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Background: Using bioinformatic methods to explore the differentially expressed genes (DEGs) of human 
idiopathic pulmonary fibrosis (IPF) and to elucidate the pathogenesis of IPF from the genetic level.
Methods: The GSE110147 gene expression profile was downloaded from the GEO database. The data of 
lung adenocarcinoma (LUAD) samples, lung squamous cell carcinoma (LUSC) samples and normal samples 
were downloaded from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) 
databases. DEGs between IPF patients and healthy donors were analyzed using the GEO2R tool. Use the 
“clusterprofiler” package in R software to perform gene ontology (GO) and KEGG pathway enrichment 
analysis, and then perform function annotation and protein-protein interaction (PPI) network construction 
in the STRING online tool. The Genome Browser tool of the university of california santa cruz (UCSC) 
online website was used to predict transcription factors (TFs) of genes. In the final, the results were analyzed 
synthetically.
Results: A total of 9,183 DEGs were identified, of which 4,545 genes were down-regulated, and 4638 
were up-regulated. MMP1, SPP1, and BPIFB1 were the top three DEGs with the highest significant up-
regulation. These DEGs played an important role in the occurrence of IPF through the MAPK (mitogen-
activated protein kinase) signaling pathway. Furthermore, 50 DEGs were enriched in the expression of 
PD-L1 and the PD-1 checkpoint pathway in cancer, of which 11 genes were re-enriched in the pathway of 
non-small cell lung cancer. The expression of the 11 genes were extensively regulated by CTCFL, SP2 and 
ZNF341. Most of them were differentially expressed between lung cancers and normal lung tissues. The 
overall survival (OS) curve of LUAD were significantly stratified by AKT2, KRAS, PIK3R1, meanwhile the 
OS curve of LUAC was significantly stratified by MAPK3. 
Conclusions: Bioinformatics analysis revealed that DEGs including MPP1 might be potential targets and 
biomarkers of IPF, and the MAPK signaling pathway is related to the occurrence and development of IPF. 
The development of IPF lung cancer complications may be related to the activation of genes enriched in 
PD-L1 expression and PD-1 checkpoint pathway, which provides clues to the pathogenesis of IPF combined 
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Introduction

Interstitial pulmonary disease (ILD) is a type of lung disease 
with unknown etiology and basic pathological changes 
of the diffuse lung parenchyma, alveolar inflammation, 
and interstitial fibrillation. Idiopathic pulmonary fibrosis 
(IPF) is a special type of ILD characterized by progressive 
chronic pulmonary fibrosis. This change leads to decreased 
pulmonary compliance, and eventually to respiratory 
failure and even death (1,2). Studies have shown that the 
occurrence of IPF may be related to epithelial cell formation 
disorder, fibroblast recruitment, fibroblast differentiation, 
and abnormal secretion of matrix proteins by pathological 
mesenchymal cells.  Dysregulated repair responses 
induced by recurrent epithelial cell damage and excessive 
extracellular matrix accumulation result in pulmonary 
fibrosis (3). Moreover, increasing evidence indicates that 
genetic susceptibility plays a part in the development of 
idiopathic pulmonary fibrosis. Although these studies do 
not indicate a direct causal link, the potential importance 
of alterations in host defense (MUC5B, ATP11A, TOLLIP), 
telomere maintenance (TERT, TERC, OBFC1), and 
epithelial barrier function (DSP, DPP9) was identified (4). 
However, the molecular mechanism of various stages of IPF 
development remains unknown (5).

Gene sequencing technology can obtain the unknown 
genome sequence of individuals, and bioinformatics 
makes it possible to process this huge genome sequence 
information (6). In recent years, several studies have begun 
to use bioinformatics technology to search for biomarkers 
related to the incidence, diagnosis, and treatment of IPF 
from the genome sequence database of patients with 
IPF (7-10). Although very few differential genes have 
been found to have therapeutic effects, bioinformatics 
methods also provide a new way for us to explore potential 
biomarkers of IPF.

