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Background: Parkinson’s disease (PD) is a neurodegenerative disease characterized by the impairment of 
facial expression, known as hypomimia. Hypomimia has serious impacts on patients’ ability to communicate, 
and it is difficult to detect at early stages of the disease. Furthermore, due to bradykinesia or other reasons, 
it is inconvenient for PD patients to visit the hospital. Therefore, it is appealing to develop an auxiliary 
diagnostic method that remotely detects hypomimia.
Methods: We proposed an automatic detection system for Parkinson’s hypomimia based on facial 
expressions (DSPH-FE). DSPH-FE provides a convenient remote service for those who potentially suffer 
from hypomimia and only requires patients to input their facial videos. Specifically, patients can detect 
hypomimia through two aspects: geometric features and texture features. Geometric features focus on 
visually representing structures of facial muscles. Facial expression factors (FEFs) are used as the first metric 
to quantify the current activation state of the facial muscles. Facial expression change factors (FECFs) are 
subsequently used as the second metric to calculate the moving trajectories of the activation states in the 
videos. Geometric features primarily concentrate on spatial information, with little involvement of temporal 
information. Thus, the extended histogram of oriented gradients (HOG) algorithm is introduced. This 
algorithm can extract texture features within multiple continuous frames and incorporate the temporal 
information into the features. Finally, these features are applied to four machine learning algorithms to 
model the relationship between these features and hypomimia.
Results: The DSPH-FE detection system achieved the best performance when concatenating geometric 
features and texture features, resulting in a F1 score of 0.9997. The best F1 scores achieved with geometric 
features and texture features were 0.8286 and 0.9446, respectively. This indicated that both geometric 
features and texture features have an ability to predict hypomimia, and demonstrated that temporal 
information can boost the model performance. Thus, DSPH-FE is an effective supportive tool in the medical 
management of PD patients.
Conclusions: Comprehensive experiments demonstrated that proposed features fit well with real-world 
videos and are beneficial in the clinical diagnosis of hypomimia. In particular, hypomimia had a greater 
impact on eyes and mouths when patients are smiling.
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Introduction

Parkinson’s disease (PD) is the second most common 
neurodegenerative disease worldwide, characterized by 
irreversible functional impairment of facial expression, 
known as hypomimia (1,2). Patients living with hypomimia 
experience significant difficulties in adjusting their facial 
muscles to pose emotional expressions (3) so that they 
usually present a reduced voluntary and spontaneous facial 
expression, as if they have no interest in the surrounding 
environment. During daily communications, it even leads 
to a disconnect between PD patients and healthy people 
(4,5). The gradual nature of hypomimia onset often results 
in delayed awareness, prevention and treatment. The mean 
annual rate of deterioration in motor and disability scores 
can range from 2.4% to 7.4% (6). Moreover, bradykinesia, 
the most cardinal symptom of PD, impairs mobility (7,8), 
in which hospital visits can be a challenge for PD patients. 
Therefore, it is essential to develop an auxiliary method 
which can detect hypomimia in Parkinson’s patients 
remotely and online. 

To date, neurobiologists have not known exactly the 
cause of Parkinson’s disease and have no direct means of 
diagnosis as well. Recently, some studies have reported that 
Parkinson’s disease involves progressive degeneration of the 
nigrostriatal dopaminergic pathway, which further touches 
off the progressive degeneration of the somatomotor system 
(1,3). Hypomimia is one of these damaged mechanisms. 
Specificially, hypomimia results from the death of cells in 
the substantia nigra, a region of the midbrain, leading to a 
dopamine deficit. Therefore, levodopa is the most common 
treatment for Parkinson’s disease. 

Early diagnosis is critical for better treatment outcomes 
and improved quality of life (9). To detect hypomimia, most 
research regarding hypomimia has focused on analysis of 
facial expressions (10). Most investigations use wearable 
sensors (7,8,11) and statistical analyses (5,12) to compute 
the similarities and differences between PD patients 
and healthy participants. In these reports, various tasks 
have been designed, including expression identification 
tasks (13,14), emotion discrimination tasks (15-18), and 
emotion expression tasks (12). Through these tasks, 
statistical features such as reaction time and accuracy of 
responses, can be obtained. Professional indicators, such 
as the Ekman score (5) and the Euclidean distance (12), 
can be calculated to evaluate emotional expressivity using 
the foregoing statistical features. In addition, extracted 
features can be directly fed into machine learning models 

(12,19-21) or supervised learning models (22,23), to 
distinguish patients with the hypomimia symptom from 
healthy people. However, to the best of our knowledge, the 
clinical diagnosis of hypomimia is still dependent on in-
hospital clinical observations and several criteria (24-27).  
The present study proposed the use of an automatic 
detection system for Parkinson’s hypomimia based on 
facial expressions (DSPH-FE). The DSPH-FE provides 
patients with a convenient and real-time online service for 
the detection of Parkinson’s hypomimia and only requires 
patients to upload their facial videos.

In this study, smile videos were collected from 
healthy control (HC) participants and PD patients. After 
preprocessing the original data, the effective area of 
facial activity is determined and irrelevant objects, such 
as background and clothes, are filtered out. Based on the 
effective area, Parkinson’s hypomimia is detected according 
to two aspects, namely, geometric features and texture 
features. The geometric features utilize facial keypoints 
to record the movement trajectory of the facial muscles. 
The standard expression model (SEM) is constructed as 
the reference model to represent natural expressions using 
neutral expressions. Next, facial expression factors (FEFs) 
are designed to characterizes the current activation state of 
the facial muscles. This then allows the quantification of 
smile expressions and the SEM. Finally, facial expression 
change factors (FECFs) are used to measure the changes 
between smile expressions and the SEM by calculating the 
moving trajectories of these activation states. The FECFs 
represent spatial-based changes between the current 
smile expression and the reference expression, with little 
consideration for the temporal factors of expression changes 
(28,29). Thus, the extended histogram of oriented gradients 
(HOG) feature, HOG-Three Orthogonal Planes (HOG-
TOP) (30), was introduced to extract texture features, 
both spatially and temporally. HOG features are able to 
characterize dynamic expression changes in a short period of 
time. The advantages of the above engineered features were 
then combined with machine learning. Four supervised 
learning methods (decision trees, random forests, Bayesian, 
and SVM) were used to explore the relationship between 
these hand-crafted features and Parkinson’s hypomimia. 
The comprehensive experiments demonstrated that our 
engineered features fit well with real-world videos and is 
helpful to the clinical diagnosis of hypomimia.

