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Abstract: Management of periprosthetic fractures around the femoral stem after total hip arthroplasty 

(THA) represents a significant challenge and optimal treatment remains controversial. The most common 

treatment paradigm involves treating fractures around a well-fixed stem with osteosynthesis, whereas fractures 

around a loose stem require revision arthroplasty and those with poor bone require augmentation with 

bone graft. Paradoxically, the literature reports a higher rate of failure for osteosynthesis around prostheses 

considered to be well-fixed. Such a high rate of poor outcomes may result not only from difficult fracture 

fixation and compromised biologic healing, but also from unrecognized peri-implant pathology. Therefore, 

proper preoperative and intraoperative evaluation is key, and a subset of patients may benefit from alternative 

management. We review the appropriate methods for evaluation and treatment of Vancouver type B fractures 

with particular emphasis on avoiding missteps that can lead to failure.
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Introduction

Periprosthetic fractures around the femoral stem after THA 
represent a significant and growing technical challenge for 
orthopaedic surgeons, requiring proficiency in both THA 
and trauma care. The incidence of such fractures continues 
to rise as the number of patients undergoing primary and 
revision THA increases (1,2). Historically, these fractures 
have been treated using a simple algorithm based upon 
the Vancouver classification. Fractures around a well-fixed 
stem are treated with osteosynthesis, whereas fractures with 
femoral stem loosening require revision arthroplasty and 
those with poor bone stock must also be augmented with a 
bone graft. While there are reports of good outcomes using 
this paradigm (3-17), the literature suggests a higher rate 
of failure for osteosynthesis of fractures around a well-fixed 
stem compared with revision of fractures around a loose 
stem (18-36). This may seem paradoxical; however, these 

injuries are plagued by significant biologic and mechanical 
challenges. Additionally, many of these fractures may merely 
be the sequelae of more complex underlying pathology, 
such as unrecognized osteolysis or weakening of bone stock 
(1,37-40). Surgeons have employed a variety of constructs in 
an attempt to overcome these difficulties, including cables, 
wires, bands, clamps, locking and non-locking plates, and 
allograft struts; and in recent years some focus has shifted 
to using minimally disruptive surgical techniques. While 
there is no general consensus as to the best technique for 
operative fixation, we will review the various options that 
have been used in practice to achieve optimal results. 

The optimal treatment for Vancouver type B fractures 
is controversial. This is largely a consequence of the 
available literature, which mostly includes small to 
medium sized heterogeneous case series with little 
comparative evidence (4). While open reduction and 
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internal fixation (ORIF) remains the mainstay of treatment 
for fractures around a well-fixed stem, there are patients 
who would likely benefit from alternative management. The 
goals of this review are to discuss the appropriate methods 
for evaluation and treatment of type B fractures and 
situations in which alternative management may provide a 
more suitable long-term solution.

Diagnosis

As with most other orthopedic injuries, clinical history 
and exam are paramount. The overwhelming majority of 
patients with periprosthetic fractures (90-95%) present with 
minimal or even no history of trauma, most commonly with 
the clinical onset of pain (1,41). Risk factors for fracture, 
including osteoporosis or other bony abnormalities, should 
be identified. It is of particular importance to assess the 
premorbid functional status of the joint, as worsening 
pain or dysfunction of the hip prior to injury is suggestive 
of preexistent implant loosening (2,40,41). Pain around 
the thigh experienced with initiation of ambulation or 
rising from a chair are indicative signs of femoral stem 
loosening, whereas groin pain of a similar nature suggests 
acetabular loosening. In all cases, suspicion of periprosthetic 
joint infection (PJI) should be thoroughly ruled out. A 
previous study demonstrated that the PJI rate in patients 
with periprosthetic fractures can be as high as 11.6% (42). 
Unfortunately, erythrocyte sedimentation rate and C-reactive 
protein are not reliable diagnostic markers in the setting of 
periprosthetic fracture given the increased inflammation 
associated with the fracture. False positives rates have been 
reported to be 31% and 43%, respectively (41,42). 

