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CCR2 and PTPRC are regulators of tumor microenvironment and 
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Background: Tumor microenvironment (TME) plays an essential role in lung adenocarcinoma (LUAD) 
development and metastasis. With the development of TME research, it has been proved that differences in 
tumor-infiltrating immune cells (TICs) and gene expression profile are related to the prognosis of cancer. 
The aim of our study was to identify key genes affecting immune state in TME of LUAD. 
Methods: The RNA-seq data and clinical characteristics of 594 LUAD patients were downloaded from the 
TCGA database. ImmuneScore, StromalScore and ESTIMATEScore of each LUAD sample were calculated 
using ESTIMATE algorithm. Based on the median of different scores, LUAD samples were divided into 
high and low score groups. Differentially expressed genes (DEGs) between groups were obtained, and 
univariate Cox regression analysis and protein-protein interaction (PPI) network were used to screen the 
shared DEGs generating in the intersection analysis. Finally, the CIBORSORT algorithm was performed to 
calculate the relative contents of TICs for each LUAD sample, and the correlation analysis between TICs 
and key genes was used to determine the influence of key genes to the TME.
Results: In the presented study, we found that three different scores were positively correlated with the 
prognosis of LUAD patients, and correlation analysis showed the different scores were closely related to 
tumor progression and metastasis. After performing the intersection analysis, a total of 585 up-regulated and 
107 down-regulated DEGs between the high and low score groups were obtained, all of which were enriched 
in immune-related functions. Having used univariate COX regression analysis and PPI network, the key 
genes, CCR2 and PTPRC, affecting the immune status of TME and the prognosis of LUAD were acquired. 
Analysis based on the CIBERSORT algorithm suggested that CCR2 and PTPRC were correlated with a 
variety of TICs, and closely related to the clinical characteristics of the LUAD patients.
Conclusions: Our research showed that CCR2 and PTPRC may be potential prognostic markers in 
LUAD, which may affect the function of γδT cells and other immune cells by participating in the regulation 
of TME immune state.
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Introduction

Lung cancer is one of the malignant tumors that threaten 
human health (1), among which adenocarcinoma is the 
most common histological type of non-small cell lung 
cancer (NSCLC), accounting for approximately 60% of 
NSCLC (2). Given the early symptoms of lung cancer are 
nonspecific, a vast majority of patients are diagnosed at 
advanced stages of the disease (3). Although great progress 
has been made in the early diagnosis and treatment of 
lung cancer in recent years, the exploration of prognostic 
biomarker and novel therapeutic targets in lung cancer is 
still unsatisfactory (4,5). Currently, immunotherapy have 
brought a new direction to the clinical treatment of lung 
cancer, and a variety of immune checkpoint inhibitors 
(ICIs) have shown encouraging efficacy in clinical trials 
(6,7). However, some patients have not benefited from 
immunotherapy (8) or developed drug resistance during 
medication (9), and its side effects and adverse reactions 
are still a worrying issue. Accordingly, it is still necessary 
to explore and ascertain the pathogenic mechanism of lung 
adenocarcinoma (LUAD) to break through the current 
bottleneck.

Tumor microenvironment (TME) is  a  complex 
ecosystem composed of various types of cells, which can be 
divided into immune components dominated by immune 
cells and matrix components dominated by fibroblasts (10).  
Most of the cancer characteristics are activated and 
sustained by varying degrees through contributions from 
the distinctive cells of TME. They mediate the recruitment, 
activation, programming and persistence of tumor cells 
in a variety of ways (11). A growing body of studies have 
elucidated that tumor-infiltrating immune cells (TICs) can 
be used as a predictor of cancer prognosis and treatment 
target (12,13). Nevertheless, Further studies have found 
that TME components have great heterogeneity among 
different tumor stages and individuals, thereby leading 
to the differences in prognosis (14,15). For instance, in 
liver cancer, tumors with higher transcriptome diversity 
have lower T cell cytolytic activity, which was related to 
the poor prognosis (16). Likewise, in colorectal cancer 
increased M1 macrophage levels indicated shorter overall 
survival (OS) of patients (17). This heterogeneity not only 
results in differences in patient outcome, but also increases 
the difficulty for clinicians to use targeted drugs (18). 
Therefore, the extensive search for novel and effective TME 
targeting sites may provide a new window of opportunity 
for combined immunotherapy (19).