This report describes the use of geometric features 
and texture features to quantify facial activities. These 
quantitative indicators may play a supportive role in the 
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medical decision-making process. Furthermore, a non-
invasive system was developed to provide patients with a 
convenient and remote online service for the detection of 
Parkinson’s hypomimia with satisfactory performance. We 
present the following article in accordance with the STARD 
reporting checklist (available at https://dx.doi.org/10.21037/
atm-21-3457).

Methods

HC, healthy control; PD, Parkinson’s disease.

Participants and setup

A previous report by Marsili et al. demonstrated that PD 
patients cannot express a natural smile (31). Therefore, 
in the current study, smile videos of PD patients and HC 
participants were analyzed to detect PD. A total of 39 
HC participants and 47 PD patients were recruited for 
this study. There were 21 males and 18 females in the 
HC group, and 26 males and 21 females in the PD group. 
The average age of the HC participants and PD patients 
was 56.59±10.08 and 57.62±10.89 years, respectively 
(Table 1). The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by the Second Affiliated Hospital, Zhejiang 
University School of Medicine, and the patient informed 
consent was waived as all data were anonymized.

The smile videos were obtained in a 3 m2 space with a 
solid color background. Such a space minimized irrelevant 
elements and prevented other unnecessary items from 
diverting the participant’s attention. The light source 
was natural light, where participants felt comfortable and 
relaxed. The equipment was consisted of a smartphone 
(iPhone6sPlus, 1080P/60FPS) and a tripod placed 0.5–0.7 
meters in front of the participants.

Data acquisition

Before shooting, the participants were requested to 

remove all unrelated facial accessories such as glasses. 
The participants were seated to maintain a relatively fixed 
facial position and asked to avoid shaking their heads when 
the camera was turned on. The facial expressions of all 
participants were recorded in two parts. The first part is the 
preparation stage and participants were to remain calm and 
present a neutral expression with no extra emotion on his or 
her face. These expressions were suitable for constructing a 
standard expression model (SEM) salient to the individual 
and used as a benchmark to measure expression changes. The 
second part involved the expression generation phase, where 
participants were asked to smile for 3 to 5 seconds. Feature 
extraction data were collected during this stage. The videos 
were 60 frames per second with 1,920×1,080 pixels per frame.

Based on the clinical evaluation by a senior doctor, the 
experimental data were divided into two categories, HC 
participants and PD patients. PD patients were considered 
as positive samples and denoted by ‘1’. HC participants were 
considered as negative samples and denoted with ‘0’ labels. 

Data preprocessing

The video frames were preprocessed successively and 
some unqualified video clips were filtered out during the 
preprocessing. The preprocessing includes three parts, 
face detection, face alignment, and face normalization. 
MTCNN (multi-task cascaded convolutional neural 
network) was applied for face detection to remove irrelevant 
information, such as background, clothing, accessories, and 
chairs. In some videos, the human faces were rotated and 
this was not conducive to studying the unilateral illness. 
Thus, the human faces were rotated to keep the reference 
points (Ple and Pre) connected horizontally, where Ple and 
Pre refer to the reference points of the left and right eye, 
respectively. These rotary shafts passed through Ple and 
were perpendicular to the plane parallel to the video. Ple and 
Pre are calculated as follows:

 12 13 15 16( ) ( ) ( ) ( )( )
4le

P x P x P x P xP x + + +
= 	 [1]

12 13 15 16( ) ( ) ( ) ( )( )
4le

P y P y P y P fyP y + + +
= 	 [2]

18 19 21 22( ) ( ) ( ) ( )( )
4re

P x P x P x P xP x + + +
= 	 [3]

18 19 21 22( ) ( ) ( ) ( )( )
4re

P y P y P y P yP y + + +
= 	 [4]

where Pi(x) and Pi(y) represent the horizontal and vertical 
coordinate of the i-th facial keypoint. Points involved in these 

Table 1 The basic characteristics of the study participants

Participants Male Female Total Age

HC subjects 21 18 39 56.59±10.08

PD patients 26 21 47 57.62±10.89

HC, healthy control; PD, Parkinson’s disease.

https://dx.doi.org/10.21037/atm-21-3457
https://dx.doi.org/10.21037/atm-21-3457
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formulas can be found in Figure 1. Lastly, face normalization 
initialized the face to a fixed size. The image was resized to 
128×128 pixels for the convenience of calculations.

Data analysis

Compared to healthy individuals, PD patients have 
difficulty in the voluntary control of their facial muscles (12). 
When greeting with them, their families and acquaintances 
inevitably encounter an ‘indifferent’ attitude, resulting in 
a disconnect in daily communication. This is because their 
capacity for recognizing and analyzing emotion is restricted 
due to the changes in the internal parts of the brain (4). 
According to the Movement Disorder Society Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS) (27),  
facial muscle bradykinesia is an important clinical indicator 
for assessing the severity of this disease. Rajnoha et al. 
parameterized facial expressions and used static images 
to identify facial muscle bradykinesia with an accuracy of 
67.33% (37). Therefore, it may be possible to detect PD by 
recognizing facial muscle bradykinesia. To construct such a 
Parkinson’s detection system, the following three problems 
need to be resolved:

	 Facial nerves convey instructions from the brain 
and direct the multitude of facial muscles to 
stretch and form facial expressions. Therefore, 
identification of facial muscle bradykinesia requires 
the quantification of facial expressions.

	 Slight details in facial expressions are difficult to 
measure. When the human skin is stretched by 
facial muscles, it tends to produce slight facial 
textures such as fine lines. Thus, extracting the 
textural information may provide complimentary 
information.

	 PD may be unilateral. In clinical diagnosis, facial 
muscle bradykinesia often can be observed on only 
one side of the face, and it may affect different 
areas of the face. Thus, it requires our engineered 
features to support subregion representation.

