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Abstract: Tissue engineering and regenerative medicine-based strategies for the reconstruction of functional 

skeletal muscle tissue have included cellular and acellular approaches. The use of acellular biologic scaffold material as 

a treatment for volumetric muscle loss (VML) in five patients has recently been reported with a generally favorable 

outcome. Further studies are necessary for a better understanding of the mechanism(s) behind acellular bioscaffold-

mediated skeletal muscle repair, and for combination cell-based/bioscaffold based approaches. The present overview 

highlights the current thinking on bioscaffold-based remodeling including the associated mechanisms and the 

future of scaffold-based skeletal muscle reconstruction.
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Introduction

The results of a clinical cohort study published in Science 
Translational Medicine (STM) described positive clinical 
outcomes following surgical implantation of an acellular 
bioscaffold-based approach for skeletal muscle reconstruction 
following volumetric muscle loss (VML) (1). A recent review 
of this study discussed potential mechanisms responsible 
for the constructive remodeling response (2). The overview 
presented herein expands upon these potential mechanisms 
and discusses next steps in scaffold-based skeletal muscle 
reconstruction.

Mechanisms of extracellular matrix 
(ECM) bioscaffold-based skeletal muscle 
reconstruction

Although the mechanisms responsible for ECM bioscaffold-
based skeletal muscle remodeling following VML injury 
are only partially understood, the key processes involve 
fundamental concepts of mammalian physiology, tissue 
homeostasis, and the response to injury. Among these 
processes are the cell-signaling effects that result from 

ECM degradation including the concomitant release of 
embedded growth factors, cytokines and chemokines, and 
the release of bioactive matricryptic peptides (3-5). The 
products of ECM scaffold degradation serve to recruit stem/
progenitor cells and induce a regulatory and constructive 
innate immune response (1,3-9). Each of these processes is 
discussed below.

ECM bioscaffold degradation

Bioscaffolds composed of ECM that are not chemically 
crosslinked typically degrade rapidly in vivo; i.e., within 
75-90 days (10). Specifically, studies show that surgically 
placed ECM scaffolds derived from tissue such as porcine 
small intestinal submucosa and porcine urinary bladder 
become 60% degraded by 30 days post implantation and 
completely degraded by 90 days, though this rate is likely 
dependent upon factors including the source tissue from 
which the scaffold was derived, the form of scaffold (i.e., 
sheet, powder-pillow construct, hydrogel) and the use 
of crosslinking agents (10,11). During the degradation 
period, the scaffold becomes populated by host-derived 
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mononuclear cells which facilitate the formation of 
site-specific functional host tissue that is histologically 
indistinguishable from native tissue. Scaffold degradation 
is mediated by, in fact dependent upon, the infiltrating 
macrophages which produce proteolytic enzymes that 
degrade the scaffold material (11-13). 

ECM scaffolds have been degraded ex vivo by chemical 
and physical methods (14). Recent findings suggest that 
the degradation products of ECM are bioactive (4,15-17) 
and include antimicrobial activity (14,16), osteogenic 
activity (4), and chemotactic activity for progenitor and 
adult cell populations (3,15,17-20). These degradation 
products also strongly influence the host innate immune 
response (6,16,21-24). Stated differently, ECM bioscaffold 
degradation is desirable and necessary to realize the full 
potential of biologic processes that can support functional 
tissue reconstruction.