F o l l o w i n g  c l i n i c a l  e v a l u a t i o n ,  h i g h - q u a l i t y 
anteroposterior and lateral radiographs are used to assess 
characteristics of the fracture (location, pattern, and 
bone quality), as well as the status of the prosthesis. Most 
importantly, the X-rays should be carefully examined for 
signs of femoral stem loosening. This includes assessing for 
continuous radiolucency around the prosthesis interfaces 
(bone-metal or bone-cement-metal) and signs of osteolysis 
(2,41). Lucent zones of 1-2 mm may occur around stable 
implants; thus, it is critical to compare current X-rays 
with previous radiographs. This comparison also allows 
for an appraisal of component migration, which is usually 
seen as subsidence (>10 mm) or varus tilt of the stem  
(41,43-45). In the setting of an acute fracture, a focal 
split of the cement mantle is not in itself indicative of 
loosening, but this must be closely examined. In addition 

to the femoral component, it is important to evaluate the 
stability of the acetabular component; in one study of nearly  
900 periprosthetic fractures treated using revision THA, 
over 62% of acetabular cups were found to be loose (38). 

Confirming prosthesis stability on radiograph alone is 
difficult, and as many as 20% of loose femoral stems go 
unnoticed. This limitation of radiographic sensitivity has 
been found repeatedly in studies that compared radiographic 
and intraoperative assessment of stability (23,46-49). 
Some authors have theorized that underestimation of stem 
loosening is largely to blame for high failure rates seen with 
ORIF of periprosthetic femur fractures where the stem is 
thought to be well fixed, as revision arthroplasty would have 
been a more appropriate option (23,34). This highlights 
the importance of intraoperative testing for component 
stability. If a surgeon considers that the stem is likely stable, 
the fracture site is most often approached directly and the 
potential for morbidity with hip arthrotomy and dislocation 
for stability testing can be avoided (34). Whenever possible, 
indirect methods for testing intraoperative stability without 
the need for exposing the joint should be employed. 
Depending on the fracture pattern and exposure, the 
distal implant can be tested for translation relative to 
the femur (41). If this is not possible, fluoroscopy can be 
utilized for dynamic testing in the operating room. For 
all cases in which the stability of the implant remains in 
question, surgical dislocation should be performed for 
further evaluation. This is especially true for patients 
with premorbid hip pain or dysfunction and fractures that 
occurred with minimal trauma, as these are often signs of 
a more complex pathology relating to the implant itself 
(1,34,38-40). 

Classification

The widely accepted classification system for postoperative 
periprosthetic fractures of the femur, developed by Duncan 
and Masri in 1995, stratifies patients according to the 
location of the fracture, stability of the prosthesis, and 
quality of bone stock (Figure 1) (50). Commonly called the 
Vancouver classification, it has proved to be quite practical 
due to its reliability, high validity, and its established 
treatment algorithm (47-50). Fractures are categorized by 
three types based on level. Type A fractures are located at 
the proximal metaphysis, and are further subdivided based 
on involvement of the greater trochanter (AG) and lesser 
trochanter (AL). Type B fractures include those around or 
just below the stem. These also are sub-classified: type B1 
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fractures occur around a well-fixed stem, type B2 fractures 
occur around a loose prosthesis but with good bone stock, 
and type B3 fractures are seen in cases with a loose stem and 
poor bone stock or significant comminution. Finally, type 
C fractures occur well below the stem. Other classifications 
used historically in the literature include the Bethea 
(fracture pattern), Johansson (fracture location), Mont and 
Mar (fracture location and pattern), and Beals and Tower 
(fracture location/prosthetic interphase disruption) systems, 
among others (21,51-53). 

While the Vancouver system is quite effective in most 
cases, its major fault lies in its total reliance on preoperative 
radiographic evaluation of stem stability to distinguish type 
B1 and type B2 fractures. In principle, type B1 fractures are 
assumed to be the result of traumatic injuries in relatively 
normal bone, although some osteoporosis may still be 

present. On the contrary, type B2 and B3 fractures are 
byproducts of pathological interfaces between the bone-
cement-prosthesis or bone-prosthesis. It is critical that type 
B2 and B3 fractures be identified so that the pathologic 
prostheses may be addressed. Unfortunately, not all of 
these pathologic fractures can be recognized based upon 
radiographic loosening of the femoral stem, and this may 
result in incorrect classification. For example, as high 
as 20% of loose stems are missed on preoperative X-ray 
evaluation, and many surgeons fail to adequately test 
stability in the operating room. Also, a well-fixed stem 
does not always indicate a clear lack of pathology, and the 
fracture event could accelerate impending mechanical 
failure (38,54). 

