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Background: Non-small cell lung cancer (NSCLC) has the highest cancer mortality rate in the world, 
but currently there is no effective method of dynamic monitoring. Gene mutation is an important factor 
in tumorigenesis and can be detected using high-throughput sequencing technology. This study aimed to 
analyze the driving genes in the tumor of NSCLC patients by whole exon sequencing, and to compare and 
analyze the subclones of the tumor at different time points.
Methods: We collected 87 cases of NSCLC tumor tissues, para-cancer tissues, and peripheral blood 
samples for detecting cell-free DNAs (cfDNAs) from January 2016 to December 2018, and whole-exome 
sequencing was performed. The gene mutation map of NSCLC was drawn in detail by second-generation 
sequencing data analysis and new driver genes were found. In addition, we performed a subclonal analysis of 
tumors from different stages of the same patient to further describe the tumor heterogeneity. 
Results: We found that the clonal analysis obtained by cfDNA detection was similar to the clonal analysis 
of the tissue samples, so real-time monitoring of tumor changes can be carried out through monitoring 
cfDNA. 
Conclusions: This study provides evidence for studying the gene mutation information of NSCLC and 
shows the importance of cfDNA in the analysis of tumor subcloning information.
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Introduction 

Lung cancer (LC) is a malignant tumor with high mortality, 
subdivided into non-small cell LC (NSCLC, accounting 
for ~85% of the total number of lung cancers) and 
small cell LC (SCLC, accounting for ~15% of the total 

number of lung cancers). NSCLC is further divided into 
adenocarcinoma and squamous cell carcinoma, which can be 
molecularly stratified according to specific gene mutations 
and their expression on the tumor (1). If NSCLC can be 
detected early and surgically removed, the prognosis can be 
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good, with a 5-year survival rate of 70–90% (2). However, 
most patients (~75%) are already at an advanced stage when 
diagnosed (3), and although in recent years there have been 
significant advances in treating patients with advanced 
lung cancer, the survival rate remains low. Currently, 
some NSCLC patients are given targeted therapy, but 
the biggest obstacle is the inevitable drug resistance, 
arising through tumor cells using different mechanisms 
to resist the drugs, including target gene mutations and 
activation of complementary bypass pathways, phenotypic 
transformation, etc. (4,5). Tumor cells will produce different 
subclones in their development and evolution, which leads 
to tumor heterogeneity (6-8).

Both the diagnosis and postoperative monitoring of 
LC are important for the patient’s prognosis, but it is 
still difficult to diagnose and monitor the development of 
LC in the early stage, because often there are no obvious 
symptoms. Although low-dose computed tomography 
(LDCT) is the LC screening and detection method 
widely recommended, it has radiation risks. Therefore, a 
noninvasive screening tool that can be used to detect LC 
earlier is desired.

Circulating cell-free DNA (cfDNA) refers to small 
double-stranded DNA fragments released from normal 
or tumor cells into the peripheral blood or other body 
fluids (9). In patients with a tumor the cfDNA level will 
increase notably, and tumor-specific mutations derived 
from cancer cells can be identified (10). Compared with 
traditional tissue sampling, blood cfDNA sampling is faster, 
more convenient, easier to operate, minimally invasive, 
and inexpensive (11). As a feasible tissue biopsy method, 
cfDNA liquid biopsy analysis has been used for molecular 
target identification, response and prognosis prediction, 
and drug resistance monitoring in targeted therapy for LC. 
Therefore, it can also be used to dynamically monitor the 
treatment and prognosis of patients.

Intratumor heterogeneity refers to the subclonal 
diversity of tumor cells observed in a single tumor, whereas 
intertumor heterogeneity refers to the diversity between 
the primary and secondary tumors (12-14). Tumor 
heterogeneity not only manifests within and between 
tumors, between primary tumors and secondary tumors, but 
also between different tumor cells in the same tumor tissue. 
Different cell populations and cells at different stages of 
one tumor have many different characteristics, such as gene 
mutation information, gene expression information, and 
epigenetic information (15). Tumor heterogeneity can lead 
to a high degree of complexity and genetic diversity within 

tumor tissues, causing different treatment sensitivities 
for the same tumor type (16). The heterogeneity of 
tumors between patients is related to individual genetic 
and phenotypic variation, which can explain the different 
treatment responses of each patient.

