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LncRNA KCNQ1OT1 promoted hepatitis C virus-induced 
pyroptosis of β-cell through mediating the miR-223-3p/NLRP3 axis
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Background: Type 2 diabetes is a well described extra-hepatic manifestation of hepatitis C virus (HCV) 
infection. This study aimed to explore the potential mechanism of KCNQ1 overlapping transcript 1 
(KCNQ1OT1) in type 2 diabetes mellitus (T2DM) caused by HCV infection.
Methods: Min6 cells were infected with HCV to establish a vitro model, and the HCV copy number was 
detected by real-time quantitative PCR (RT-qPCR). The mRNA and protein expressions of IL-1β, IL-
18, NLRP3, caspase-1, and GSDMD were analyzed by RT-qPCR and Western blot. Flow cytometry and 
TUNEL assay were used to evaluate the pyroptosis of cells and enzyme-linked immunosorbent assay (ELISA) 
detected the secretion of insulin. A dual luciferase reporter gene assay then verified the targeting relationship 
of KCNQ1OT1, miRNA-223-3p, and NLRP3.
Results: KCNQ1OT1 was highly expressed in HCV-infected T2DM patients and HCV-infected β-cells. 
Silencing KCNQ1OT1 inhibited β-cell pyroptosis by regulating miR-223-3p/NLRP3, and inhibition of 
miR-223-3p or overexpression of NLRP3 reversed the pyroptosis by silencing KCNQ1OT1.
Conclusions: Our findings indicate KCNQ1OT1 promotes HCV-infected β-cell pyroptosis through 
the miRNA-223-3p/NLRP3 axis, effecting the production of insulin and accelerating the occurrence and 
development of T2DM.Regulating KCNQ1OT1 and its target genes will help to better understand the 
pathogenesis of T2DM induced by HCV infection and provide new theoretical foundations and therapeutic 
targets.
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Introduction

Type 2 diabetes  mell i tus  (T2DM) is  a  metabol ic 
syndrome caused by insufficient insulin secretion and 
insulin resistance. The disease affects the metabolism of 
carbohydrates, fats, and proteins, causing hyperglycemia and 
related complications and disease (1-3). The inflammatory 
environment aggravates β-cell damage and promotes the 

occurrence of T2DM. Recent studies have shown that 
patients with hepatitis C virus (HCV) have a higher risk 
of developing T2DM than the general population (4).  
T2DM has also been confirmed as an extrahepatic 
manifestation of HCV infection, which affects insulin signal 
transduction cascade (5,6). In addition, the activation of pro-
inflammatory mediators caused by chronic infection can 
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interfere with insulin signal transduction, thereby reducing 
the sensitivity to insulin and leading to liver and peripheral 
insulin resistance (7,8). However, the interaction between 
HCV infection and T2DM remains unexplained, and it 
is necessary to clarify the potential mechanism of T2DM 
caused by HCV infection.

Many epidemiological studies have shown an association 
between T2DM and HCV, involving direct viral effects, 
insulin resistance, proinflammatory cytokines, chemokines, 
suppressors of cytokine signaling, and other immune-
mediated mechanisms (9).  Inflammation is one of 
importantly related to the pathogenesis of diabetes and 
HCV. The apoptosis and pyroptosis are the main cause of 
β-cell death. Apoptosis is a very tightly programmed cell 
death with distinct biochemical and genetic pathways (10).  
Pyroptosis is  a kind of programmed cell  necrosis 
characterized by cells continuing to swell until the cell 
membrane ruptures, leading to the uncontrolled release 
of cell inflammatory content and activating a strong 
inflammatory response (11,12). In recent years, studies 
have found that cell pyroptosis is related to diabetes, 
and β-cell pyroptosis is a new hot spot in the study of 
new pathogenesis related to T2DM (13,14), suggesting 
that inflammation may promote the occurrence and 
development of T2DM by pyroptosis. Additionally, HCV 
infection can cause pyroptosis of infected liver cancer cells 
and surrounding non-infected cells affecting the occurrence 
and development of cancer (15,16) and HCV induce 
the occurrence of T2DM (17). However, how the HCV 
infection in β-cell pyroptosis remains elusive.