The Coventry classification, developed by Ninan et al. 
in 2007, stratifies fractures into “happy hips” or “unhappy 
hips” based upon multiple criteria to evaluate for signs 
suggestive of femoral stem pathology, not just radiograph 
alone. “Unhappy hips” include previously established 
loosening in patients already scheduled for revision surgery, 
worsening hip pain or dysfunction, fracture with minimal 
trauma, or clear signs of loosening on radiograph (40). Just 
like type B1 and B2 fractures, “happy hips” can be managed 
with fracture fixation, whereas “unhappy hips” require 
revision. Using multiple modalities to assess the status of 
the femoral component should reduce the likelihood that a 
loose femoral prosthesis is left in place.

Epidemiology

The incidence of periprosthetic femur fractures is expected 
to increase dramatically, as the prevalence of primary and 
revision THA and life expectancy continue to rise (1,2). 
Reports on the incidence of periprosthetic fracture after 
primary THA have ranged from 1-2.3%, to as high as 1.5-
7.8% after revision THA (55-60). Such fractures are now 
the third most common cause of reoperation for THA and 
account for 6% of cases in Sweden (34). According to the 
Swedish National Hip Arthroplasty Registry [1979-2000],  
the breakdown of periprosthetic fractures based on 
the Vancouver system was as follows: 4% were type 
A fractures, 86% type B fractures, and 10% type C 
fractures. Following primary THA, the majority (70%) 
of type B fractures occurred around a loose stem (type 
B2), whereas fractures after revision surgery are more 
commonly (51%) around a well-fixed prosthesis (type 
B1) (34). Most (60%) of the available literature reports 
on type B1 fractures around cemented prostheses, 

Figure 1 Vancouver classification system. Fracture classification: 
Vancouver A (A), Vancouver B1 (B), Vancouver B2 (C), Vancouver 
B3 (D), Vancouver C (E). Adapted with permission from Duncan 
CP, Masri AB: Fractures of the femur after hip replacement, 
Instruct Course Lect 44:293-304, 1995.
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although the risk for fracture is higher in cementless 
implants (1,41,61). Osteoporosis has been identified in 
nearly 60% of patients with a periprosthetic fracture, 
and thus female gender (52-70% of fractures) and 
advanced age (mean age ranging from 60-77 years)  
are often reported as risk factors (1,41,62). In one study, 
femoral stems were determined to have been loose at the 
time of fracture in 70% of cases following primary THA 
and 44% after revision THA (34). Other risk factors 
include those that affect bone quality, such as inflammatory 
arthropathy, previous hip fracture, bony deformity 
(Paget’s), and the presence of osteolysis. Technical 
factors, such as revision surgery, press-fit implants, and 
malposition of implants also place patients at increased 
risk for periprosthetic femur fractures (34,46,62,63). The 
great majority (about 85%) of fractures were the result of 
falls from sitting or standing, with “spontaneous fractures” 
and high-energy trauma accounting for only 10% and 5% 
of cases, respectively (1,61,64). One study found that 37% 
of such fractures were considered “spontaneous” following 
revision THA (34). 

Finally, periprosthetic femoral fractures commonly 
occur in elderly patients with multiple comorbidities. The 
reported 1-year mortality following operative treatment of 
periprosthetic fractures is high (9-17%), similar to that of hip 
fractures (16.5%); and two studies reported a substantially 
higher mortality rate for such fractures when treated by 
osteosynthesis compared with revision arthroplasty (30-
32% vs. 10-12%) (1,34,38,65-67). This difference has been 
attributed to immediate full weight bearing and improved 
mobilization of patients undergoing revision arthroplasty 
with a long-stem prosthesis, which prevents deconditioning 
and reduces morbidity and mortality (38,65,66). On the 
contrary, extramedullary constructs require a minimum 
period of non- or partial weight bearing to prevent 
mechanical failure (64,66). Additionally, some studies have 
shown less need for reoperation after immediate revision 
arthroplasty (34,39). Given that definitive treatment is more 
critical in geriatric patients for whom revision surgery in the 
future may not be feasible, revision arthroplasty has gained 
support as a viable and sometimes preferred alternative in 
select patients (39,65-68). 