The development of high-throughput sequencing 
technology provides a good method for studying tumor 
heterogeneity and its development. Due to its high 
throughput and high accuracy, the second-generation 
sequencing technology can accurately analyze changes in 
both tumor gene mutations and expression. The third-
generation sequencing technology can more conveniently 
and accurately detect structural variations at the genomic 
and transcriptome level due to its long-read sequencing (17). 
The development of single-cell sequencing technology and 
spatial transcriptome technology has deepened the ability to 
investigate the spatial heterogeneity of tumors (18-20).

At present, there is no effective method for dynamic 
monitoring of NSCLC. In this study, we aimed to provide 
ideas and methods for real-time monitoring of tumors. 
Tumor and para-cancer tissue samples, and peripheral blood 
samples of NSCLC patients were collected and performed 
whole-exome sequencing. The driver genes in the tumors of 
NSCLC patients were analyzed by sequencing analysis, and 
the tumor subclones at different time points were compared 
and analyzed. After systematic analysis, the gene mutation 
maps in the tumor tissues and the levels of cfDNA of the 
NSCLC patients were plotted.

We present the following article in accordance with 
the MDAR reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-4117).

Methods

Clinical data collection

From January 2016 to December 2018, 87 patients 
with NSCLC were enrolled in the Zhujiang Hospital 
of Southern Medical University as research subjects. All 
patients were diagnosed by pathological examination, and 
the para-cancer tissues were confirmed to be free of cancer 
cells. Table 1 shows the backgrounds and clinicopathological 
characteristics of the patients. All procedures performed in 
this study involving human participants were in accordance 
with the Declaration of Helsinki (as revised in 2013). All 
patients signed an informed consent form, and the study 
protocol was approved by the Ethics Committee of the 
Zhujiang Hospital of Southern Medical University.

https://dx.doi.org/10.21037/atm-21-4117
https://dx.doi.org/10.21037/atm-21-4117
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Whole-exome sequencing

We performed whole-exome sequencing (WES) on 47 
tumor tissue samples, and on the cfDNA extracted from 36 
peripheral blood samples, and 4 patients were performed 
on both tissue samples and cfDNA samples. We randomly 
assigned 5 patients to dynamic WES to monitor tumor 
changes. Novaseq6000 was the sequencing platform, and 
the exon region was captured by the Agilent SureSelect 
Human All Exon V6 kit.

Statistical analysis

Quality control and analysis of sequencing data
First, fastp (21) software was used to control the quality 
of the original sequencing data. Adapters and low-quality 
bases were removed, then bwa (22) software was used to 
compare the filtered data with the human reference genome 
(hg38). Next, GATK (23) software was applied to find the 
mutation sites of each sample to annotate and filter, and 
finally, a reliable map related to tumor tissue and cfDNA 
gene mutations was obtained.

Analysis of purity and ploidy of tumor samples
ABSOLUTE software (https://software.broadinstitute.
org/cancer/cga/absolute) was used to analyze the purity 
and ploidy of each tumor sample following the default 
parameters, and then the samples with lower tumor purity 
were removed.

Driver genes prediction
MutSigCV (24) software was used to analyze all the tumor 
mutation information to predict tumor driver genes.

Results

Quality of sequencing data

In the samples we obtained, samples with a high sequencing 
repetition rate or with a tumor sample depth of less than 
100X were removed, so a total of 174 WES data sets were 
examined. Of them, the 91 tumor samples (we got both 
tissue and cfDNA samples in 4 patients) had an average 

Table 1 Clinical information of 87 patients with non-small cell lung 
cancer

Characteristic Concordance patients (n=87) (%)

Age (years)

Median (min., max.) 60 (32, 79)

<65 64 (73.6)

≥65 23 (26.4)

Gender

Male 50 (57.5)

Female 37 (42.5)

Smoking status

Current smoker 15 (17.2)

Former smoker 3 (3.4)

Never smoker 69 (79.3)

Histologic subtype

Adenocarcinoma 75 (86.2)

Squamous carcinoma 4 (4.6)

Other 8 (9.2)

Clinical UICC stage before treatment

I–II 12 (13.8)

III–IV 75 (86.2)