Long non-coding RNA (lncRNA) is a heterogeneous 
non-coding RNA with a length of more than 200 nucleotides  
(18-20) and is involved in regulating the development of 
liver cancer caused by HCV infection (21,22). In addition, 
some studies have reported that lncRNA regulated β-cells to 
affect insulin synthesis and secretion (23-25). While it has 
been reported that lncRNA KCNQ1 overlapping transcript 
1 (KCNQ1OT1) is related to many diseases and plays an 
important role in diabetes-related complications (26), the 
function of KCNQ1OT1 in HCV infection on diabetes is 
still unknown. The common mechanism by which lncRNA 
works is to act as a competitive endogenous RNA (ceRNA), 
scaffold, interact with proteins, or form membraneless 
organelles. lncRNA can bind to the complementary binding 
sites of microRNAs (miRNAs), which regulate the expression 
of genes by covering the 3'-UTR of downstream target 
genes through sponges. miRNAs regulate 30% of protein-
coding genes in the human body and have become a research 

hotspot in the field of life sciences in recent years (27-29). 
miR-223-3p is a member of the miRNA family, not only as 
novel non-invasive markers for the early detection of HCV-
positive cirrhosis and hepatocellular carcinoma (HCC), 
but also as a new screening biomarker to identify subjects 
with prediabetes at high risk of developing diabetes (30,31). 
A recent study showed that knockdown of KCNQ1OT1 
ameliorates cardiomyocytes pyroptosis by regulating miR-
214-3p/caspase-1 axis in diabetic mice (26). In this study, we 
explored the expression of KCNQ1OT1 in HCV-infected 
T2DM patients and β-cells, as well as the mechanism 
of KCNQ1OT1 regulates HCV-induced pyroptosis of 
β-cells by targeting miRNA-223-3p/NLRP3 axis. We 
found that KCNQ1OT1 was highly expressed in HCV-
infected T2DM patients and β-cells, and miRNA-223-3p  
showed low expression in HCV-infected β-cells. At the 
molecular level, we verified that KCNQ1OT1 regulates 
HCV-induced pyroptosis of β-cells and inhibits the 
production of insulin through the miRNA-223-3p/NLRP3 
axis. We present the following article in accordance with 
the MDAR reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-3862).

Methods

Patients statement

Serum samples from twenty patients with HCV-infected 
T2DM and twenty non-HCV-infected T2DM patients 
were obtained from the First People’s Hospital of Yunnan 
Province. None of the patients had coronary artery disease, 
hypertension, or other heart diseases. The study received 
approval from the ethics committee of the First People’s 
Hospital of Yunnan Province (KHLL2020-KY059), and all 
participants signed informed consent forms. All procedures 
performed in this study involving human participants were 
in accordance with the Declaration of Helsinki (as revised 
in 2013).

Cell culture

Mouse β-cell line min6 (ATCC, HS-C200660, Manassas, 
MD, USA) was maintained in RPMI 1640 medium 
(Gibco, CA, USA) containing 10% fetal bovine serum and 
1% penicillin and streptomycin in 5% CO2 at 37 ℃. To 
study the effects of KCNQ1OT1 and miRNA-223-3p on 
pyroptosis in HCV infection, HCV-infected (transfected 
with pJFH1) human liver cancer cell line Huh7.5.1 cells 
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(ATCC, XY-XB-3306, Manassas, MD, USA) were cultured, 
the HCV particles from the culture medium were purified, 
and the min6 cells were incubated at a multiplicity of 
infection (MOI) of 1.0 for 72 hours. Huh7.5.1 cells were 
maintained in Dulbecco’s modified Eagle medium (DMEM; 
Gibco, CA, USA) containing 10% fetal bovine serum, and 
1% penicillin and streptomycin in 5% CO2 at 37 ℃.

Cell transfection

To construct the KCNQ1OT1 and NLRP3 overexpression 
vector. The full-length sequences of KCNQ1OT1 
and NLRP3 were inserted into the pcDNA3.1 plasmid 
(pcDNA3.1, Invitrogen, Carlsbad, CA, USA) to obtain 
the KCNQ1OT1 and NLRP3 overexpression plasmid 
pcDNA3.1-KCNQ1OT1 and pcDNA3.1-NLRP3, and 
pcDNA3.1 plasmid as a negative control. Small interfering 
RNA targeting KCNQ1OT1 (si-KCNQ1OT1), miR-
223-3p mimic/inhibitor, and negative control (NC) mimics 
(GenePharma, Shanghai, China) were then synthesized. 
Cells were transfected with Lipofectamine 3000 (Invitrogen, 
Carlsbad, CA, USA) according to the manufacturer’s 
protocol.