Pathogenesis

It is a well-known concept that implantation of rigid 
orthopedic hardware within a long bone creates a “stress 
riser”, or an area of high stress concentration. The stem tip 

clearly plays a role in determining where a periprosthetic 
femoral fracture may occur; Beals and Tower determined 
that 75% of fractures occur at the stem tip (21,69). 
Biomechanical studies have demonstrated that only loose 
stems act as “stress risers”, whereas well-fixed stems have 
not been shown to cause such an effect (69,70). A loose 
femoral stem that has subsided into varus malalignment 
would impinge on the lateral cortex of the femur (71). 
In addition to a loose stem, the “stress riser” effect is 
clearly dependent on cortical density, as peak stress was 
found to increase as cortical thickness decreased (69,70). 
Defects in cortical bone stock can occur from cortical 
perforation during canal preparation, stem impingement, 
old screw holes, or pre-existing bone loss (71). In canines, 
cortical perforation reduced bone strength by 44% in an 
intact femur (72). Therefore, a high-risk framework for 
developing a periprosthetic fracture is a loose stem with 
deficient cortical bone, such as in osteoporotic bone. 
Additionally, cementless implants do not have a stable 
mantle around the stem as they do not immediately become 
fully osseointegrated into host bone, and may initially act 
as “stress risers”. Thus, periprosthetic fractures around 
cementless femoral stems commonly occur only 0.5 years 
after insertion, compared with 6.6 years for cemented 
implants (21). After bony ingrowth, there is greater fixation 
for the femoral implant and periprosthetic fractures should 
be less common (69,70).

Even in patients at high risk for developing periprosthetic 
fracture, a fracture will not occur unless a stress is applied 
that exceeds the strength of the bone. Biomechanical studies 
on osteoporotic cadaveric femurs with implanted prostheses 
have demonstrated how various applied loads lead to resultant 
periprosthetic fracture patterns. In one study, a torsional load 
consistently yielded a peritrochanteric fracture (Vancouver 
A), an anterior load produced a supracondylar distal femur 
fracture (very distal Vancouver C), and a lateral load led to 
a fracture line near the tip of the stem (Vancouver B) (73). 
These fracture loads were also applied to similar cadaveric 
femurs without an implant for comparison. While an anterior 
load still yielded a supracondylar fracture, the results of a 
lateral load were inconsistent: two specimens demonstrated 
fractures in the supracondylar area, a third one in the mid-
shaft, and one final fracture in the peritrochanteric region. 
The maximal stress load at failure, or bone strength, was also 
compared between the implant and implant-free models, as 
well. For a laterally applied load, 32% less force (4,692 vs. 
6,931 N, P<0.05) was required to produce a fracture at the 
stem tip of an implanted femur. Of note, the implants were 
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reported to be loose in 3 out of 4 specimens. Other studies 
argue that low-energy torsional force, which can be caused 
by occasional overload during daily activities in the presence 
of a loose stem, is commonly responsible for “spontaneous” 
Vancouver B fractures (74,75). A low torsional load (<50 N)  
applied to cadaveric femurs with loose implants resulted in 
long spiral fractures of the proximal femur, whereas cadaveric 
femurs with well-fixed implants yielded more distal fractures 
after application of a greater torsional load (>100 N) (75). 
This evidence supports the concept of a reduced fracture 
threshold near the tip of the prosthesis, particularly if the 
stem is loose.

