 
patients is influenced by multiple factors, such as subtypes, 
molecular biology, and cytogenetics, with molecular biology 
mainly involving genetic aberrations. With advances in 
next generation sequencing, genetic aberrations in AML 

Figure 5 The protein-protein network of top 30 DEGs, the red 
and green represent the upregulated and downregulated genes, 
respectively. DEGs, differential expression genes.
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Figure 6 The prognostic role of the selected genes for AML. (A) The nomogram model of significant influences on prognosis of AML.  
(B-D) Calibration curve of nomogram model. (E) The expression levels of selected genes in AML samples. (F) The AML patients were 
divided into high- and low-risk groups based on the expression levels of selected genes. (G,H) Survival analysis based on the risk scores. (I) 
Area under curve of this risk model for predicting the prognosis of AML patients. AML, acute myeloid leukemia.

A

B C D

E F G

H I
1.0

0.8

0.6

0.4

0.2

0.0

1.00

0.75

0.50

0.25

0.00

3.0

2.0

1.0

0.0

8

6

4

2

0

0.0 0.2 0.4 0.6 0.8 1.0

0 1 2 3 4 5 6 7 8

0 020 40 60 80 20 40 60 80100 120 140 100 120 140

S
en

si
tiv

ity

S
ur

vi
va

l p
ro

ba
bi

lit
y

R
is

k 
sc

or
e

S
ur

vi
va

l t
im

e 
(y

ea
rs

)

1-Specificity

Time (years)

Time (years)

Patients (increasing risk socre) Patients (increasing risk socre)

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0

A
ct

ua
l 1

-Y
ea

r 
O

S
 (p

ro
po

rt
io

n)

A
ct

ua
l 3

-Y
ea

r 
O

S
 (p

ro
po

rt
io

n)

A
ct

ua
l 5

-Y
ea

r 
O

S
 (p

ro
po

rt
io

n)

0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.60.1 0.2 0.3 0.4 0.5 0.6

Nomogram-predicted probability of 1-Year OS Nomogram-predicted probability of 5-Year OSNomogram-predicted probability of 3-Year OS

P=3.076e−08

R
is

k High risk
Low risk

Type
high
low

8

6

4

2

0

Risk High 
risk

Low 
risk

Points 

ITGB2 

KCNE1B 

CD4 

ABI3 

ZNF385A 

GNGT2 

S100A4

KIR2DL4 

PLXNB1 

UGT3A2 

ZSCAN23 

Total points 

1-year survival 

3-year survival 

5-year survlval



Wei et al. Screening significant prognostics irgs for AML

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(17):1386 | https://dx.doi.org/10.21037/atm-21-3641

Page 10 of 17

F
ig

ur
e 

7 
T

he
 p

ro
gn

os
tic

 r
ol

e 
of

 D
E

G
s,

 t
he

 r
el

at
io

ns
hi

p 
be

tw
ee

n 
th

e 
m

os
t 

in
te

ra
ct

iv
e 

ge
ne

s 
ex

pr
es

si
on

 l
ev

el
s 

an
d 

A
M

L
 p

ro
gn

os
is

. (
A

) 
Fo

re
st

 p
lo

t 
of

 s
in

gl
e-

fa
ct

or
 C

O
X

 
re

gr
es

si
on

 p
ro

gn
os

tic
 a

na
ly

si
s 

of
 d

iff
er

en
tia

l g
en

es
. (

B
) I

nt
er

se
ct

io
ns

 o
f t

op
 3

0 
in

te
ra

ct
io

n 
ge

ne
s 

an
d 

C
ox

 a
na

ly
si

s.
 (C

) T
he

 r
el

at
io

ns
hi

p 
be

tw
ee

n 
IT

G
B

2 
ex

pr
es

si
on

 le
ve

ls
 a

nd
 

pr
og

no
si

s 
of

 A
M

L
. (

D
) T

he
 e

xp
re

ss
io

n 
le

ve
ls

 o
f I

T
G

B
2 

in
 n

or
m

al
 a

nd
 A

M
L

 s
am

pl
es

. D
E

G
s,

 d
iff

er
en

tia
l e

xp
re

ss
io

n 
ge

ne
s;

 A
M

L
, a

cu
te

 m
ye

lo
id

 le
uk

em
ia

.