Real-time quantitative PCR (RT-qPCR)

Trizol reagent (Invitrogen, Carlsbad, CA, USA) was used 
to extract total RNA from cells, and a NanoDrop 1000 
spectrophotometer (NanoDrop, DE, USA) and agarose 
gel electrophoresis (Invitrogen, Carlsbad, CA, USA) 
used to detect RNA concentration and quality. The RNA 
was reverse transcribed using a reverse transcription 
kit (Promega, Madison, WI, USA). The cDNA was 
amplificated and detected by the Real-Time PCR system 
(Bio-Rad, Hercules, CA, USA) using SYBR Premix Ex Taq 
II (Takara, Tokyo, Japan), and the 2−ΔΔCT method was used 
to calculate the relative expression levels of genes. GAPDH 
and U6 served as the internal control. These primers are 
listed in Table 1.

Western blotting

Total cell protein was separated by 12% sodium dodecyl-
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 
transferred to a polyvinylidene fluoride (PVDF) membrane, 
then 5% fat-free milk powder was added to block for 2 h at 
room temperature. The primary antibodies against NLRP3 
(1:1,000; ab263899, Abcam, Cambridge, UK), caspase-1 

(1:1,000; ab207802, Abcam), IL-1β (1:1,000; ab283818, 
Abcam), IL-18 (1:5,000; ab191860, Abcam), GSDMD 
(1:1,000; ab219800, Abcam), and GAPDH (1:1,000; ab9485, 
Abcam), were then incubated at 4 ℃ overnight. After rinsing 
with Tris-buffered saline with 0.1% Tween 20 (TBST), the 
PVDF membranes were incubated with secondary antibody 
(1:10,000, Invitrogen, Carlsbad, CA, USA) at room 
temperature for 2 hours. Enhanced chemiluminescence 
(ECL) blotting detection reagents (BioVision, Milpitas, CA, 
USA) developed chemiluminescence signals and blots were 
quantified with ImageJ software.

Luciferase reporter assay

To identify if KCNQ1OT1 and NLRP3 were direct targets 
of miR-223-3p, cells were transfected with recombinant 
plasmid containing the firefly luciferase gene. The miR-233-
3p mimic, miR-233-3p inhibitor and KCNQ1OT1-wild-type 
(WT)/mutant-type (MUT) recombinant plasmid were co-
transfected into cells, as were the miR-233-3p and NLRP3-
WT/MUT recombinant plasmids. Luciferase activity was 
measured 48 h after transfection using the dual luciferase 
reporter assay system (Promega, Madison, WI, USA).

TUNEL staining

Cells or tissues were fixed with 4% paraformaldehyde at 
room temperature for 10 min and permeated with 0.5% 
Triton X-100 in phosphate-buffered saline (PBS) for  
2 min. Cells were then rinsed, and 50 μL TUNEL detection 
solution (Roche, Basel, Switzerland) added, and the sample 
was incubated at 37 ℃ for 1 hour in the dark. After washing 
three times with PBS, the slide was mounted with anti-
fluorescence quenching mounting solution. Images were 
then taken by a fluorescence microscope. The nuclei were 
stained with DAPI and TUNEL staining was assessed.

Enzyme-linked immunosorbent assay (ELISA)

The serum obtained from the cell supernatant was 
preserved at −80 ℃ for subsequent analysis by an ELISA kit 
(MlBIO, Shanghai, China), and the levels of IL-1β, IL-18,  
and insulin were determined following the instruction 
protocols.

Determination of cell pyroptosis

Cell pyroptosis was measured using the FAM fluorescent-
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labelled inhibitor of caspase-1 assay (FLICA) and propidium 
iodide (PI) according to manufacturer’s instruction (Bio-
Rad, Hercules, CA, USA). The fluorescent signal was 
detected using flow cytometry, and the percentage of 
pyroptosis cells was the percentage of active caspase-1-PI 
double‐positive cells in total cells.

Statistical analysis

All experiments data were performed at least three times 
and values were expressed as mean ± standard deviation 
(SD). SPSS software was used, and the data were analyzed 
using the Student’s t-test and one-way analysis of variance 
(ANOVA). P<0.05 was considered statistically significant.