In accordance with the above discussion, any pathologic 
process that weakens bone stock will greatly increase the 
risk for periprosthetic fracture. Osteolysis is a particularly 
precarious threat for late periprosthetic fracture, as it results 
in both endosteal resorption of bone as well as aseptic 
loosening of the stem (62,71). Some studies suggest that as 
high as 75% of all revision arthroplasties are the result of 
underlying osteolysis, and the impact of this process may 
be growing (34,76). The mechanism of osteolytic disease 
involves an inflammatory response to wear debris, primarily 
mediated by macrophages, which can weaken bone  
strength (76). In addition to osteolysis, revision arthroplasty 
is associated with a greatly increased risk of periprosthetic 
fracture, and the rate of fracture increases proportionally 
with the number of revisions (34,55,59). Patients undergoing 
revision THA often have large deficiencies in bone stock 
either from disuse osteopenia, previous surgery (e.g., 
windowing), infection, or osteolysis (62,71). Revision may 
require the use of longer or larger stems that increase the 
risk for fracture. For instance, long, straight revision stems 
can impinge on the anterior cortex of a bowed femur (71).  
Other conditions that can affect bone stock include 
osteoporosis, inflammatory arthropathy, trauma, and tumors 
(62,77). Bethea et al. suggested that a loose femoral stem can 
result in bone resorption independent of osteolysis, possibly 
as a result of increased motion at the bony interface (51,62). 
The effect of bone quality on periprosthetic fracture risk 
highlights the potential value of reconstructing cortical 
bone support using strut bone graft (69). 

Ideal Vancouver B1 fractures, by definition, show no 
signs of femoral loosening and largely have intact cortical 
bone. Consequently, no “stress riser” is present to increase 
the risk for fracture. Although some degree of osteoporosis 
or acquired bone deficiency does not preclude type B1 
classification, most cases with severely deficient bone stock 
often present with loose femoral components (78-80). 

Prevention

Successful prevention of periprosthetic femoral fractures 
requires special considerations, both intraoperatively and in 
follow-up. First, preparation of the canal must be performed 
with considerable care and bony defects should either be 
grafted or bypassed with a long stem (81-83). Furthermore, 
70% of periprosthetic fractures occur in patients with 
loose stems, of which 27% were known to be loose prior to 
injury (34). Clearly, revision procedures should be handled 
expeditiously to avoid further complication. However, 
as much as 80% of femoral stem loosening is clinically  
silent (84). Thus, more routine radiographic follow-up 
may be warranted to foster early detection of osteolysis and 
aseptic loosening (34,82). Routine standardized monitoring 
appears to have the potential for cost-savings in that 
acute care of periprosthetic fractures is considerably more 
expensive than scheduled revision of aseptic loose femoral 
stems (85). 

Management

Management of type B periprosthetic fractures is typically 
operative unless surgical intervention is strictly prohibited 
due to medical contraindication. Poor union, exceedingly 
long hospital admission, delayed mobilization, and, most 
importantly, high mortality, have plagued non-operative 
management (53,56,86-88). The mainstay of operative 
treatment for periprosthetic fractures around a well-fixed 
stem is ORIF; however, it is critical to identify patients 
for whom osteosynthesis may result in poor outcomes. 
Clearly, fractures around femoral stems that are loose 
should be treated using revision THA. Additionally, strong 
consideration should be made for revision in patients 
with a history of worsening hip pain or dysfunction prior 
to the fracture, or femur fracture with minimal trauma. 
Consideration for revision can also be made for patients 
with difficult to treat fracture patterns (transverse or 
short oblique fractures, especially with comminution), 
exceedingly poor bone quality, and cemented femoral stems, 
as these factors have been associated with worse outcomes 
(10,23,28,89-91). In these instances, patient factors such 
as medical comorbidities and anesthesia risk could guide 
treatment, as these patients would be more likely to do 
poorly with prolonged immobilization and less likely to 
tolerate revision surgery (38,65-67). In fact, medical fragility 
itself may be an indication for revision arthroplasty in 
particularly worrisome patients, although better alternatives 
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may exist. Finally, surgeons should always be prepared in 
the event that intraoperative assessment indicates the need 
for a change in operative plan.

Osteosynthesis of type B1 fractures

Once the decision has been made to proceed with 
osteosynthesis, there is controversy with regard to the 
optimal method for reducing and fixing the fracture. 
The available literature does not offer a consensus, and 
it is mostly comprised of small to medium sized case 
series providing support for or against the use of specific 
techniques. Low institutional case volumes make high 
quality, well-controlled studies quite difficult. While many 
of the challenges with fixation of type B1 fractures remain 
the same, considerable variability exists with regard to 
fracture configuration and bone quality; thus, operative 
treatment must be tailored to meet the needs of each case.