In  th i s  s tudy,  the  da ta  was  der i ved  f rom the 
GSE110147 profile. Bioinformatics techniques were 
used to identify differentially expressed genes between 

fresh frozen lung samples from patients with IPF and 
normal controls. We aim to elucidate the pathogenesis 
of IPF from the gene level with new insight and provide 
new clues to search for potential biomarkers related to 
diagnosis and treatment.

We present the following article following the STREGA 
reporting checklist (available at https://dx.doi.org/10.21037/
atm-21-4224).

Methods

Acquisition and analysis of datasets

Gene expression profiles GSE110147 were downloaded 
from the Gene Expression Omnibus database platform 
was GPL6244[HuGene-1_0-st] Affymetrix Human 
Gene 1.0 ST Array. This microarray obtained samples 
from recipients’ organs of 22 patients with IPF, 10 with 
NSIP, and 5 with mixed IPF-NSIP undergoing lung 
transplantation. Normal lung tissue (n=11) was obtained 
from tissue that flanks lung cancer resections. In this 
study, 22 lung samples from IPF were classified as the IPF 
group. Meanwhile, 11 normal lung samples were classified 
as the control group. The Cancer Genome Atlas (TCGA) 
RNA-seq raw data from 515 unpaired tumor samples 
and 59 adjacent normal samples of lung adenocarcinoma 
(LUAD), 498 unpaired tumor samples and 55 adjacent 
normal samples of lung squamous cell carcinoma (LUSC) 
were downloaded from TCGA database. The Genotype-
Tissue Expression (GTEx) raw RNA-seq of 288 normal 
lung samples were downloaded from GTEx database. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

DEGs screening and data processing

GERO2R is a GEO online analysis tool that can perform 
differential analysis of gene expression on two or more data 
sets in GEO samples. GEO2R (http://www.ncbi.nlm.nih.

with lung cancer.
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gov/geo/geo2r) was used to detect differentially expressed 
genes (DEGs) of IPF compared to normal tissues. The 
screening condition was P<0.05 and |log fold change| 
>0.5. The RNAseq data in TPM (transcripts per million 
reads) format from the TCGA and GTEx databases were 
firstly converted by log2 and then normalized. Then 
the converted data were used to compare the expression 
between samples.

GO and pathway enrichment analysis

Gene ontology (GO) is a major bioinformatics initiative 
to unify the representation of gene and gene product 
attributes in all species (11). KEGG (Kyoto Encyclopedia 
of Genes and Genomes) is a collection of databases dealing 
with genomes, biological pathways, diseases, drugs, and 
chemical substances. P<0.01 was set as the threshold value. 
The KEGG signal map was built in the online tool KEGG 
Mapper (https://www.kegg.jp/kegg/mapper.html). 

Construction of the PPI network

The STRING online analysis website (http://www.string-
db.org/) was used to construct the protein interaction 
network diagram of DEG (12). All associations obtained 
in STRING were provided with a confidence score. The 
credibility was set to 0.700.

Prediction of transcription factors of DEGs

Utilizing NCBI website (https://www.ncbi.nlm.nih.gov/) to 
query the promoter region of genes. The Genome Browser 
tool of the University of California Santa Cruz (UCSC) 
online website (http://genome.ucsc.edu/) was used to 
predict transcription factors (TFs) of target genes. The TFs 
were defined to satisfy the following criteria: pack, score 
>600, regulation direction consistent with the transcription 
direction of target gene.