In this study, we used ESTIMATE algorithm to calculate 
the TME components of LUAD samples in the Cancer 
Genome Atlas (TCGA) database, and CIBERSORT 
algorithms were used to calculate the relative contents of 
various TICs, combining with univariate Cox regression 
analysis and protein-protein interaction (PPI) network to 
screen differentially expressed genes (DEGs) and finally 
obtained predictive biomarkers CCR2 and PTPRC. 
CCR2 is the receptor for monocyte chemotactic protein-1 
(MCP-1), which were expressed by a variety of cell types, 
including monocytes, dendritic cells (DC), endothelial 
cells and cancer cells. The upregulation of MCP-1 was 
related to formation, metastasis and recurrence of multiple 
types of cancers (20,21). Nevertheless, some studies have 
indicated that the high expression of CCR2 inhibited 
the development of small cell lung cancer (SCLC) (22). 
The protein tyrosine phosphatase CD45, encoded by the 
PTPRC gene, which has thought to be a regulator of B 
cell and T cell receptor signaling, it has been reported 
that PTPRC expression was significantly down-regulated 
in acute lymphoblastic leukemia and Parkinson's disease 
(23,24). In patients with SCLC, its expression was positively 
correlated with the patients’ survival (25). Here, our study 
revealed that the CCR2 and PTPRC might be a potential 
indicator for the alteration of TME status in LUAD. 
We present the following article in accordance with the 
REMARK reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-3301).

Methods

Extraction of data

Through the TCGA database (https://portal.gdc.cancer.
gov/), we obtained RNA-seq data and clinical characteristics 
of 594 LUAD samples (535 tumor samples and 59 healthy 
samples). The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Analyzing of ImmuneScore, StromalScore, and 
ESTIMATEScore

We analyzed the immune and matrix components in the 
TME using R language version 4.0.3 loaded with estimate 
package, presented by ImmuneScore, StromalScore, and 
ESTIMATEScore. The higher the score reflects the higher 
corresponding component in TME. ESTIMATEScore 
represents the sum of immune and matrix components.

https://dx.doi.org/10.21037/atm-21-3301
https://dx.doi.org/10.21037/atm-21-3301
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Survival analysis

The survival and survminer R package were used for survival 
analysis. Kaplan-Meier analysis was used to perform the 
survival curve as well, P<0.05 was considered significant.

Analysis of correlation between clinical characteristics and 
scores

We analyzed the relationship between clinical characteristics 
and different scores of LUAD patients downloaded from 
the TCGA via R language, and used the Wilcoxon rank 
sum test or the Kruskal-Wallis rank sum test as a test of 
significance.

Screening of DEGs

LUAD samples were marked as high or low score group 
based on the median of ImmuneScore and StromalScore. 
We used the package “limma” to analyze the DEGs between 
the high and low score groups. DEGs with |log2FC|>1 
and false discovery rate (FDR) <0.05 were statistically 
significant. R language with package pheatmap was used to 
construct the heatmaps of DEGs.

Enrichment function analysis

To explore the functions of the DEGs, we used clusterProfiler, 
enrichplot, and ggplot2 R package for the analysis. Terms 
with P value and q value <0.05 were considered significant.

PPI network construction

The STRING public database (https://string-db.org/) 
was used to generate the PPI network, and results were 
reconstructed with Cytoscape version 3.8.1. The nodes with 
the confidence of interactive association more than 0.7 were 
selected to generate the PPI network.

Univariate COX regression analysis

R language combined with “survival” package was used in 
univariate Cox regression analysis. DEGs with a value of 
P<0.05 were selected for following analysis.

TICs analysis

We used the CIBERSORT algorithm on 535 tumor samples 

to calculate the relative contents of 22 types of TICs in 
each LUAD sample, samples with P<0.05 were used for 
subsequent analysis.

Statistical analysis

Statistical analysis was performed using with R (version 4.0.3, 
https://www.r-project.org/). P value <0.05 was considered to 
be statistically significant.

Results

Survival analysis of LUAD patients in three different 
scores 

We combined ESTIMATE algorithms and Kaplan-Meier 
survival analysis to profile the relationship between different 
scores and patients’ prognosis. ImmuneScore, StromalScore 
and ESTIMATEScore showed a positive correlation with 
OS (Figure 1). The results above suggested that the immune 
and matrix components in the TME could reflect the 
prognosis of LUAD patients, indicating the potential value 
of each component of TME.

Correlation of scores with clinical characteristics of LUAD 
patients

Clinical characteristics were downloaded from the TCGA 
database, and the correlation analysis between three 
types of scores and clinical characteristics was carried out  
(Figure 2A-2O). As shown in Figure 2A-2C, males had lower 
scores relative to females. Meanwhile, three kinds of scores 
were negatively correlated with tumor stages (Figure 2D-2F).  
Further analysis demonstrated that scores decreased 
significantly from T1 to T4 in T classification (Figure 2G-2I),  
M classification also showed a negative correlation with 
scores. However, no statistically significant changes of scores 
were observed in N classification. In a word, results above 
demonstrated that the immune and matrix components in the 
TME correlated with tumor progression and metastasis.