While there are reports of good outcomes (3-17), many 
studies point to a high failure rate for osteosynthesis of 
type B1 fractures (Figure 2) (18-36). Several authors have 
accepted that unrecognized femoral stem loosening may in 
part be to blame for high failure rates (23,38-40,92,93). Its 
contribution to failure is not clear, but may be the result of 

increased motion and strain at the fracture site or another 
underlying pathology. However, it is clear that despite 
the stability of the implant, both the biomechanical and 
biologic conditions for fracture healing are poor in the 
presence of intramedullary prostheses. Not only does the 
physical presence of the implant and possibly the cement 
mantle obstruct adequate proximal fixation, prior reaming 
and occlusion of the canal contribute to endosteal ischemia. 
Ensuing periosteal devascularization during fracture 
reduction and fixation with plates and cables further 
impairs the biologic response (18,64,94). These suboptimal 
conditions play a large role in the reported failures, which 
commonly include early construct failure (plate or screw 
pullout or fracture), non-union or malunion, refracture at 
the end of the plate or implant, or stem loosening.

Gaining stability of the fracture site is critical for healthy 
fracture healing. Too-rigid fixation can also be a problem, as 
some degree of movement is necessary for callus formation, 
and increasing stiffness of a construct can lead to mechanical 
fatigue (95,96). Local stress at the fracture site can be 
avoided by leaving 3 or 4 screw holes empty, effectively 
increasing working length (2,97). Also, screw head inserts 
in empty holes can reduce the risk for plate fracture at 
these points of weakness (95). Engaging at least 4 cortices 

Figure 2  Rate of failure by year of publication and method of fixation.
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proximally and 8 distally has been recommended, although 
only 4 cortices distally may be necessary for more proximal 
fractures (2). Screw pullout occurs due to dynamic loading 
of daily activity, and patients with osteoporotic bone have a 
higher risk of screw pull out. Bicortical screws are less likely 
to pull out and provide better rotational stability, but could 
jeopardize the stability of the stem or the integrity of the 
cement mantle when aimed proximally (95). Most reports 
suggest that violation of the cement mantle with proximal 
screws does not lead to premature femoral stem loosening 
(8,98,99). Cables can be placed around the plate through 
specialized grommets (Figure 3), effectively reducing the 
risk for plate pullout. These cables also can help bring 
the plate into contact with the bony contour, which is an 
effective method for reducing soft tissue impingement. 

The fracture site, or the femoral stem in more proximal 
fractures, should be bypassed by at least two cortical 
diameters, although one study reported a lower risk for 
refracture with femoral-spanning plates (4,26,41,94). While 
biplanar fixation and allograft struts have been advocated, 
most authors in recent years have stressed the importance of 
minimally disruptive techniques that avoid significant soft 
tissue dissection and tissue stripping to maximize biologic 
healing (4,41,95). Allograft struts provide additional support 
and eventually incorporate to improve femoral bone stock, 
although they require complete stripping of the anterior 
or medial femoral cortex (4,40,41). Outcomes have been 
mixed, and one study by Moore found a longer time to union 
and increased risk for deep infection with allograft struts 
(90,91,100,101). Unstable fracture patterns such as transverse 
or short oblique patterns with significant comminution or 
patients with poor bone may still benefit from placement of a 
cortical strut allograft. An accurate, direct fracture reduction, 
despite its blood supply disruption, is also still a priority to 
avoid early failure (2). Finally, early mechanical loading is 

a likely culprit in plate failure, even when bone quality and 
fixation are optimal (22,94,95,102). Some degree of protected 
weight bearing is recommended for 6-8 weeks, with advance 
to full weight bearing with clinical and radiologic signs of 
fracture healing (66,95). 