Statistical analysis

We used R software (Version 4.0.3) for all statistical 
analysis and visualization. “clusterProfiler”, a widely 
used package in the bioinformatics area, has been 
developed to relate functional terms to gene lists using 
a clustering algorithm (13). To analyze DEGs at the 
functional level, we performed GO and KEGG pathway 

enrichment analysis using the “clusterProfiler” package 
to obtain enriched biological processes and pathways. 
The RNA-seq raw data from TCGA and GEO databases 
were normalized through the normalizeBetweenArray 
function from R package “Limma” from the Bioconductor 
project.Ggplot2 [version 3.3.3] was used to analyze 
and visualize the differential expression of target genes 
between lung adenocarcinoma, lung squamous cell 
carcinoma and normal tissues. Survminer package [0.4.9 
version] and survival package [3.2-10 version] were 
used for visualization, statistical analysis of survival data 
respectively.

Results

Identify differentially expressed genes

The qualified profiling datasets GSE110147 were selected 
from the GEO database. The GEO2R tool was used for 
the analysis. In this dataset, 9,183 DEGs met the criteria, of 
which 4,638 genes were up-regulated, and 4,545 genes were 
down-regulated. Figure 1 presents all the expressed genes in 
the form of a volcano. SPP1, MMP1, and BPIFB1 were the 
three main significant DEGs, while VTRNA1-1, SNORD41, 
and SNORA3A represented the three most significantly 
negatively regulated DEGs.

GO and pathway enrichment analysis

Following the analysis of GO and the pathway for DEGs, 
the terms of BP (biological process) terms of GO were 
collected and shown in Figure 2A. GO terms were mainly 
related to neutrophil-mediated immunity, neutrophil 
activation, and cell cycle phase transition regulation.

The pathways were mainly related to the MAPK 
signaling pathway, cancer, the T cell receptor signaling 
pathway, and the expression of PD-L1 and the PD-1 
checkpoint pathway in cancer, including HSV-1 infection 
and HTLV-1 infection (Figure 2B). 

The 50 DEGs associated with PD-L1 expression and 
the PD-1 checkpoint pathway in cancer were reclustered. 
The results showed they were associated with the MAPK 
signaling pathway, the PI3K-Akt signaling pathway, the 
Ras signaling pathway, and non-small cell lung cancer. 
The results of the KEGG enrichment analysis are shown 
in Figure 3. Additionally, AKT1 and PIK3CA are associated 
with both the PI3K-Akt signaling pathway, Ras signaling 
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Figure 1 Volcano map of differentially expressed genes (DEGs) between idiopathic pulmonary fibrosis (IPF) and the control groups; red 
dots represent up-regulated DEGs. The gray dots represent genes not differentiated. The green dots represent downregulated DEGs.
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pathway, and non-small cell lung cancer.

Construction of DEG enrichment PPI networks in the PD-
L1 expression and PD-1 checkpoint pathway in cancer

Based on data from the STRING 11.0 version database, 
the PPI network was constructed. Figure 4 shows the PPI 
network for 50 DEGs enriched in the PD-L1 expression 
and PD-1 checkpoint pathway in cancer, consisting of 
50 nodes and 278 edges. Figure 5 shows the gene co-
expression network for the 50 differentially expressed 
genes (DEGs) associated with the PD-L1 expression 
and the PD-1 checkpoint pathway in cancer. Among the 
total 1,225 gene pairs, 302 gene pairs are significantly 

co-expressed (P<0.05), and 67.2% of the 302 gene pairs 
are with spearman correlation coefficient >0.5 or <−0.5. 
Eleven genes from these 50 DEGs were found to be 
located in the non-small cell lung cancer pathway, and 
their positions in the non-small cell lung cancer pathway 
are shown in Figure 6.

Transcription factor prediction of 11 DEGs in the PD-L1 
expression and PD-1 checkpoint pathway in cancer

The transcription factor information of these 11 DEGs 
is in Table 1. Among them, it could be observed that 
CTCFL, SP2, and ZNF341 are the three most common 
transcription factors that participant in regulating these 
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Figure 2 Functional enrichment analysis of the gene ontology (GO) and KEGG pathways of differentially expressed genes (DEGs) between 
the idiopathic pulmonary fibrosis (IPF) and control groups.
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Figure 3 Functional enrichment analysis of the pathway for 50 differentially expressed genes (DEGs) associated with PD-L1 expression and 
the PD-1 checkpoint pathway in cancer.