Residence area

Rural 33 (37.9)

Urban 54 (62.1)

CEA level (μg/L)

≤5.0 26 (29.9)

>5.0 61 (70.1)

Respond to treatment

CR 5 (5.7)

PR 4 (4.6)

SD 41 (47.1)

PD 37 (42.5)

UICC, Union for  Internat ional  Cancer  Contro l ;  CEA, 
carcinoembryonic antigen; CR, complete response; PR, partial 
response; SD, stable disease; PD, disease progression.
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sequencing depth of 406X (103X–812X), 51 tissue samples 
had an average sequencing depth of 417X (140X–703X), 
and 40 cfDNA samples had an average depth of 392X 
(103X–821X). 

Consistence of the sequencing data with samples

After analysis and judgment, all data of tumor samples and 
control samples were consistent with the corresponding 
patients, and the sexes of the sequencing data were 
consistent with the corresponding patients as well. No 
sample confusion events had occurred.

General consistency of the tumor purity and the number of 
ploidy of tumor tissue with cfDNA 

The tumor purity and ploidy analyses were performed on 
the WES results for the cfDNA and tumor tissue samples, 
and found to be about the same (Figure 1).

Higher frequency of somatic mutations of TTN, EGFR, 
and TP53 genes 

After analyzing the results of filtered gene mutations, the 
tumor tissue or cfDNA samples had the largest number of 
missense mutations compared with the para-cancer tissues, 
and most of them were single nucleotide polymorphisms 
(SNP), in which the base C mutated to base A or T 
accounted for the highest percentage (Figure 2A-2C). 

The median number of mutations in all samples was 79, 
and among all genes with mutations, we found that TTN, 
EGFR, and TP53 had the highest mutation frequency, with 
an occurrence rate >30% (Figure 2D-2F). Subsequently, we 
calculated the distribution of genes with higher mutation 
frequency in each sample (Figure 3).

Number of converted versus inverted bases in the mutated 
samples 

We analyzed the SNP changes of all samples and found 
that among the SNPs of all samples, the number of cases 
of cytosine mutated to thymine (C>T) was the largest, 
accounting for about 48% of the total SNPs, followed by 
cytosine mutated to guanine (C>A, 23%), and thymine 
mutated to cytosine (T>C, 13%) (Figure 4A). In addition, 
we counted the number of bases that underwent conversion 
(Ti) and inversion (Tv), and found that conversion (~55% 
of the total) was notably more than inversion (~40% of the 
total) (Figure 4B). The proportion of specific mutation types 
in each sample is shown in Figure 4C.

Main relationship between significant mutation signal of 
the sample and smoking

Maftools (25) software was used to extract mutation features 
from our measured data, and then the mutation features 
we extracted, based on the 30 verified mutation features in 
COMISC, were annotated. We found 4 distinctly enriched 
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Figure 1 Tumor purity and ploidy analysis of tumor tissue and cfDNA samples. cfDNA, Circulating free DNA.
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Figure 2 Mutation map of all samples. (A) Frequency distribution of different variant classifications; (B) frequency distribution of different 
variant types; (C) frequency distribution of SNV variant classifications; (D) accumulation of different variants in each sample; (E) distribution 
of different variant classifications in each sample; (F) top 20 genes with high mutation frequency. SNV, single nucleotide variants.
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mutation signals, which were mutation feature 2, mutation 
feature 4, mutation feature 5, and mutation feature 6  
(Figure 5), respectively. Among them, mutation feature 4 was 
related to smoking, and its feature was similar to the mutation 
pattern observed in the experimental system exposed 
to tobacco carcinogens, so it may be caused by tobacco 
mutagens, which indicated that there might be tumors caused 
by smoking among the patient samples we collected.

Sample prediction of TP53, EGFR, FOLR3, LCN10, 
SPPL2B, STK11, and KRAS genes

MutSigCV (24) software was applied to predict the 
tumor genes based on the analysis results of all nonsense 
mutations. In the end, we found that TP53, EGFR, FOLR3, 

LCN10, SPPL2B, STK11, and KRAS were the tumor driver 
genes of our tested samples (Table 2). Among them, TP53, 
EGFR, and KRAS genes have already been predicted as 
driver genes in a variety of tumors. Mutations of these 
genes will seriously affect the progression of tumors and the 
effects of treatment and prognosis.