A wide range of constructs have been used to meet the 
fixation requirements around an implanted femoral stem. 
Historically, cerclage techniques with wires, cables, or 
bands and clamp (Mennen) plates have been used alone, but 
these do not provide adequate fixation (15,30,91,94,103). 
The first specialized plate designed to avoid the pitfalls of 
proximal fixation, including violation of the stem or cement 
mantle and poor screw purchase, was the Ogden plate. 
This modified plate used heavy-duty bands for proximal 
fixation and screws distal to the prosthesis (104,105). 
Currently, there is evidence to support the use of three 
common constructs: plate-cable systems, locking plates, and 
compression plates. Each method has particular advantages 
and drawbacks with no one method demonstrating 
superiority in all cases. In fact, many newer plate designs 
allow for flexibility in using multiple methods for fixation as 
they are needed. 

More modern applications of the “Ogden method”, or 
plate-cable systems, are an improvement on the original 
design and continue to be utilized (Figure 4) (105,106). 
In 10 studies on plate-cable systems used since 2000, the 
rate of failure defined by poor outcome by the Beals and 
Tower criteria, which includes loose stem, nonunion, deep 
infection, refracture, or severe deformity, ranged from 
0-66% although the range was more reasonable (15-33%) 
in studies with greater than 15 patients (3,14,21,23,26-
30,36,94). These improved results may be a result of 
outcomes from large-volume centers that have greater 
experience treating periprosthetic femur fractures. Early 
plate-cable constructs seem to have relied more on cables 
alone for proximal fixation; however, proximal fixation can 
now be achieved with a combination of cables and unicortical 
or bicortical screws. Biomechanical studies suggest plate-
cable constructs with proximal unicortical screws alone 
or unicortical screws with cables provide added stability 
in compression, lateral bending, and torsion compared 
to proximal cables alone (106). Some series have also 
reported good results with proximal bicortical screws; these 
constructs should have superior rotational stability (66).  
Several authors have postulated that failure with plate-cable 
systems is the result of varus malpositioning of the femoral 
stem, which results from poor torsional stability (18,27,29). 

As indicated in Figure 2, the use of locking plate 

Figure 3 Osteosynthesis of type B1 periprosthetic femoral fracture 
with plate-cable system and non-locking screws.

Grommet



Fleischman and Chen. Periprosthetic fractures near femoral stems

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2015;3(16):234www.atmjournal.org

Page 8 of 13

technology for type B1 fracture fixation has increased 
in recent years. No studies on the use of locking plates 
published prior to 2007 are shown, but 8 studies performed 
between 2007 and 2010 can be seen. According to a recent 
systematic review by Dehghan et al., 36% of type B1 
fractures were treated with locking plates (61). Locking 
plates are particularly suitable for fixation in patients 
with poor bone quality, which is quite common with 
periprosthetic fractures. Locking plates do not depend 
on friction between the plate-screw and bone interface 
for stability, and the fixed-angle between screw and bone 
mitigates the burden on adequate screw purchase. As 
the plate does not need to be pressed directly against the 
bone, there is the added benefit of less tissue disruption 
and less risk for refracture at the end of the plate (95). 
Newer locking plate designs allow for screw placement at 
oblique angles for easier insertion anterior or posterior 
to the implant (11). In 14 studies performed since 2007, 
the rate of failure of locking plates ranged from 0-50%, 
and this range was 3.5-17.4% in studies with greater than 
20 patients (4-6,9,16,22,26,35,39,102,107,108). Dehghan 
et al. reported a higher rate of nonunion and hardware 
complications with locking plates, although they attributed 

this to an overreliance on the locking plate to gain stability, 
inadequate reduction, and selection bias for use of locking 
plates in more difficult cases, such as those with severe 
osteoporosis (61). In addition to locking plates, some 
periprosthetic fractures with simple fracture patterns 
(transverse or short oblique) and no comminution are best 
treated by absolute stability via a dynamic compression 
plate (41,109). While a few studies reported on the use of 
dynamic compression plating alone, many of the commonly 
used locking plates now offer both dynamic compression 
and locking options.