11 genes’ transcription. In addition, we found that among 
CTCFL, SP2 and ZNF341, CTCFL may be involved 
in mediating the regulation of the transcription of the 
most numerous genes, including KRAS, MAPK3, AKT2, 
PIK3CB, PIK3R1, PIK3R3. The level of mRNA encoding 
these three transcription factors is different between the 
IPF group and the normal group of CSE110147 (Figure 7). 
Figure 8 shows the gene co-expression network for the 9 
DEGs and 3 transcription factors in IPF. Among the total 
66 gene pairs, 21 gene pairs are significantly co-expressed 
(P<0.05), and 81.0% of the 21 gene pairs are with Pearman 
correlation coefficient >0.5 or <−0.5. The expression 
level of KRAS, MAPK3, PIK3CB are correlated with each 
other (P<0.05). Meanwhile, CTCFL has a significant co-
expression relationship with KRAS, MAPK3 and PIK3CB, 
respectively.

Expression level and prognostic analysis of TFs and target 
genes in LUAD and LUSC

Figure 9 and Figure 10 show the expression level of these 
11 DEGs and 3 transcription factors between LUAD 
and normal samples. All of them were differentially 
expressed (P<0.05). Figure 11 and Figure 12 show the 
expression level of these 11 DEGs and 3 transcription 
factors between LUSC and normal samples. Except 
for the EGF, the other genes’ expression level between 

LUSC and normal samples were differentially significant 
(P<0.05). Figure 13 shows the overall survival curve of 
lung adenocarcinoma (LUAD) and lung squamous cell 
carcinoma (LUAC) stratified by AKT2, KRAS, PIK3R1 
and MAPK3.

Discussion

IPF is a progressive fibrogenesis disease with a poor 
prognosis. The median survival time of this disease has 
been reported to be only 2–3 years after diagnosis (14). 
Bioinformatics is an emerging professional field in recent 
years, which can be used to reveal the biological mysteries 
of a vast amount of complex biological data and is widely 
used in the analysis of disease-causing genes (6). For 
many years, the relevant mechanism of the pathogenesis 
of IPF has not been fully understood (15,16). Therefore, 
this article aimed to use bioinformatics methods to clarify 
the key differential genes and signal pathways in the 
pathogenesis of IPF.

In this study, 9,183 DEGs were identified between the 
IPF group and the normal control group by analyzing 
the GSE110147 gene expression profile. Given that the 
purpose of this study was to elucidate the relationship 
between gene expression and IPF and explore the possible 
pathogenic genes of IPF further, the NSIP samples were 
excluded.
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Figure 4 Protein-protein interaction (PPI) network for the 50 differentially expressed genes (DEGs) associated with the PD-L1 expression 
and the PD-1 checkpoint pathway in cancer. 
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Figure 5 Gene co-expression network for the 50 differentially expressed genes (DEGs) associated with the PD-L1 expression and the PD-1 
checkpoint pathway in cancer.

MMP1 was the gene most significantly up-regulated 
in this study. The previous study has confirmed that 
MMP1 played a role in two key repair processes: scar 
tissue regeneration and dissolution (17). The mechanism 
of MMP1 in the regulation of pulmonary fibrosis is 
still unclear, and many experiments are being carried 
out to verify it. The research speculated that these two 
polymorphic sites of MMP1 (−1,607, −775) play an 
important role in the pathogenesis of IPF and may regulate 
the transcriptional regulation in which the AP-1 factor may 
participate (18). The gene expression profiling of IPF lungs 
has revealed that one of the most up-regulated MMPs is 
MMP1 (19). It is mainly localized in the reactive alveolar 

epithelium of IPF lungs (20). Furthermore, the serum 
expression level of MMP1 has been shown to be a potential 
diagnostic biomarker for IPF (21).