To solve these issues, this study used geometric and 
texture features to evaluate the physiological parameters 
related to facial expressions of Parkinson’s disease patients.

Geometric feature design

It is critical to quantify facial expressions. A total of 68 facial 
keypoints were extracted from the preprocessed images. 
These keypoints are denoted as P, as shown in Figure 1. Any 
facial keypoint p ∈ P, needs to satisfy the following four 
prerequisites. Prerequisite 1: given a facial keypoint p ∈ P, 
another point is symmetrical to the current point, whose 
symmetry axis is the bridge of the nose.

If a point pi ∈ P, and itself are symmetrical, it is on the 
symmetry axis. Otherwise, there is another symmetrical 
point pj ∈ P. Considering the human nose as the symmetry 
axis, P is divided equally into two parts. One part is located 
on the left side of human face, recording their current 
position. The other is on the right side of human face while 
keeping in memory the current position on the right. This 
will be beneficial for detecting unilateral onset.

Prerequisite 2: any point p ∈ P is closely related to one of 
the facial muscles.

Since these points are closely related to facial muscles, 
each point is used to record a determined position of facial 
muscles at a certain time. As time goes by, these points are 
connected in sequence and a series of movement trajectories 
can be assembled. The facial expressions will then be 
simulated simultaneously.

Prerequisite 3 (dynamic-flexible): a point p ∈ P is 
dynamic-flexible if it can move relatively freely.

Prerequisite 4 (relatively-fixed): a point is relatively-fixed 

Figure 1 Facial keypoints. These 68 facial keypoints conform to 
the definition of previous face recognition technologies (32-36). 
This image is published with the patient/participant’s consent.
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if it never moves as the expression occurs.
Given a point pi ∈ P, it is either dynamic-flexible or 

relatively-fixed. Relatively-fixed points are viewed as 
baseline points, while dynamic-flexible points are suitable 
for quantifying the distance from relatively-fixed points. 
The amplitude of facial muscle movement can then be 
measured. For instance, p25 and p26 are relatively-fixed while 
p32 and p38 are very flexible. The distance between p26 and 
p32 skillfully quantifies the amplitude of the left mouth 
corner.

With the help of facial keypoints, the trajectory of facial 
muscles can be measured. If we regard a facial expression 
as an activation state, it is one of the toughest challenges to 
characterize the current facial expression. In this paper, the 
facial expressions factors (FEFs) are used to quantify these 
activation states.

As mentioned above, unilateral disease requires that 
the engineered features have to be element-level features 
which are relatively independent and freely composable. It 

implies that each FEF can be calculated individually and 
only represents a small range of activation region. The 
simpler the calculation is, the fewer associations are likely 
to occur, which means stronger independence. Therefore, 
the human face was divided into different regions from 
global to local, including eyebrow, eye, nose, lip, and chin. 
Simple Euclidean distances and some angles were applied 
to measure the activation state of the current facial organs. 
Table 2 lists the specific definitions of the FEFs using facial 
keypoints in Figure 1. Symmetric and discrete variables 
support subregion representation, relatively independent 
and freely composable, which solves the third problem. 
These discrete variables were used to assemble a complete 
facial expression representation while keeping the local 
characteristics. For example, D(13,15) can satisfactorily 
measure the blink. In the table, D(a,b) is the Euclidean 
distance between two points (point a, point b), and θ(a,b,c) 
is the angle between two lines (a line passing through point 
a and point b, another line passing through point b and 

Table 2 Definitions of facial expression factors around certain facial organs

Subregions FEFs

Eye factor

Eye corner D(11,14), D(17,20), D(14,17)

Eyelid D(12,16), D(12,16), D(18,22), D(19,21)

Eye angle θ(13,14,15), θ(18,17,22), θ(12,11,16), θ(19,20,21), θ(14,23,5), θ(17,23,6), θ(17,14,5), θ(14,17,6)

Eyebrow factor

Eyebrow D(5,6), D(5,14), D(6,17), D(1,11), D(10,20)

Eyebrow angle θ(1,3,5), θ(6,8,10)

Nose factor

Nose D(27,31), D(27,29), D(29,31), D(26,27),  D(26,31),  D(26,29), D(23,26), D(25,26)

Nose angle θ(27,16,31)

Lip factor

Lip D(32,38), D(32,35), D(32,46), D(38,35), D(38,46)

Outer lip D(34,47), D(36,45)

Inner lip D(42,49), D(41,50), D(40,51)

Cross D(42,47), D(40,45), D(34,49), D(36,51)

Lip corner θ(33,32,48), θ(37,38,44), θ(42,32,49), θ(40,38,51), θ(34,35,36), θ(33,34,35), θ(35,36,37), θ(47,46,45)

Chin factor

Chin D(56,59), D(61,64), D(59,61), D(60,26), D(56,64)

Chin corner θ(57,59,60), θ(63,61,60), θ(59,60,61), θ(54,56,59), θ(66,64,61)

FEFs, facial expression factors.
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where α represents the vector from point b to point a. 
Similarly, β is the vector from point b to point c.

While the FEFs can defined the current activation 
state, the relative change between two states must be 
considered. Changes in expressions mean that human 
faces leap from one activation state to another. This paper 
adopted a strategy similar to Bandini et al. (4). A standard 
facial model, showing a calm and natural expression, was 
constructed as a reference model for each person. An 
average activation state was calculated using Platts analysis. 
We iterate it over a series of static images showing calm 
expressions until a termination trigger is encountered. 
Notably, the closer the image is to the termination trigger, 
the bigger its contribution to the SEM. Coincidentally, 
the starting point of the expression generation was close to 
the trigger. This suggested that the SEM was also close to 
the initial expression, and this was beneficial for measuring 
the changes between the current expression and the initial 
expression. The algorithm is summarized in Algorithm 1.