Results

High expression of KCNQ1OT1 in T2DM patients and 
β-cell infected by HCV

To explore the role of KCNQ1OT1 in HCV-infected 
T2DM, we detected the expression of KCNQ1OT1 in 
HCV-infected T2DM patients and non-HCV-infected 
T2DM patients. Compared to patients with T2DM who 
were not infected with HCV, those with T2DM who were 
infected had higher expression of KCNQ1OT1 (Figure 1A). 
In addition, we measured higher levels of pyroptosis-related 
proteins IL-1β, IL-18, NLRP3, caspase-1, and GSMDD in 
T2DM patients infected with HCV (Figure 1B). We then 
evaluated the expression of KCNQ1OT1 and miR-223p 

Table 1 The primers of RT-qPCR used in this study

Genes Primer set Primers sequence (5'-3')

KCNQ1OT1 KCNQ1OT1-F GCACTCTGGGTCCTGTTCTC

KCNQ1OT1-R CACTTCCCTGCCTCCTACAC

miR-223-3p miR-223-3p-F CGCUAUCUUUCUAUUAACUGACCAUAA

miR-223-3p-R CGCUAUCUUUCUAUUAUGACUCCAUAA

IL-1β IL-1β-F CCCTGCAGCTGGAGAGTGTGG

IL-1β-R TGTGCTCTGCTTGAGAGGTGCT

IL-18 IL-18-F ACAACCGCAGTAATACGGAGCA

IL-18-R TGTGCTCTGCTTGAGAGGTGCT

Caspase-1 Caspase-1-F ACACGTCTTGCCCTCATTATCT

Caspase-1-R ATAACCTTGGGCTTGTCTTTCA

NLRP3 NLRP3-F GTGGAGATCCTAGGTTTCTCTG

NLRP3-R CAGGATCTCATTCTCTTGGATC

GSDMD GSDMD-F CCATCGGCCTTTGAGAAAGTG

GSDMD-R ACACATGAATAACGGGGTTTCC

HCV HCV-F CGGACGTAGCAGTGCTCACTTC

HCV-R TGATGAGCTGGCCAAGGAGG

GAPDH GAPDH-F ATCACTGCCACCCAGAAGAC

GAPDH-R TTTCTAGACGGCAGGTCAGG

U6 U6-F CTCGCTTCGGCAGCACATATACT

U6-R ACGCTTCACGAATTTGCGTGTC
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Figure 1 The expression of KCNQ1OT1 and apoptosis-related proteins increased under the induction of HCV. (A) RT-qPCR detected 
the expression of KCNQ1OT1. (B) ELISA detected the expression of IL-1β, IL-18, NLRP3, caspase-1, and GSDMD. (C) The expression 
of KCNQ1OT1 and miR-223-3p revealed by RT-qPCR. (A,B) Compared with T2DM group, **P<0.01; (C) compared with Control (Con, 
min6 cells) group, **P<0.01, ***P<0.001. KCNQ1OT1, KCNQ1 overlapping transcript 1; HCV, hepatitis C virus; RT-qPCR, real-time 
quantitative PCR; T2DM, type 2 diabetes mellitus.

in HCV-infected min6 cells and found KCNQ1OT1 was 
significantly increased, and miR-223p was decreased after 
HCV infection (Figure 1C). Therefore, we determined 
that KCNQ1OT1 is highly expressed in HCV-infected 
T2DM patients and cells, and its increase may be related to 
pyroptosis.

KCNQ1OT1 is involved in β-cell pyroptosis induced by 
HCV infection

To clarify the relationship between KCNQ1OT1 and β-cell 
pyroptosis induced by HCV we constructed HCV-infected 
min6 cells and detected the HCV copy number. The HCV 
copy number of the HCV group was higher than the control 
group (Figure 2A), indicating that our vitro model could 
be used. We then applied different small infectious RNAs 
(siRNA), which included siRNA NC (si-NC) and siRNA-
KCNQ1OT1 (si-K1/2/3), to knockdown KCNQ1OT1, 
and as si-K2 knockdown efficiency was the most significant 
(Figure 2B), we used it in subsequent studies. RT-qPCR and 

Western blot were used to detect the mRNA and protein 
expression levels of IL-1β, IL-18, NLRP3, caspase-1, 
and GSDMD, respectively. And the results showed that 
while HCV infection increased the expression of these 
proteins related to pyroptosis, knockdown of KCNQ1OT1 
significantly reduced the expression (Figure 2C,2D). In 
ELISA analysis, insulin secretion decreased after HCV 
infection, and insulin levels were restored after HCV-
infected cells were transfected with si- KCNQ1OT1 
(Figure 2E). Moreover, we found that HCV promoted cell 
pyroptosis and transfection of si-KCNQ1OT1 alleviated 
pyroptosis in HCV-infected cells (Figure 2F,2G). These 
results showed that KCNQ1OT1 regulated HCV-infected 
pyroptosis of β-cells, and knockdown of KCNQ1OT1 
inhibited cell pyroptosis in HCV infection.