High similarity between cfDNA and tissue samples for 
secondary clones

Studies have shown that genomic instability promotes the 
emergence of more competitive subclones, which is the 
main factor in tumor progression and metastasis and drug 
resistance during treatment. Before treating LC, there will 
be drug-resistant clones. After tyrosine kinase inhibitor 
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Figure 3 Waterfall diagram of mutations in all samples.

(TKI) treatment, sensitive clones (primary clones) will 
be reduced, but drug-resistant clones (secondary clones) 
gradually become dominant and tumor heterogeneity 
appears (26). Among the 91 samples from 87 patients we 
obtained, 5 patients were sampled at different time points 
to evaluate the significance of WES in monitoring tumor 
progression (Table 3). After sequencing these samples, we 
analyzed the subclonal structures of the tumor DNA and 
cfDNA in the blood at different times, as well as the tumor 
heterogeneity. The results showed that for the secondary 
clones, using cfDNA to detect changes in the patient’s 
tumor subclones was highly consistent with the clonal 
analysis of the tissue samples (Figure 6).

There was a total of 7 subclones in the tumor of patient 
1, consisting of 4 primary clones (n>5) (cluster0, cluster1, 

cluster2, cluster3), and 3 secondary clones (n≤5) (cluster4, 
cluster5, cluster6). The second subclone (cluster1) was 
unique to the tissue samples, and the third subclone 
(cluster2) was unique to the blood samples. The other 2 
primary clones and the 3 secondary clones were detected in 
both the blood and tissue samples, and the effective clone 
detection rate (the percentage and sensitivity of clones 
shared in blood and tissue to the detected clones in tissue) 
was 83.3%. The effective detection rate of secondary clones 
was 100%, and the false-positive rate (the percentage of 
specific detection in blood to all clones detected in tissues 
and blood samples) was 14.3%.

There was a total of 10 subclones in the tumor of patient 
2, consisting of 3 primary clones (n>5) (cluster0, cluster1, 
cluster3), and 7 secondary clones (n≤5) (cluster2, cluster4–
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cluster9). The second and sixth (cluster1, cluster5) subcloned 
tissues were not detected. The effective detection rate of all 
clones was 100%, the effective detection rate of secondary 
clones was 100%, and false-positive rate was 20%.

There were 6 subclones in patient 3, with 4 primary 
clones (n>5) (cluster0, cluster1, cluster2, cluster3), and 2 
secondary clones (n≤5) (cluster4, cluster5). The unique 
subclonal type in the tissues was the second subclonal 
type (cluster1), and the unique subclonal type in the 
blood samples was the third subclonal type (cluster2). The 
effective detection rate of all clones was 80%, the effective 
detection rate of secondary clones was 100%, and false-
positive rate was 17%.

There were 6 subclones in patient 4, with 3 primary 
clones (n>5) (cluster0, cluster1, cluster2), and 3 secondary 
clones (n≤5) (cluster3, cluster4, cluster5). The first subclone 
(cluster1) was a unique type of subclone in the tissue, and 

the second subclone (cluster2) was a unique feature of 
blood. The effective detection rate of all clones was 80%, 
the effective detection rate of secondary clones was 100%, 
and false-positive rate was 17%.

There were 7 subclones in patient 5, with 5 primary 
clones (n>5) (cluster0, cluster2, cluster3, cluster4, cluster5), 
and 2 secondary clones (n≤5) (cluster1, cluster6). The 
second subclonal type (cluster1) was a unique tumor feature 
in the tissue sample. The effective detection rate of all 
clones (was 85.7%, the effective detection rate of secondary 
clones was 100%, and false-positive rate was 0%.