Algorithm 1: Standard Expression Model Construction Algorithm

Input: set of frames F, Number of iterations N;

Output: SEM

1 First_F ← Read first frame

2 Base_img ← Preprocess (First_F)

3 While N > 0 do

4 New_F ← Read next frame

5 New_img ← Preprocess (New_F)

6 Base_img ← Average (Base_img, New_img)

7 N--

8 SEM ← Base_img

9 Return SEM

During the preparation stage, participants expressed a 
neutral expression with no extra emotion on his or her face. 
These expressions were suitable for constructing an SEM 
as a reference model. Through Algorithm 1, a SEM model 
was generated with an FEF set of Γs and DISs.

( , , ) arccos
( , ) ( , )

S S
S S S S i i
i i i i S S S S

i i i i

a b c
D b a D b c

α βγ θ ⋅
= =

⋅
	 [11]

( , )S S S
i i idis D a b= 	 [12]

{ }1 2, , ,S S S S
mγ γ γΓ =  	 [13]

{ }1 2, , ,S S S S
nDIS dis dis dis= 

	 [14]

{ }1 2 1 2, , , , , , ,S S S S S S S S
m nSEM DIS dis dis disγ γ γ= Γ =   	

[15]
where Γs is a set of FEF variables with respect to the SEM 
angles,  s

iγ  is the ith angle variables on SEM; DIS is a set of 
FEF variables with respect to the SEM distances,  s

idis  is the 
ith distance variables on SEM; SEM consists of Γs and DISs, 
m and n are respectively the number of angle variables and 
distance variables.

When a person smiles, the FEFs {Γc ⋃ DISc} quantify his 
or her expression while the SEM {Γs ⋃ DISs} is created as 
a true portrayal of their neutral expressions. Naturally, the 
distance between a set of FEFs and its SEM is considered 
the change in the activation states. This distance is called 
the facial expression change factor (FECF).

 { } { }
{ }
{ }
1 1 2 2

1 1 2 2

          , , ,

             , , ,

C C S S

C S C S C S
m m

C S C S C S
n n

FECF DIS DIS

dis dis dis dis dis dis

γ γ γ γ γ γ

= Γ − Γ

= − − −

− − −

 



 

	 [16]

where  c
iγ  are the FEF variables of the current activation state 

with respect to angles, and  s
idis  are the FEF variables of the 

current activation state with respect to the distances. FECF 
was effective at quantifying the changes between different 
facial expressions, thus solving the first problem above.

Texture feature design

While the above geometric features capture some facial 
muscles, other facial muscles are not represented. Thus, 
geometric features ignore a large quantity of details. It 
is noted that the change in expressions is a continuous 
dynamic process. Although the FECF measures the change 
between the current facial expression and the reference 
model, it does not take into account temporal factors (37), 
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also claimed that the image sequence could further boost 
the performance. Therefore, we introduce the extended 
HOG algorithm (30) which combines temporal dimensions 
and spatial dimensions. As shown in Figure 2, the video 
consists of a sequence of images, denoted as the X, Y, and T 
axis. The X and Y axes jointly constitute a two-dimensional 
space while the T axis represents the time dimension. 
Conventional HOG algorithm is only performed in the 
XY plane, that is, HOG-XY features are formed to capture 
spatial-based texture information. The extended HOG 
algorithm is performed in the YT direction and the XT 
direction to construct HOG-YT features and HOG-
XT features. These three features were combined into 
a complete HOG feature, both spatially and temporally, 
thereby enriching abundant time and detailed information 
into our system, and thus, solving the second problem. The 
specific algorithm is shown in Algorithm 2.

Algorithm 2: Texture Feature Extraction Algorithm

Input: videos from HC or PD, number of videos N,

Output: texture feature vectors for each video

1 for n = 1 : N do

2 read n-th video → Video

3 while getFrame(Video) == True do

4 face detection

5 face alignment

6 crop face picture and resize to 128*128

7 get three-dimensional arrays for each video

8 compute HOG-XY, HOG-XT, HOG-YT from XY, XT 
and YT plane

9 concatenate three features

10 get feature vectors for each video

 

{ }
{ }
{ }

1,2, ,

  1, 2, ,

  1, 2, ,

i

i

i

HOG HOG XY HOG XT HOG YT
HOG XY i k

HOG XT i q

HOG YT i t

= − − −

= − ∈

− ∈

− ∈

 



 

 

	 [17]

where k,q,t are respectively the number of HOG features 

Figure 2 The extended HOG algorithm. The video information is regarded as a three-dimensional information space, which is represented 
by a space made up of X, Y, and T axis. The XY plane represents spatial information, and the XT plane or YT plane mainly represents 
temporal information and linear spatial information.
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X-Y flat

Y-
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from the XY, XT, YT plane.

Model implementation

In this section, the geometric features and texture features 
were constructed. Specially, the SEM was constructed 
iteratively using three hundred images at the preparation stage 
while 63 FEFs (m=24, n=39, m+n=63) were calculated for each 
activation state. The distance from the SEM was computed 
as expression changes. As for texture features, the cropped 
images (128×128 pixels) were further cut into 16×16 cells.  
Each cell, which contained 8×8 pixels, was characterized 
into a nine-dimensional vector. A 2304-dimensional vector 
(k=16×16×9=2,304) was then assembled in the XY plane. 
Similarly, the other two planes were constructed. Notably, 
there were some differences between the XT (YT) plane 
and the XY plane. The XT (or YT) plane spanned eight 
continuous images on T-axis and was scanned from top to 
bottom (from left to right). Hence, each layer of the XT 
plane consisted of 16×1 cells whose resolution was 8×8 pixels. 
Scanning each layer from top to bottom, a 2,304-dimensional 
vector was assembled (q/t =16×1×16×9=2,304). In the 
end, these vectors were sequentially concatenated to a 
6912-dimensional vector (k + q + t =2,304×3).

Principal component analysis (PCA) was used to address 
the issue of dimensionality. The variables with significant 
correlations were retained while maintaining 95% of the 
original information. Finally, the training set accounted 
for 80% of the samples, and four machine learning 
methods were used to model the relationship between 
facial expression features and Parkinson’s bradykinesia. 
In the comprehensive experiments, the dimensionality 
of geometric features (GFs), texture features (TFs), and 
fusion features (FFs) were reduced to 25, 2,559, and 2,574, 
respectively. The overall framework of the DSPH-FE is 
shown in Figure 3.