KCNQ1OT1 target regulates the miR-223-3p/NLRP3 
axis

To explain the mechanism of KCNQ1OT1 in HCV-
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induced β-cell pyroptosis, we predicted the miRNA 
regulated by KCNQ1OT1 through the bioinformatics 
website “Starbase”, and discovered miR-223-3p (Figure 3A). 
Dual luciferase reporter assay was performed to verify the 
interaction between KCNQ1OT1 and miR-223-3p. The 

KCNQ1OT1 3'-UTR WT fragments (KCNQ1OT1 WT) 
or MUT fragments (KCNQ1OT1 MUT) recombinant 
plasmids were co-transfected with the NC mimic or miR-
223-3p mimic into cells, and the results showed that the 
luciferase activity of co-transfected KCNQ1OT1-WT and 

Figure 3 Targeting relationship of KCNQ1OT1, miR-223-3p, and NLRP3. (A) Sequence alignment of KCNQ1OT1, WT/MUT, and 
miR-223-3p. (B) Dual luciferase reporter gene assay to detect the targeting of KCNQ1OT1 and miR-223-3p. (C) The expression of 
KCNQ1OT1 presented by RT-qPCR. (D) Sequence alignment of NLRP3, WT/MUT, and miR-223-3p. (E) Dual luciferase reporter gene 
assay to detect the targeting of NLRP3 and miR-223-3p. (F) The expression of NLRP3 presented by RT-qPCR. Compared with NC group, 
**P<0.01. KCNQ1OT1, KCNQ1 overlapping transcript 1; WT, wild-type; MUT, mutant-type; RT-qPCR, real-time quantitative PCR; 
NC, negative control.

**

**

**
**

NC mimic
miR-223-3p mimc

NC mimic
miR-223-3p mimc

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0
NLRP3-WT              NIPR3-MUT

NLRP3 WT

NLRP3 MUT

KCNQ1OT1 MUT

KCNQ1OT1 WT

miR-223-3p

miR-223-3p

KCNQ1OT1-WT    KCNQ1OT1-MUT

NC mimic    miR-223-3p mimc

NC mimic    miR-223-3p mimc

R
el

at
iv

e 
Lu

ci
fe

ra
se

 a
ct

iv
ity

R
el

at
iv

e 
Lu

ci
fe

ra
se

 a
ct

iv
ity

N
LR

P
3 

m
R

N
A

 re
la

tiv
e 

ex
pr

es
si

on
K

C
N

Q
1O

T1
 re

la
tiv

e 
ex

pr
es

si
on

A

B C

D

E F



Niu et al. KCNQ1OT1 promotes β-cell pyroptosis

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(17):1387 | https://dx.doi.org/10.21037/atm-21-3862

Page 8 of 13

miR-223-3p mimics was significantly reduced (Figure 3B). 
Furthermore, the expression level of KCNQ1OT1 was 
evaluated after transfection with the miR-223-3p mimic 
and was found to have decreased (Figure 3C). Similarly, we 
found that the target gene of miR-223-3p was NLRP3, 
which is a key protein (Figure 3D). Compared with co-
transfection with NLRP3-Wt and NC mimic, the luciferase 
activity of NLRP3-Wt and the miR-223-3p mimic 
decreased significantly (Figure 3E), and the expression of 
NLRP3 was down-regulated after transfection with the 
miR-223-3p mimic (Figure 3F). Therefore, we speculate 
that KCNQ1OT1 participates in the regulation of β-cell 
pyroptosis with HCV-induced through the miR-223-3p/
NLRP3 axis.