Discussion

In general, the occurrence of tumors is the result of 
mutations in one or more genes (27-29), and NSCLC is 
one of the tumors with a high incidence. A mutation map 
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of the patient’s tumor and the discovery of driver genes 
can provide effective guidance for treatment (30). WES is 
an advanced technique and method used for studying the 
gene mutation of tumors. Through analyzing the WES 
data of tumor samples, it is possible to accurately obtain 

the mutation gene map of the tumor cells and discover 
the tumor driver genes. Precisely detecting tumor somatic 
mutations and driver genes is critical for treatment and 
prognosis (31-33). Several studies have identified the main 
driver genes of a variety of tumors (34), and these results 

Figure 5 Mutation characteristic signals.
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Table 2 Prediction results of tumor driver genes of all samples

Gene expr reptime hic N_nonsilent N_silent nnei x X p q

TP53 2069567 213 34 281,099 77,623 29 13 2,618,798 0 0

EGFR 423489 336 −13 863,681 228,046 4 8 521,885 0 0

FOLR3 715293 267 62 165,347 40,495 50 10 4,625,075 0 0

LCN10 1898901 190 39 131,768 38,857 38 22 4,469,283 0 0

SPPL2B 1503606 267 31 387,751 120,302 50 16 5,227,040 0 0.0086

STK11 2214581 234 29 286,286 78,988 26 9 2,936,934 0 0.0264

KRAS 259193 512 16 155,974 37,583 50 20 5,245,240 0 0.0734

nnei: number of adjacent genes; x: number of silent or non-coding mutant bases in adjacent genes; X: total number of bases related to 
adjacent genes; p: significant P values; q: the corrected P value.
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provide essential information for their clinical treatment.
Tumorigenesis is a dynamic process (6). Tumors at the 

same site in a patient will have higher heterogeneity at 
different periods (35). The subclones generated during 
the evolution of tumors lead to extremely high complexity 
and genetic diversity, which leads to inconsistent tumor 
sensitivity to treatment, resulting in poor treatment efficacy. 
Therefore, it is of great significance for the treatment to 
monitor tumors in real-time. Because the cfDNA of tumor 
patients contains a large amount of DNA released from 
the tumor, and the sampling for cfDNA is simple and 
noninvasive, the dynamic monitoring of tumor changes 
through cfDNA detection has potential for real-time 
tumor monitoring (36,37). Studies have shown that (38), 
in patients with NSCLC, cfDNA is more suitable as a 
monitoring index than carcinoembryonic antigen (CEA) 
and neuron specific enolase (NSE), making it a biomarker 
with significant advantages in lung cancer diagnosis, tumor 
efficacy and prognosis.

In this study, we simultaneously performed WES on the 
tumor, para-cancer tissues, and cfDNA of NSCLC patients, 

as well as systematically analyzing the gene mutation map, 
and tumor subclones at different time points. We created 
a gene mutation map of NSCLC and predicted TP53, 
EGFR, FOLR3, LCN10, SPPL2B, STK11, and KRAS as the 
driver genes. The false-positive rate of all tumor subclones 
analyzed by cfDNA was <20%, the sensitivity was >80%, 
and the effective detection rate of secondary clones was 
100%, which were highly similar to the results for the 
tissue samples; thus, WES can represent the tumor status, 
providing a feasible method for real-time monitoring of 
tumors.

The limitation of this study is that the small sample 
size. There were only 5 patients used to compare the 
WES results for the cfDNA and tumor tissue samples, 
and the effective number of samples was only 91, so there 
may be sampling bias, as well as random deviations in the 
statistical results. However, even with the limited number 
of samples, we still found that it is feasible for cfDNA 
analysis to replace tumor tissue samples in patients with 
advanced LC (≥ stage III) for real-time monitoring of 
tumor differentiation.

Table 3 Sampling information of 5 patients

Patient No. Sample ID Type Cellularity Ploidy estimate

1 ZY1711073842943000 Tissue 0.61 3.7

ZY1803020787902000 cfDNA 0.65 3.1

2 ZY1711073821432000 cfDNA 0.8 1.9

ZY1711076467752000 cfDNA 0.43 2.2

ZY1711070438002000 cfDNA 0.57 2.3

ZY1803029704273000 Tissue 0.75 4

3 ZY0755443364264940 Tissue 0.6 2.7

ZY0755443364264940-ct cfDNA 0.63 2.1

4 ZY1803026037353000-T Tissue 0.47 2.3

ZY1711079369192000 cfDNA 0.54 2

5 ZY0755342713044877 cfDNA 0.6 2

ZY1711079244802000 cfDNA 0.53 2

ZY1803027967203000 Tissue 0.38 1.7
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Figure 6 Analysis of tumor subclonal changes in 5 patients at different time periods.
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