Statistical Analysis

In this paper, the proposed features were evaluated through 
the F1 score.

The evaluation indicators are defined as follows:

TPPrecision
TP FP

=
+

	 [18]

TPRecall
TP FN

=
+

	 [19]

21 Precision RecallF score
Precision Recall
× ×

− =
+

	 [20]

Figure 3 The overall framework of the DSPH-FE. The geometric features process a single image while the texture features process the 
image sequence. DSPH-FE, Parkinson’s hypomimia based on facial expressions.
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where TP and TN are the true prediction for patients and 
normal people, FP represents the false prediction for patients.

For the statistical analysis of features, we utilize GBDT 
(gradient boosted decision trees) algorithm to evaluate the 
importance of engineered features. On the other hand, the 
receiver operating characteristic (ROC) curves present the 
feature adaptation on the GBDT model.

Results

Five cross-validation experiments were conducted and 
the average results are reported in Table 3. Fusion features 
combine geometric features and texture features. 

The fusion feature achieved the best results in three 
classifiers, and thus may greatly support medical decision-
making in the clinical setting. However, geometric features 
were unsatisfactory, with F1 scores between 0.69 and 
0.83. In comparison, the F1 scores for the texture features 
were 0.78–0.95. This suggested that texture features have 
a stronger ability to predict PD than geometric features. 
This also verified that dynamic information can boost 
the performance of Parkinson’s detection. In addition, 
although the geometric features did not achieve excellent 
performance in terms of accuracy, the visualization results 
provide interesting interpretation that will be elaborated in 
detail in the next section.

Compared to individual geometric features and texture 

features, the fusion features had higher accuracy and 
stability with a F1 score of 0.9997. That is because fusion 
features incorporate the advantages of geometric features 
and texture features. Interestingly, the Bayesian classifier 
showed poor performance. This is because Bayesian 
classifiers are suitable for small-scale datasets, without a 
number of attributes. With the increase of attributes, it is 
difficult to satisfy the conditional independence assumption.

Discussion

Importance analysis

To evaluate the importance of engineered features, GBDT 
algorithms were performed to calculate the weights of 
the GFs, TFs, and FFs. Analyses were carried out three 
times for each set of features. As shown in Table 4, when 
only using GFs, Parkinson’s hypomimia was primarily 
identified using variables based on the human eyes and 
mouth, such as D(19,21), D(13,15), and θ(47,46,45). When 
using TFs, areas of hypomimia-interest were located at the 
chin and the eyes. The encoded areas 2241, 603, 759, and 
71 determined at least 81 percent of the decision-making 
process. After combining TFs and GFs, the above remained 
true for FFs. In particular, TFs dominated the direction 
of the classification, which was consistent with the above 
performance analysis. Several temporal features additionally 
assisted the detection of hypomimia, including the encoded 
areas 2857 and 6376. Figure 4 shows the position of the top 
ten most significant GFs and TFs depicted in red and blue, 
respectively.

Feature adaptation on model

Figure 5 shows three groups of ROC curves with respect to 
the nine experiments in Table 4. The fused features achieved 
the best adaptation on the GBDT model. The area under 
ROC curve accounts for more than 94.3 percent of the 
whole areas. Among these graphs, though GF has not 
shown stable performance, TF combined with GF improved 
by nearly 4 points (Figure 5). This suggested that TF has 
better adaptation on the GBDT model, and GF assisted in 
improving the performance of TF.

Physical meaning of geometric features

This paper analyzed the FECF changes [θ(33,32,48) and 
θ(37,38,44)] in HC participant number 0838 (0838HC) 

Table 3 The performance of different features

Methods Precision Recall F1

GF + Bayesian 79.39% 61.83% 0.6952±0.14

GF + Decision Tree 77.17% 67.32% 0.7191±0.07

GF + SVM 77.42% 81.31% 0.7931±0.03

GF + Random Forest 77.06% 89.61% 0.8286±0.06 

TF + Bayesian 94.16% 66.95% 0.7826±0.14

TF + Decision Tree 84.63% 86.47% 0.8554±0.02

TF + Random Forest 88.51% 95.79% 0.9200±0.00

TF + SVM 96.11% 92.87% 0.9446±0.01 

FF + Bayesian 99.95% 62.32% 0.7677±0.14

FF + Decision Tree 99.79% 81.07% 0.8946±0.01

FF + Random Forest 99.82% 100.00% 0.9991±0.02

FF + SVM 99.94% 100.00% 0.9997±0.00 

GF, geometric features; SVM, support vector machine; TF,  
texture features; FF; fusion features.
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and PD patient number 0508 (0508PD). The FECF 
variables quantitatively describe the curvature changes in 
the human lips. As shown in Figure 6, the abscissa is the 
image sequence, and the ordinate represents the FECF in 
θ(33,32,48) [or θ(37,38,44)]. The FECF graphs measure 
the distance between FEF and SEM, and retains the 
magnitude of the change, where its abscissa represents the 
SEM. The negative values below the abscissa indicate that 
the curvature of the mouth corner is reduce relative to the 
SEM. The positive values indicate that the curvature of the 
mouth corner is increased relative to the SEM. If the curve 
rises first and then falls, the mouth corner changes once 

significantly. Three sharp peaks can be observed in FECF-
0838, suggesting that the mouth angle changed greatly 
three times. These sharp peaks are mainly located below the 
abscissa, which suggested that the lips were stretched when 
the mouth was closed. The video of participant 0838HC 
showed that he smiled three times, in agreement with our 
interpretation. The visualized result was highly consistent 
with the diagnostic results. Interestingly, both sides of the 
mouth corners showed similar frequencies and amplitudes. 
Specifically, there were three obvious changes and their 
amplitudes were maintained at 15, 22, and 16, respectively, 
whether it was the left or right side of the mouth. 