KCNQ1OT1 regulates pyroptosis of β-cell infected by HCV 
through miRNA-223-3p

We further confirmed the role of miR-223-3p in 
KCNQ1OT1’s regulation of HCV-infected β-cell 
pyroptosis. After HCV induced min6 cells, overexpression of 
KCNQ1OT1 or miR-223-3p and KCNQ1OT1 at the same 
time, and transfected the empty vector (pcDNA3.1) as a 
negative control. Overexpression of miRNA-223-3p reduced 
the mRNA and protein expression levels of IL-1β, IL-18, 
NLRP3, caspase-1, and GSDMD, while KCNQ1OT1 
restored this reduction (Figure 4A,4B). In addition, we 
investigated insulin secretion by ELISA assay, and the 
results showed that overexpression of miR-223-3p increased 
insulin secretion, and overexpression of miR-223-3p and 
KCNQ1OT1 decreased insulin secretion (Figure 4C).  
In the flow cytometry analysis, we demonstrated that 
miRNA-223-3p played an important role in cell pyroptosis, 
overexpression of miRNA-223-3p obviously decreased cell 
pyroptosis, and the change could be reversed though the 
overexpression of KCNQ1OT1 (Figure 4D). These results 
indicated that KCNQ1OT1 regulated β-cell pyroptosis 
under HCV-infection via targeting miRNA-223-3p.

HCV induces β-cell pyroptosis by regulating KCNQ1OT1/
miRNA-223-3p/NLRP3

Furthermore, we investigated the interplay among 
KCNQ1OT1, miR-223-3p,  and NLRP3 in β-cel l 
pyroptosis which were HCV-infected. The result of RT-
qPCR showed that si-KCNQ1OT1 (si-K) significantly 
decreased the mRNA expressions of IL-1β, IL-18, NLRP3, 
caspase-1, and GSDMD, compared with the HCV-infected 

group, while co-transfection with miR-223-3p inhibitor 
(inh) or overexpression of NLRP3 increased the mRNA 
expression of these proteins (Figure 5A). Similarly, 
knockdown of KCNQ1OT1 increased insulin secretion, 
and inhibition of miR-223-3p or overexpression of NLRP3 
reversed this effect (Figure 5B). Further, Western blot 
demonstrated the expression of IL-1β, IL-18, NLRP3, 
caspase-1, and GSDMD, and showed their expression 
decreased in cells which were transfected with si-K. 
After inhibiting miR-223-3p or overexpressing NLRP3, 
the expression of IL-1β, IL-18, NLRP3, caspase-1, and 
GSDMD increased, which was consistent with the mRNA 
results (Figure 5C). Measurement of cell pyroptosis by flow 
cytometry proved that knockdown of KCNQ1OT1 reduced 
pyroptosis, while inhibiting miR-223-3p or overexpression 
of NLRP3 inhibited the cell pyroptosis induced by 
KCNQ1OT1 (Figure 5D). Consequently, we concluded 
that the KCNQ1OT1/miR-223-3p/NLRP3 axis regulates 
β-cell pyroptosis infected by HCV.

Discussion

T2DM is caused by the joint participation and interaction 
of multiple risk factors, and its incidence has continued to 
rise globally. The pathogenesis mainly involves pancreatic 
β-cell dysfunction and insulin resistance, while inflammation 
plays a mediator role in its pathogenesis. Studies (32-34) 
have shown that HCV infection is significantly related 
to T2DM, and insulin resistance and T2DM are more 
common in patients this infection. However, the mechanism 
by which HCV infection is related to the occurrence 
and development of T2DM is still unclear. One possible 
mechanism may involve damage to β-cells. Pyroptosis is 
a newly discovered inflammatory form of programmed 
cell death. When the NLRP3 inflammasome is activated, 
caspase-1 is activated, which then mediates the activation 
of downstream inflammatory factors (IL-1β and IL-18) and 
the lysis of GSDMD to trigger the production of pyroptosis 
(35-37). Pyroptosis is not only related to diabetes and its 
complications but is closely related to HCV virus infection. 
Therefore, we studied the mechanism of HCV infection-
induced β-cell pyroptosis leading to T2DM.