The MAPK signaling pathway was the most significant 
enrichment pathway in KEGG enrichment in this study. 
Previous studies have shown that p38 MAPK plays a 
crucial role in LiCl- and Wnt1-induced EMT in A549 
cells (22). EMT and fibrin synthesis can be blocked by 
the interference of SB203580 or p38 MAPK siRNA in 
the p38 MAPK pathway, and this process can be reversed 
by transfection of the p38 MAPK expression plasmid (22). 
Matsuda et al. showed that the progression of pulmonary 
fibrosis was co-occurring with increased activity of p38 
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Figure 7 The expression of mRNAs encoding three transcription factors in CSE110147. ***P<0.001.

mitogen-activated protein kinase in AEC II, triggering 
inflammation and improving the immune system (23).

In the past, the PD-1/PD-L1 pathway was mainly 
considered involved in the immune escape mechanism of 
various tumors (24-26) and can affect the treatment and 
prognosis of patients with lung cancer (27,28). However, 
the relationship between the pathway (PD-L1 expression 
and PD-1 checkpoint) and the pathogenesis and prognosis 
of IPF is rarely questioned. In our research, the 50 up-
regulated DEGs were mainly enriched in PD-L1 and the 
PD-1 checkpoint pathway in cancer. The reenrichment 
results of the 50 DEGs showed that they were related to 
the MAPK signaling pathway, the PI3K-Akt signaling 
pathway, the Ras signaling pathway, and non-small cell 

lung cancer. Eleven genes from these 50 DEGs were 
located in the non-small cell lung cancer pathway. The 
transcription factor information of these 11 DEGs shows 
that CTCFL, SP2, and ZNF341 are the three most common 
TFs mediating these 11 genes’ transcription. Gene co-
expression network for the 9 DEGs of these 11 DEGs 
and 3 transcription factors shows that KRAS, MAPK3, 
PIK3CB are co-expressed with each other, and the Pearson 
correlation coefficient are all high. Interestingly, their 
expressions are significantly correlated with the expression 
levels of CTCFL transcription factors.

KRAS is the most common proto-oncogene associated 
with NSCLC and has  been found in  11 .2% and 
1.8% of lung cancer cases in Asia (29). KRAS can be 

Table 1 The transcription factor information of target gene

Gene name Promoter sequence Transcription factor

AKT1 Chr14:104795649-104797748 –

PIK3CA Chr3:179146114-179148213 NFIL3; ZNF384

KRAS Chr12:25250830-25252929 SP2; CTCFL; ZNF341

MAPK3 Chr16:30123210-30125309 CTCFL; ZNF341

AKT2 Chr19:40285432-40287531 CTCFL; ZNF341

PIK3CB Chr3:138834829-138836928 SP2; CTCFL; ZNF341

PIK3R1 Chr5:68213737-68215836 TBX20; SP1; SP2; ZNF740; ASCL1

PIK3R3 Chr1:46174802-46176901 CTCFL; ZNF341

PLCG1 Chr20:41135519-41137618 ZNF263; SP2

EGF Chr4:109910883-109912982 ZNF460; ZNF263; SP2

HRAS Chr11:535477-537576 CTCFL; ZNF341
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Figure 10 The expression of the 8 differentially expressed genes (DEGs) enriched in the non-small cell lung cancer pathway in lung 
adenocarcinoma (LUAD). ***P<0.001.

dysregulated and lead to tumor growth, playing a key 
role in controlling interactions between cancer cells and 
the microenvironment (30). Notably, there is preclinical 
evidence indicating that programmed cell death ligand 1 
(PD-L1) expression is elevated intrinsically, rather than 
adaptively, through the activation of down-stream KRAS 
signaling pathways (31). CTCFL (CTCF-like), the paralog 
of CTCF, is normally transiently expressed in pre-meiotic 

male germ cells together with ubiquitously expressed 
CTCF. Genetic alterations in CTCFL have been found 
in numerous cancers (32). There is now accumulating 
evidence pointing to a role for CTCFL in the progression, 
or metastatic potential of cancers via its ability to 
transcriptionally reprogram cells (33).