DEGs screening

In order to analyze the changes in the gene expression profile 
of immune and matrix components, we divided ImmuneScore 
and StromalScore into high and low score groups according 
to the median of scores, and the DEGs of the two groups 
were presented in heat maps (Figure 3A,3B), thus identifying 

https://string-db.org/
http://www.r-project.org/
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1,394 genes from ImmuneScore (including 1,097 up-
regulated and 297 down-regulated genes), and 1,623 genes 
from StromalScore (including 1,422 up-regulated and 201 
down-regulated genes). The intersection analysis of the two 
scores obtained 585 up-regulated and 107 down-regulated 
shared genes (Figure 3C,3D). These shared DEGs may exert 
dual effect on the immune and matrix component of TME.

Functional enrichment analysis

Subsequently, we performed functional enrichment analysis 
for the shared DEGs, the results of gene ontology (GO) 
analysis showed that the functions of 692 shared DEGs in 
two groups were mainly concentrated on immune-related 
terms, including immune response-activating cell surface 
receptor signaling pathway, immune response-activating 
signal transduction, lymphocyte mediated immunity, and 
humoral immune response (Figure 3E). Meanwhile, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis indicated DEGs primarily enriched in cytokine-
cytokine receptor interaction, chemokine signaling pathway, 
hematopoietic cell lineage and B cell receptor signaling 
pathway (Figure 3F). To sum up, DEGs obtained from the 
intersection analysis of ImmuneScore and StromalScore 
were enriched in immune function of TME, which may 
contain the key factors affecting immune state.

Intersection analysis of PPI network and univariate Cox 
regression analysis 

We then constructed PPI network using STRING database 

to further screen the 692 shared genes. The top 30 genes 
sorted by the number of nodes were shown in bar plot 
(Figure 4A,4B). Univariate Cox regression analysis of the  
692 shared genes were performed showing that 22 genes 
were related to the OS of LUAD (Figure 4C). Having 
performed the intersection analysis of PPI network and 
univariate Cox regression analysis, we ultimately obtained 
two overlapping genes CCR2 and PTPRC (Figure 4D).

Integrated analysis of CCR2 and PTPRC

Next, we performed integrated analysis of these two genes. 
As shown in Figure 5A,5B, the expression of CCR2 and 
PTPRC in tumors were significantly lower than that of 
normal samples. Survival analysis showed that patients in the 
high expression group of the two key genes had longer OS 
than those in the low expression group (Figure 5C,5D). Next, 
we further analyzed the correlation between the two genes 
and clinical characteristics (Figure 6A-6J), manifesting that 
CCR2 expression was negatively correlated with tumor stage 
of LUAD (Figure 6B), and its expression decreased as the T 
and N classification increased (Figure 6C,6D). Similar results 
were presented in the analysis of PTPRC (Figure 6H,6I). In 
conclusion, we can conclude that these two genes may affect 
the prognosis by affecting the immune state in TME based 
on the previous analysis, and they could be used as reliable 
biomarkers of LUAD prognosis.

Correlation analysis between key genes and TICs

The CIBERSORT algorithm was performed on 535 tumor 
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samples to calculate the relative content of 22 types of 
TICs in each sample, the relative content of TICs in tumor 
samples and correlations analysis between TICs were 
shown in Figure 7A,7B. The correlation analysis between 
the high and low expression groups of 2 key genes showed 
that 15 TICs were closely related to CCR2, including  
10 positively related TIC subtypes and 5 negatively related 
TIC subtypes (Figure 8). 13 types of TICs were correlated 
with PTPRC, including 7 positively related TIC subtypes 
and 6 negatively related TIC subtypes (Figure 9). We 
subsequently divided LUAD patients into high and low 
groups based on median content of each TIC subtype 
and found that patients with a higher proportion of γδT 
cells and plasma cells had a better prognosis, while higher 
proportion of resting NK cells led to diametrically opposite 
results (Figure 10). Taken together, these two genes were 

key factor affecting immune state of LUAD.