LncRNA exerts biological effects through a variety 
of mechanisms. LncRNA KCNQ1OT1 is abnormally 
expressed in a variety of diseases and plays different roles 
among them (38-40). Our study found that KCNQ1OT1 
was highly expressed in HCV-infected T2DM patients 
and cells, and cell experiments proved that KCNQ1OT1 
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Figure 4 KCNQ1OT1 regulates β-cell pyroptosis under HCV-infected via targeting miRNA-223-3p. (A) The protein expression of IL-
1β, IL-18, NLRP3, caspase-1, and GSDMD presented by Western blot. (B) RT-qPCR detection of the mRNA expression of IL-1β, IL-
18, NLRP3, caspase-1, and GSDMD. (C) ELISA to measure the level of insulin. (D) Flow cytometry was used to analyze cell pyroptosis. All 
groups were infected with HCV. Compared with HCV group, *P<0.05, **P<0.01, ***P<0.001; compared with miR-223-3p group, #P<0.05, 
##P<0.01. KCNQ1OT1, KCNQ1 overlapping transcript 1; HCV, hepatitis C virus; RT-qPCR, real-time quantitative PCR; ELISA, enzyme-
linked immunosorbent assay; PI, propidium iodide.
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silence after HCV infection reduced β-cell pyroptosis, 
indicating that KCNQ1OT1 plays a considerable role in 
T2DM induced by HCV infection. LncRNA regulates 
downstream target genes by binding miRNA and is 
associated with pyroptosis. For example, lncRNA MALAT1/

miR-23c/ELAVL1 regulated renal tubular epithelial cell 
pyroptosis in diabetic nephropathy (41), lncRNA MALAT1/
miR-30c/NLRP3 promoted renal tubular epithelial cell 
pyroptosis induced by high glucose (HG) (42), and lncRNA 
KCNQ1OT1/miR-214-3p/NLRP3 regulated the pyroptosis 
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Figure 5 KCNQ1OT1/miR-223-3p/NLRP3 axis participates in HCV-induced β-cell pyroptosis. (A) RT-qPCR detection of the mRNA 
expression of IL-1β, IL-18, NLRP3, caspase-1, and GSDMD. (B) ELISA to measure the level of insulin. (C) The protein expression of IL-
1β, IL-18, NLRP3, caspase-1, and GSDMD were presented by Western blot. (D) Flow cytometry was used to analyze cell pyroptosis. 
All groups were infected with HCV. Compared with HCV group, **P<0.01, ***P<0.001; compared with si-K group, #P<0.05, ##P<0.01, 
###P<0.001. KCNQ1OT1, KCNQ1 overlapping transcript; HCV, hepatitis C virus; RT-qPCR, real-time quantitative PCR; ELISA, enzyme-
linked immunosorbent assay; si-K, small interfering RNA targeting KCNQ1OT1; PI, propidium iodide; inh, inhibitor.
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of cardiomyocytes in diabetic cardiomyopathy (43).
However, the molecular mechanism of lncRNA/

miRNA regulating β-cell pyroptosis in T2DM induced by 
HCV infection has not been reported. We predicted the 
potential miRNA of KCNQ1OT1 through “Starbase”, 

miR-223-3p and KCNQ1OT1 have binding sites. miR-
223-3p could be used as a potential biomarker in diabetes 
and its complications (44), and, importantly, was closely 
related to HCV-infected liver cirrhosis and HCC (45). 
Our data indicated that miR-223-3p is lowly expressed 
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in HCV-infected β-cells, and its overexpression inhibited 
cell  pyroptosis,  while KCNQ1OT1 abolished the 
inhibitory effect of miR-223-3p, which further proved 
that KCNQ1OT1 regulates HCV-infected cell pyroptosis 
through miR-223-3p. The pyroptosis related protein 
NLRP3 is a target gene of miR-223-3p. In this study, we 
explored NLRP3 under the induction of HCV, and found 
KCNQ1OT1/miR-223-3p targeted and regulated NLRP3, 
which affected the expression of IL-1β, IL-18, caspase-1, 
and GSDMD, thereby regulating β-cell pyroptosis. Taken 
together, these results suggest KCNQ1OT1 acts as a sponge 
of miR-223-3p to affect the expression of NLRP3 and 
participates in the pathogenesis of T2DM induced by HCV 
infection by regulating the apoptosis of β cells (Figure 6).

In summary, our study proved that KCNQ1OT1 
promotes the HCV-infected pyroptosis of β-cells by 
regulating the miRNA-223-3p/NLRP3 axis, effecting the 
production of insulin and accelerating the occurrence and 
development of T2DM. Regulating KCNQ1OT1 and its 
target genes will help to better understand the pathogenesis 
of T2DM induced by HCV infection and provide new 
theoretical foundations and therapeutic targets.
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