In
te

rs
ec

tio
n

P
P

I

C
O

X

A
B

C
D

P
<

0.
00

1
15 10 5 0

ITGB2 expression



Annals of Translational Medicine, Vol 9, No 17 September 2021 Page 11 of 17

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(17):1386 | https://dx.doi.org/10.21037/atm-21-3641

Figure 8 The relative content of 22 immune cells in AML based on CIBERSORT analysis. (A) The relationship between 22 immune cell types, blue and red represent 
negative and positive correlations, respectively. (B) The relative content of 22 immune cells in individual AML sample. AML, acute myeloid leukemia.

Figure 9 The analysis of immune cell infiltration difference of AML TME. AML, acute myeloid leukemia; TME, tumor microenvironment.
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Figure 10 The relationship between 22 immune cell types and prognosis in AML patients. (A) B cell memory; (B) B cell naïve; (C) dendritic cells activated; (D) dendritic cells resting; (E) eosinophils cells; (F) macrophages M0; (G) macrophages M1; (H) macrophages M2; (I) mast cells activated; (J) mast 
cells resting; (K) monocytes; (L) neutrophils; (M) NK cells activated; (N) NK cells resting; (O) plasma cells; (P) T cell CD4 memory activated; (Q) T cell CD4 memory resting; (R) T cell CD4 naïve; (S) T cells CD8; (T) T cells follicular helper; (U) T cells gamma delta; (V) T cells regulatory. AML, acute 
myeloid leukemia; NK, natural killer.
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Figure 11 The protein expression levels of ITGB2 in AML and normal bone marrow samples via immunohistochemistry. ITGB2, integrin 
lymphocyte function-associated antigen 1; AML, acute myeloid leukemia.

Normal Tumor

patients have been identified, with FMS-related tyrosine 
kinase 3 (FLT3), nucleophosmin (NPM1), and DNA 
methyltransferase 3A (DNMT3A) mutations found in over 
25% of AML patients (31). Several genetic aberrations have 
been observed to have significant correlations with drug 
resistance (32,33). Our study found that ITGB2 displayed 
significant differential expression in AML compared to 
normal samples, and acted as a significant influencing factor 
on prognosis in AML patients. We also found correlations 
between ITGB2 and drug sensitivity in AML patients. 
Patients with high-risk scores were found to be sensitive 
to cytarabine, axitinib, bosutinib, docetaxel, bryostatin 1, 
etoposide, imatinib, lenalidomide, vinblastine, tipifarnib, 
nilotinib, midostaurin, and vorinostat but resistant to 
cisplatin, bortezomib, dasatinib, and lapatinib. These 
results are interesting, with prognosis analysis revealing 
that overexpression of ITGB2 led to a reduced lifespan in 
AML patients. However, drug sensitivity analysis showed 
that upregulation of ITGB2 may promote sensitivity to 
cytarabine, the cornerstone chemotherapy regimen. These 

results indicated that while ITGB2 affects prognosis in 
AML patients, through regulation of drug resistance, 
AML patients with an ITGB2 aberration may still be able 
to use traditional chemotherapy regimens. The results of 
drug sensitivity analysis can provide useful guidance when 
choosing therapy regimens for AML patients with an 
ITGB2 gene mutation.

Conclusions

Our study found that AML patients had significantly 
higher expression of ITGB2 than normal samples, and that 
overexpression of ITGB2 can lead to poor prognosis in 
AML patients. ITGB2 also has a significant correlation with 
immune cell infiltration in AML. Drug sensitivity analysis 
indicated that upregulation of ITGB2 was correlated 
with sensitivity to cytarabine, etoposide, midostaurin, and 
vorinostat, and resistance to cisplatin, bortezomib, dasatinib, 
and lapatinib, indicating the usefulness of ITGB2 as a drug 
sensitivity biomarker.
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Figure 12 Drug sensitivity analysis based on ITGB2. (A) Axitinib; (B) bortezomib; (C) bosutinib; (D) bryostatin 1; (E) cisplatin; (F) 
cytarabine; (G) dasatinib; (H) docetaxel; (I) etoposide; (J) imatinib; (K) lapatinib; (L) lenalidomide; (M) midostaurin; (N) nilotinib; (O) 
tipifarnib; (P) vinblastine; (Q) vorinostat. ITGB2, integrin lymphocyte function-associated antigen 1. 
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