Table 4 The importance weights of the engineered features

Features Accuracy 1 2 3 4 5 6 7 8 9 10

GF 0.7450 D(19,21) D(13,15) D(11,14) θ(47,46,45) D(18,22) D(12,16) θ(40,38,51) D(14,17) D(17,21) D(27,29)

0.1071 0.1042 0.1036 0.1036 0.0691 0.0649 0.0567 0.0563 0.0539 0.0425

0.7207 D(19,21) D(13,15) θ(47,46,45) D(14,17) D(12,16) D(27,31) θ(40,38,51) D(17,20) D(60,26) D(11,14)

0.3191 0.1219 0.0755 0.0724 0.0568 0.0469 0.0460 0.0387 0.0272 0.0223

0.7082 D(19,21) D(13,15) D(14,17) θ(47,46,45) D(32,38) θ(40,38,51) D(27,29) D(27,31) D(18,22) D(17,20)

0.2814 0.1237 0.0848 0.0655 0.0448 0.0438 0.0359 0.0352 0.0330 0.0314

TF 0.9460 71 2,241 2,156 759 603 278 1,313 2,857 998 4,918

0.5581 0.1903 0.1172 0.0423 0.0345 0.0252 0.0103 0.0037 0.0032 0.0029

0.9621 2,241 603 759 71 2,156 998 2,857 5,656 6,376 4,918

0.5969 0.1576 0.1341 0.0438 0.0170 0.0150 0.0069 0.0043 0.0038 0.0030

0.9646 2,241 603 759 71 2,156 2,857 6,376 3,190 278 639

0.4955 0.2714 0.1125 0.0413 0.0300 0.0092 0.0065 0.0045 0.0039 0.0038

FF 0.9869 2,241 71 759 2,156 603 998 639 413 4918 2,857

0.4549 0.3035 0.1044 0.0696 0.0153 0.0105 0.0101 0.0059 0.0056 0.0031

D(17,20) D(13,15) D(11,14) D(60,26) D(12,16) θ(40,38,51) D(32,38) D(27,31) D(27,29) D(14,17)

8.356E-04 1.086E-04 4.087E-05 3.386E-05 2.394E-05 1.481E-05 1.446E-05 4.148E-06 1.905E-06 6.953E-07

0.9822 2,241 71 603 759 2,156 278 6,376 998 2,857 1,124

0.3773 0.2860 0.1199 0.0986 0.0706 0.0104 0.0084 0.0077 0.0042 0.0031

θ(47,46,45) D(11,14) D(17,20) D(18,22) θ(40,38,51) D(12,16) D(13,15) D(27,29) D(14,17) D(27,31)

4.454E-04 1.849E-04 1.721E-04 1.077E-04 1.028E-04 4.199E-05 3.917E-05 2.360E-05 2.193E-05 1.923E-05

0.9899 603 2,241 71 759 2,156 2,857 998 6,376 639 5,345

0.5134 0.2825 0.0684 0.0573 0.0443 0.0047 0.0046 0.0041 0.0038 0.0031

D(32,38) θ(40,38,51) D(60,26) D(11,14) D(18,22) D(27,29) D(13,15) D(17,20) θ(47,46,45) D(12,16)

1.155E-04 6.538E-05 4.465E-05 4.365E-05 4.302E-05 4.263E-05 9.909E-06 5.448E-06 5.448E-06 5.788E-07

GF, geometric features; TF, texture features; FF, fusion features.
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Figure 4 The area of interest for hypomimia. The blue square blocks represent the top 10 significant texture features, the darker blue 
squares indicate areas with time dimension (XT plane or YT plane). The light blue belongs to XY plane, the blue is XT plane, the darker 
blue is YT plane. The red arrows represent the top 10 significant facial expression change factors (FECFs) corresponding to the facial 
expression factors (FEFs). This image is published with the patient/participant’s consent.

Therefore, the left side of the participant 0838HC was as 
flexible as the right side. The PD patient 0508PD, aged 
64 years, was diagnosed with PD by the doctor. His onset 
side was on the right. In Figure 6 (FECF-0508), the solid 
pink line represents the FECF maps of patient 0508PD in 
θ(33,32,48), corresponding to the left side of the mouth 
corner in the video. Similarly, the solid blue line represents 
θ(37,38,44), corresponding to the right mouth corner in 
the video. The direction of the participants is opposite to 
that presented in the video, due to the mirroring effect in 
the camera. Thus, the solid pink line is the right side of 
the 0508PD while the solid blue line is the left corner of 
the 0508PD. The solid blue line frequently exceeded the 
solid pink line by a large margin, which suggested that the 
right mouth corner had a smaller amplitude. Thus, it can be 
inferred that the patient’s right muscles were not as flexible 
as his left muscles. On the other hand, compared to the 
FECF-0838, 0508PD had no apparent expression changes 
as there are no apparent sharp peaks in his FECF graph. In 
practical applications, the diagnostic result was consistent 
with the doctor’s opinion. Moreover, this patient’s PD 
showed unilateral onset. 

In summary, the above analyses support the use of 
the features identified in this report for analyzing facial 
activities.

Physical meaning of the texture features

As mentioned above, the XT and YT planes are capable 
of characterizing the dynamic process of facial expression 
changes. We examined the XT plane in a case where the 
Y-axis coordinate was fixed at 40. In Figure 7, the first graph 
shows the XT plane (Y=40) of HC participant number 0842 
(0842HC), and the second graph shows the XT plane (Y=40) 
of PD patient number 0451 (0451PD). After preprocessing, 
the facial images of the texture features were all scaled to 
128×128 pixels. When Y=40, the XT plane represents the 
change of the eyes over time. As can be easily seen from 
Figure 7, 0842HC had more ripples and a larger ripple 
width. On the contrary, 0451PD had less ripples in the 
XT plane and a smaller ripple width. When participants 
blink once, the XT plane will generate a ripple. Thus, the 
number of ripples represents the number of blinks and the 
ripple width reflects the blink duration. The graph shows 
that the HC participant’s eyes have more frequent and 
flexible movement, and their blink duration is larger. On 
the contrary, the PD patient had a lower blink rate and 
a shorter blink duration. This is because it is difficult for 
Parkinson’s patients to maintain a blink state and they will 
unconsciously return to their original state. This suggested 
that the HC participant could flexibly use his eye muscles to 
generate movements. However, the PD patient experienced 
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difficulty in moving his eye muscles.