Revision arthroplasty

Revision THA with stem exchange is the treatment of 
choice for periprosthetic fractures with obvious or subtle 
clinical signs of femoral implant failure or difficult to treat 
fracture patterns. Revision can also be considered in fragile, 
elderly patients to avoid further reoperation and minimize 
mortality. Some authors have suggested that revision THA 
be combined with osteosynthesis, although this requires a 
prolonged operation and 2-stage revisions are not optimal 
in elderly patients (38,52). Simple long-stem revision can 

A B C

Figure 4 Vancouver B1 fracture treated with plate-cable system. Well-healed fracture at 1 year post-operatively: AP (A,B) and Lateral (C) 
radiographs.
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be time-consuming, difficult, and expensive, especially 
if the stem is well-fixed, but experienced surgeons have 
reported comparatively low complication and reoperation 
rates (106). In a large study on exchange with a long-stem 
implant, the overall complication rate was 10%, including 
2.5% dislocations, 3.3% implant loosening, 1.7% device 
fracture, 1.7% deep infection, and 0.8% refracture (38). 
Laurer reported no implant failures and one case of 
peroneal palsy in 16 patients undergoing revision THA 
for periprosthetic fractures (type B1 and C), whereas 8 
implant failures occurred in 16 similar patients undergoing 
osteosynthesis (39). Generally, the level of the fracture as 
well as the presence and location of pathologic bone are 
considered when deciding the best type of implant to use. 
Similar to a fracture plate, the revision stem should span 
the fracture site for a minimum of two cortical diameters 
(about 4 cm) (59,72,110). In more proximal fractures with 
intact proximal femoral bone stock, a standard-length stem 
may be considered. With poor proximal bone, a long-stem 
revision stem may be sufficient if the isthmus and distal 
femur are largely free of pathology, whereas more complex 
bone grafting may be necessary if the distal femur is affected 
by osteolysis (40). 

For patients with stable prostheses that are considered 
to be high risk for decompensation with prolonged 
immobilization, in situ lengthening of an indwelling 
prosthesis may be a viable option. This method involves 
placement of a slotted retrograde intramedullary nail 
over the conical tip of the retained prosthesis. Similar to 
intramedullary nailing of typical femoral fractures, this 
technique could allow for early mobilization and is less 
demanding than long-stem revision arthroplasty. Meyer 
et al. reported the successful use of this technique in  
18 patients; the only complication was loosening of a single 
femoral stem. It appears that there is some risk for loosening 
of the femoral prosthesis while coupling the stem and nail. 
While this method currently requires a custom-made nail 
based on preoperative computed tomography scans, special 
standardized implants could be manufactured if this were to 
become a common treatment method (111). However, this 
technique is not commonly used in the United States.

Conclusions

Management of periprosthetic fractures around the 
femoral stem can be challenging because these fractures 
require extensive surgical expertise. Poor biologic healing 
often plagues such fractures, adequate proximal fixation 

can be difficult to achieve, and failing implants within 
pathologic bone may be difficult to recognize. However, 
careful clinical evaluation and proper operative technique 
can improve outcomes for patients suffering from these 
difficult to treat injuries. Firstly, femoral stem stability 
should be adequately assessed intraoperatively in all cases. 
If the fracture site cannot be accessed directly, dynamic 
testing under fluoroscopy is indicated. When femoral stem 
stability remains in question, surgical dislocation should be 
performed for definitive evaluation. For fractures around a 
well-fixed stem (Vancouver B1 fractures) in normal bone, 
the mainstay of operative treatment is ORIF. This can 
be effectively accomplished with a variety of constructs. 
Cables and non-locking screws can be used for fixation in 
good quality bone, whereas locking screws should be used 
in patients with poor bone stock. Compression plating 
can be advantageous for simple fracture patterns without 
comminution. The use of allograft struts is controversial; 
they may be beneficial for augmentation of unstable 
fracture configurations with comminution or poor bone. 
Unlike fractures around uncompromised implants, revision 
arthroplasty should be considered in patients with loose 
femoral stems (Vancouver B2 fractures), in patients with 
a history of worsening hip pain or dysfunction, or femur 
fractures with minimal trauma. Improved outcomes may 
be achieved by performing revision arthroplasty in patients 
with difficult to treat fracture patterns (transverse or 
short oblique with comminution), exceedingly poor bone 
quality, or cemented stems. Additionally, osteosynthesis 
of periprosthetic fractures is associated with a high 1-year 
mortality rate. Elderly, fragile patients may benefit from 
treatment methods that allow for early mobilization, such 
as revision arthroplasty or even effective stem lengthening 
with a retrograde nail.
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