Discussion

Lung cancer is the most common cause of cancer-related 
deaths in the world’s population with a 5-year survival 
rate ranges from 4% to 17% depending on tumor stage 
and regional variation (26). According to statistics, there 
were 2.1 million lung cancer cases globally leading to 
1.761 million deaths in 2018, ranking first in the incidence 
of malignant tumors (27). Although many advances 
have been made in understanding the mechanism of this 
disease, more than 1 million people die from lung cancer 
each year worldwide (28,29). Currently, the role of TME 
in tumorigenesis and cancer progression has become 
clearer (30), making it possible to predict treatment 
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responsiveness and survival prognosis. Notably, the 
immune components in TME could mediate anti-tumor 
effect, and studies have indicated the correlation between 
tumor immune microenvironment and the efficacy of 
immunotherapy (31,32).

In our study, key genes, CCR2 and PTPRC, were obtained 
by analyzing the matrix and immune components of TME 
in LUAD. CCR2 was a chemokine receptor that regulated 
the immune response by inducing the recruitment of 
macrophages and monocytes to the site of inflammation (20).  
Intriguingly, numerous studies have elucidated that CCR2 
was correlated with the occurrence and development of many 
diseases (20,33). High expression of CCR2 may lead to the 
poor prognosis of various cancers (21,34,35), and inhibition 

of CCR2 can enhance the therapeutic effect of PD-1 on 
tumor suppression (36). Paradoxically, the study by Zheng 
et al. proved that CCL2 was significantly down-regulated 
in SCLC and led to the proliferation of cancer cells (22). 
Our study indicated that the expression of CCR2 in LUAD 
was significantly lower compared with the corresponding 
normal tissue, and patients with high CCR2 expression had 
longer OS. Further analysis of the relationship between 
the expression of CCR2 and tumor stage shed bright light 
on the results that with the progress of T classification, the 
expression of CCR2 decreased. In a word, the above results 
demonstrated that CCR2 may play an anti-tumor effect in 
LUAD. In addition, the other key gene, PTPRC, encoded an 
evolutionarily highly conserved protein tyrosine phosphatase 
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CD45, which was only expressed on nucleated cells of the 
hematopoietic system and was considered to be a regulator 
of B and T cell receptor signaling (24,37,38). In recent years, 
the role of CD45 in cancer and TME remained controversial. 
Chen et al. indicated that the accumulation of CD45+CD71+ 
erythroid cells in liver cancer may play an immunosuppressive 
effect in TME (39). Studies have confirmed that a higher 
proportion of CD45+ cells was closely related to the poor 
prognosis of NSCLC patients. However, in other types of 
tumors, high expression of CD45 may be related to the good 
prognosis of the tumor, indicating that CD45 may play a 
completely distinctive role in different tumors (24,25). Our 
study revealed that the expression of PTPRC in LUAD 
was significantly down-regulated compared with normal 
tissue, and patients with high PTPRC expression had better 
prognosis. Further analysis of the relationship between the 
expression of PTPRC and clinic characteristics indicated that 
with the progress of tumor stage, the expression of PTPRC 

decreased significantly. 
We further calculated relative content of TICs of LUAD 

samples using CIBERSORT algorithm, the results found 
that patients with high proportion of γδT cells presented 
a better prognosis. γδT lymphocytes are a subset of T 
lymphocytes, which can directly inhibit tumor cells through 
cytotoxicity (40,41). It has been confirmed that γδT cells 
participated in the anti-tumor effect of lung cancer (42) and 
prostate cancer (43). Previous studies have confirmed that 
γδT cells have the property of suppressing and inhibiting 
a variety of tumor cell lines (44,45). However, some γδT 
lymphocyte subtypes were unexpected promoters for 
tumorigenesis and cancer development as their functions 
were affected by the immunosuppressive signal of TME (46).  
Our research found that the proportion of γδT cells was 
significantly correlated with the expression of CCR2 
and PTPRC (P<0.05). This may suggest that CCR2 and 
PTPRC were the key factors that drive the anti-tumor effect 
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of γδT cells in the TME. In summary, CCR2 and PTPRC 
may affect the function of immune cells, such as γδT cells, 
by participating in the regulation of the immune activity 
of TME and exert an impact on the prognosis of LUAD. 
CCR2 and PTPRC can be used as biomarkers to predict 
the immune response of TME and provide new therapeutic 
targets for LUAD. Notwithstanding, our study has some 
limitations. First, we still need to validate the findings of the 
study through in vivo and in vitro experiments. Secondly, 

we didn’t clarify the way in which key genes affect tumor 
immunity and exert anti-tumor effects.

Conclusions

Through bioinformatics to evaluate data in TCGA, our 
research showed that CCR2 and PTPRC may be potential 
prognostic markers in LUAD, which may affect the 
immune function of γδT cells and other immune cells by 
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participating in the regulation of TME immune activity.
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