Conclusions

Hypomimia in PD can severely impact the patient’s quality 

of life. To date, most research related to Parkinson’s 
hypomimia detection has primarily relied upon sensor-
based wearable devices. However, it is difficult for patients 
to access this service due to the high costs and other factors. 
Thus, this paper proposed a remote and online system for 

Figure 5 Feature adaptation on the model. The first row corresponds to the geometric features (GFs) in Table 4, the second row corresponds 
to texture features (TFs) in Table 4, and the third row corresponds to fusion features (FFs) in Table 4. Experiments were performed three 
times for each group of features.
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Figure 6 The facial expression change factor (FECF) map of 0838HC and 0508PD based on SEM. 

Figure 7 XT plane with the Y-axis coordinate fixed at 40, wherein, the first graph belongs to 0842HC, the second graph belongs to 0451PD.
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detecting hypomimia in PD. Both geometric features and 
texture features were used in this detection system, which 
enabled the validation of pathological features and unilateral 
morbidity. In addition, these quantitative features can 
be used to evaluate the current facial state of Parkinson’s 
disease patients with hypomimia during the rehabilitation 
program while the mapping module can judge whether 
patients’ facial expressions are natural. Combined with the 
judgement result, engineered metrics monitor the status 
of patients in real time, which reflects the effectiveness of 
the treatment. In particular, Parkinson’s hypomimia had a 
greater impact on the eyes and mouth during the expression 
of a smile. It should be noted that PD can also be evaluated 
by other types of expressions, e.g., angry, sadness, etc, and 
affects other body parts. This current work only focussed 
on the human face, and many other aspects should be 
considered in the future, including the limbs, hands, step 

states, and even the brain. Further work exploring the 
relationship between other body parts and PD is warranted.

Acknowledgments

Funding: This work was supported by the National 
Key Research and Development Program of China 
(No. 2017YFB1400603), the National Natural Science 
Foundation of China (Grant No. 61825205, No. 61772459), 
and the National Science and Technology Major Project of 
China (No. 50-D36B02-9002-16/19).

Footnote

Reporting Checklist: The authors have completed the 
STARD reporting checklist. Available at https://dx.doi.
org/10.21037/atm-21-3457

https://dx.doi.org/10.21037/atm-21-3457
https://dx.doi.org/10.21037/atm-21-3457


Su et al. Detection of hypomimia in patients with PD via smile videos

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(16):1307 | https://dx.doi.org/10.21037/atm-21-3457

Page 14 of 15

Data Sharing Statement: Available at https://dx.doi.
org/10.21037/atm-21-3457

Conflicts of Interest: All authors have completed the 
ICMJE uniform disclosure form (available at https://
dx.doi.org/10.21037/atm-21-3457). Dr. GS, Dr. BL, 
and Dr. JY report that this work was supported by the 
National Key Research and Development Program of 
China (No. 2017YFB1400603), the National Natural 
Science Foundation of China (Grant No. 61825205, No. 
61772459), and the National Science and Technology 
Major Project of China (No.50-D36B02-9002-16/19). Dr. 
GS, Dr. BL, Dr. JY, and Dr. WL report patents pending of 
A Construction Method for Detecting Facial Bradykinesia 
based on Geometric Features and Texture Features, and 
report provision of study materials from Second Affiliated 
Hospital, Zhejiang University School of Medicine. Dr. 
KD is employed by Technical Department in Hangzhou 
Healink Technology Corporation Limited, which located at 
188 Liyi Rd, Hangzhou, China. The other authors have no 
conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). This study was approved by the 
Second Affiliated Hospital, Zhejiang University School of 
Medicine, and the patient informed consent was waived as 
all data were anonymized.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. 
Nat Rev Dis Primers 2017;3:17013.

2.	 Sveinbjornsdottir S. The clinical symptoms of Parkinson's 
disease. J Neurochem 2016;139 Suppl 1:318-24.

3.	 Ricciardi L, De Angelis A, Marsili L, et al. Hypomimia in 
Parkinson's disease: an axial sign responsive to levodopa. 
Eur J Neurol 2020;27:2422-9.

4.	 Ho MW, Chien SH, Lu MK, et al. Impairments in face 
discrimination and emotion recognition are related to 
aging and cognitive dysfunctions in Parkinson's disease 
with dementia. Sci Rep 2020;10:4367.

5.	 Ricciardi L, Visco-Comandini F, Erro R, et al. Facial 
Emotion Recognition and Expression in Parkinson's 
Disease: An Emotional Mirror Mechanism? PLoS One 
2017;12:e0169110.

6.	 Jankovic J. Parkinson's disease: clinical features and 
diagnosis. J Neurol Neurosurg Psychiatry 2008;79:368-76.

7.	 Demrozi F, Bacchin R, Tamburin S, et al. Toward a 
Wearable System for Predicting Freezing of Gait in People 
Affected by Parkinson's Disease. IEEE J Biomed Health 
Inform 2020;24:2444-51.

8.	 Ghoraani B, Hssayeni MD, Bruack MM, et al. Multilevel 
Features for Sensor-Based Assessment of Motor 
Fluctuation in Parkinson's Disease Subjects. IEEE J 
Biomed Health Inform 2020;24:1284-95.

9.	 Lin B, Luo W, Luo Z, et al. Bradykinesia Recognition 
in Parkinson’s Disease via Single RGB Video. ACM 
Transactions on Knowledge Discovery from Data (TKDD) 
2020;14:1-19. 

10.	 Argaud S, Vérin M, Sauleau P, et al. Facial emotion 
recognition in Parkinson's disease: A review and new 
hypotheses. Mov Disord 2018;33:554-67.

11.	 Aghanavesi S, Bergquist F, Nyholm D, et al. Motion Sensor-
Based Assessment of Parkinson's Disease Motor Symptoms 
During Leg Agility Tests: Results From Levodopa 
Challenge. IEEE J Biomed Health Inform 2020;24:111-9.

12.	 Bandini A, Orlandi S, Escalante HJ, et al. Analysis of facial 
expressions in parkinson's disease through video-based 
automatic methods. J Neurosci Methods 2017;281:7-20.