Clinical practice has shown that antibody therapy of 
PD-1 and its ligands has a significant response rate in 
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Figure 11 The expression of the 8 differentially expressed genes (DEGs) enriched in the non-small cell lung cancer pathway in lung 
squamous cell carcinoma (LUAC). ***P<0.001.

various cancers, which has brought revolutionary changes in 
cancer treatment (34,35). In addition, experimental studies 
have revealed the molecular mechanism of PD-1 targeting. 
For example, when PD-1 binds to the ligand, the CK2 
protein inhibits the PI3-Akt signaling pathway activated by 
the T cell receptor to play a role. Additionally, tumors can 
limit the host immune response by increasing the expression 
of the PD-1 ligand in the microenvironment. One of 
these mechanisms is abnormalities in tumor cell signaling 

pathways, including activation of the EGFR, MAPK, or 
PI3K-Akt signaling pathways, and increased expression of 
STAT3 and HIF-1 (36).

The potential role of the PD-1/PD-L1 checkpoint in 
IPF has recently been established, which indicates that the 
PD-1/PD-L1 checkpoint is induced in IPF, which indicates 
immune editing that could affect disease progression (37). 
Blocking the PD-1 pathway can significantly reduce the 
expression of IL-17A in CD4+ T cells by reducing the 
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Figure 12 The expression of the 3 differentially expressed genes (DEGs) enriched in the non-small cell lung cancer pathway and 3 
transcription factors in lung squamous cell carcinoma (LUAC). ***P<0.001. ns, no significance.

expression of PSTAT3, leading to a significant decrease in 
collagen-1 production (38). There have also been studies 
that have confirmed the inhibitory effect of gene ablation 
or antibody-mediated PD-L1 on fibroblasts, leading to a 
significant decrease in the ability to invade and migrate in 
vitro and collagen production in vivo (39). 

Extensive epidemiological surveys support an association 
between IPF and lung cancer (40,41). A systematic review 
indicated that the prevalence of IPF comorbidities in lung 
cancer ranged from 3% to 48% (42). This suggests that 
IPF may have the same genetic variation as lung cancer. 
Compared to IPF patients without a lung cancer diagnosis, 
the average survival time of IPF patients with lung cancer 
is reduced by 1.6–1.7 years (43). The mechanism of lung 
cancer development in IPF patients has received increasing 
attention in recent years (43,44). Currently, treatment 
options for IPF-LC are limited (45,46). An individual case 
of a 62-year-old man diagnosed with lung adenocarcinoma 
and IPF was reported. After initial chemotherapy failed, he 
received nilumab and achieved complete remission, with no 
signs of worsening of the IPF. The response to nivolumab 

persisted >1 year (47). This also suggests the use of a human 
immune checkpoint inhibitor antibody to inhibit the PD-1 
receptor or PD-L1 from treating lung cancer with IPF 
comorbidities in the future.

Conclusions

In conclusion, our study indicated that DEGs, including 
MPP1, could be potential targets and biomarkers of 
IPF, and the MAPK signaling pathway is related to the 
occurrence and development of IPF. The development 
of lung cancer complications in IPF may be related to 
the activation of PD-L1 expression and PD-1 checkpoint 
pathway. KRAS, MAPK3, PIK3CB and CTCFL may play 
potentially important roles in the course of IPF complicated 
by lung cancer. There may exists in unidentified form of 
protein-protein interaction among KRAS, MAPK3 and 
PIK3CB, meanwhile their expression may all be regulated by 
CTCFL. However, no basic experiments or clinical practice 
are conducted in this study; therefore, further exploration is 
needed in the future.
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Figure 13 The overall survival curve of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUAC) stratified by AKT2, 
KRAS, PIK3R1 and MAPK3.
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