13.	 Ventura MI, Baynes K, Sigvardt KA, et al. Hemispheric 
asymmetries and prosodic emotion recognition deficits in 
Parkinson's disease. Neuropsychologia 2012;50:1936-45.

14.	 Argaud S, Delplanque S, Houvenaghel JF, et al. Does 
Facial Amimia Impact the Recognition of Facial 
Emotions? An EMG Study in Parkinson's Disease. PLoS 
One 2016;11:e0160329.

15.	 Gray HM, Tickle-Degnen L. A meta-analysis of 
performance on emotion recognition tasks in Parkinson's 
disease. Neuropsychology 2010;24:176-91.

16.	 Kan Y, Kawamura M, Hasegawa Y, et al. Recognition of 
emotion from facial, prosodic and written verbal stimuli in 
Parkinson's disease. Cortex 2002;38:623-30.

https://dx.doi.org/10.21037/atm-21-3457
https://dx.doi.org/10.21037/atm-21-3457
https://dx.doi.org/10.21037/atm-21-3457
https://dx.doi.org/10.21037/atm-21-3457
https://creativecommons.org/licenses/by-nc-nd/4.0/


Annals of Translational Medicine, Vol 9, No 16 August 2021 Page 15 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(16):1307 | https://dx.doi.org/10.21037/atm-21-3457

17.	 McIntosh LG, Mannava S, Camalier CR, et al. Emotion 
recognition in early Parkinson's disease patients 
undergoing deep brain stimulation or dopaminergic 
therapy: a comparison to healthy participants. Front Aging 
Neurosci 2014;6:349.

18.	 Wood A, Lupyan G, Sherrin S, et al. Altering 
sensorimotor feedback disrupts visual discrimination of 
facial expressions. Psychon Bull Rev 2016;23:1150-6.

19.	 Jin B, Qu Y, Zhang L, et al. Diagnosing Parkinson Disease 
Through Facial Expression Recognition: Video Analysis. J 
Med Internet Res 2020;22:e18697.

20.	 Seliverstov Y, Diagovchenko D, Kravchenko M, et al. 
Hypomimia detection with a smartphone camera as a 
possible self-screening tool for Parkinson disease (P3. 
047). Neurology 2018.

21.	 Grammatikopoulou A, Grammalidis N, Bostantjopoulou 
S, et al. Detecting hypomimia symptoms by selfie 
photo analysis: for early Parkinson disease detection. 
Proceedings of the 12th ACM International Conference 
on PErvasive Technologies Related to Assistive 
Environments 2019;517-22. 

22.	 Emrani S, McGuirk A, Xiao W. Prognosis and diagnosis of 
Parkinson’s disease using multi-task learning. Proceedings 
of the 23rd ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining 2017;1457-66.

23.	 Vinokurov N, Arkadir D, Linetsky E, et al. Quantifying 
hypomimia in parkinson patients using a depth camera. 
International Symposium on Pervasive Computing 
Paradigms for Mental Health. Springer Cham 2015;63-71.

24.	 Hoehn MM, Yahr MD. Parkinsonism: onset, progression, 
and mortality. 1967. Neurology 1998;50:318 and 16 pages 
following.

25.	 Gibb WR, Lees AJ. The relevance of the Lewy body to the 
pathogenesis of idiopathic Parkinson's disease. J Neurol 
Neurosurg Psychiatry 1988;51:745-52.

26.	 Nasreddine ZS, Phillips NA, Bédirian V, et al. The 
Montreal Cognitive Assessment, MoCA: a brief screening 
tool for mild cognitive impairment. J Am Geriatr Soc 
2005;53:695-9.

27.	 Goetz CG, Tilley BC, Shaftman SR, et al. Movement 
Disorder Society-sponsored revision of the Unified 
Parkinson's Disease Rating Scale (MDS-UPDRS): scale 

presentation and clinimetric testing results. Mov Disord 
2008;23:2129-70.

28.	 Zhao G, Pietikäinen M. Dynamic texture recognition 
using local binary patterns with an application to facial 
expressions. IEEE Trans Pattern Anal Mach Intell 
2007;29:915-28.

29.	 Paulmann S, Pell MD. Dynamic emotion processing in 
Parkinson's disease as a function of channel availability. J 
Clin Exp Neuropsychol 2010;32:822-35.

30.	 Chen J, Chen Z, Chi Z, et al. Facial expression recognition 
in video with multiple feature fusion. IEEE Transactions 
on Affective Computing 2016;9:38-50. 

31.	 Marsili L, Agostino R, Bologna M, et al. Bradykinesia 
of posed smiling and voluntary movement of the lower 
face in Parkinson's disease. Parkinsonism Relat Disord 
2014;20:370-5.

32.	 Wen Y, Zhang K, Li Z, et al. A discriminative feature 
learning approach for deep face recognition. European 
conference on computer vision Springer Cham 
2016;499-515.

33.	 Sun Y, Liang D, Wang X, et al. Deepid3: Face recognition 
with very deep neural networks. arXiv preprint 
arXiv:1502.00873 2015.

34.	 Liu W, Wen Y, Yu Z, et al. Sphereface: Deep hypersphere 
embedding for face recognition. Proceedings of the IEEE 
conference on computer vision and pattern recognition 
2017;212-20. 

35.	 Ding C, Tao D. Robust face recognition via multimodal 
deep face representation. IEEE Transactions on 
Multimedia 2015;17:2049-58. 

36.	 Yang J, Ren P, Zhang D, et al. Neural aggregation network 
for video face recognition. Proceedings of the IEEE 
conference on computer vision and pattern recognition 
2017;4362-71.

37.	 Rajnoha M, Mekyska J, Burget R, et al. Towards 
Identification of Hypomimia in Parkinson’s Disease Based 
on Face Recognition Methods. 2018 10th International 
Congress on Ultra Modern Telecommunications and Control 
Systems and Workshops (ICUMT) IEEE 2018;1-4.  

(English Language Editor: J. Teoh)

Cite this article as: Su G, Lin B, Yin J, Luo W, Xu R, Xu J, 
Dong K. Detection of hypomimia in patients with Parkinson’s 
disease via smile videos. Ann Transl Med 2021;9(16):1307. doi: 
10.21037/atm-21-3457