Endogenous cell recruitment by ECM bioscaffolds

Biologic scaffolds composed of mammalian ECM have been 
shown to be chemotactic for a variety of stem/progenitor 
cells. For example, Sox2+ cells were shown to be present at 
the site of ECM implantation in an adult mammalian model 
of digit injury (3,18). This primitive stem cell population 
was found present only in digits that had been treated with 
ECM. ECM bioscaffolds also recruit multipotential cells. 
For example, bone-marrow derived cells were shown to 
participate in the remodeling of ECM mediated Achilles 
tendon repair (25). Specifically, in the preclinical Achilles 
tendon injury model, ECM scaffold explants promoted 
chemotaxis of progenitor cells after 3, 7, and 14 days of 
in vivo remodeling (20,26). ECM bioscaffolds recruit 
myogenic progenitor cells to sites of skeletal muscle injury. 
Host CD133+ myogenic progenitor cells were found present 
at the site of ECM implantation in a canine model of 
musculotendinous junction reconstruction (27). The results 
of the study showed greater migration of progenitor cells 
towards tendons repaired with ECM scaffolds compared 
to tendons repaired with autologous tissue and uninjured 
normal contralateral tendon. ECM bioscaffolds recruit 
myogenic progenitor cells to sites of skeletal muscle injury. 
Degradation products from ECM bioscaffolds have been 
shown to be chemotactic for cells with myogenic potential 
including bone-marrow mesenchymal stromal cells (BM-
MSCs), skeletal muscle myoblasts, and perivascular stem 
cells (PVSCs) in vitro (3,4,25,28,29). Myogenic perivascular 
stem cells (PVSC) were found at the site of ECM 

bioscaffold implantation in both mice and humans following 
VML (1). Degradation products of ECM bioscaffolds were 
also shown to induce mitogenic and chemotactic effects 
upon neural stem cell populations, a phenomenon that is of 
particular importance for the reconstruction of functionally 
innervated skeletal muscle tissue (30). Taken together 
these results suggest that ECM bioscaffolds are capable of 
recruiting a variety of cell-types, including those capable of 
contributing to myogenesis, to the site of implantation for 
skeletal muscle constructive tissue remodeling. 

Modulation of the host innate immune response 
by ECM bioscaffolds

The host innate immune system, especially macrophages, 
plays a pivotal role in the host response to biomaterial 
implantation. In fact, macrophage depletion prevents 
the degradation of ECM biologic scaffolds in vivo (24). 
Macrophages have been shown to respond to many 
different implanted biomaterials, including those composed 
of polymers (31) and biologic proteins such as collagens 
and xenogeneic ECM (24,32). Non-degradable or synthetic 
biomaterials are typically associated with activation of the 
foreign body reaction including macrophage mediated 
foreign body giant cell formation and pro-inflammatory 
cytokine production (33,34). However, several recent 
studies suggest that regulatory macrophages can facilitate 
constructive and site-appropriate tissue remodeling in 
response to ECM bioscaffold implantation (8,9,24,35). 
Specifically, surgically placed ECM bioscaffolds have been 
associated with a constructive macrophage phenotype. 

Macrophages within the context of the innate immune 
response have typically been regarded as mononuclear 
phagocytes responsible for propagating a pro-inflammatory 
response, antigen presentation, and the removal of cellular 
debris following acute tissue injury (36-38). However, 
macrophages are now recognized to have a much broader role 
in tissue development, homeostasis, and repair. These cells 
show remarkable phenotypic diversity and play a key role in 
immune regulation and tissue repair (12,39-45). Specifically, 
macrophages have been categorized according to their 
functional properties as either M1-like or M2-like (41,42). 
M1-like or “classically activated” macrophages propagate a 
pro-inflammatory response while M2-like or “alternatively 
activated” macrophages promote immunomodulation, 
anti-inflammatory effects, and regulate constructive tissue 
remodeling. The phenotype of responding macrophages 
has been found to be an important determining factor in 
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the host response to an implanted biomaterial scaffold and 
its ultimate remodeling outcome (6,23). Surgically placed 
ECM bioscaffolds have been consistently associated with the 
constructive and regulatory M2-like macrophage phenotype 
(6,9,23). In fact, a recent study showed that degradation 
products of ECM bioscaffolds are able to directly promote 
the M2-like phenotype in vitro (8). The same study went 
on to show that ECM-polarized macrophages exert 
myogenic paracrine effects upon skeletal muscle myoblasts 
similar to traditional M2-like macrophages. Furthermore, 
ECM degradation products were shown to augment the 
chemotactic paracrine effects of macrophages for PVSCs 
and skeletal muscle myoblasts (8). This series of studies 
suggest that ECM bioscaffolds promote the M2-like 
macrophage phenotype, which is known to be essential for 
the promotion of efficient skeletal muscle regeneration in 
response to injury. 

Five patient cohort study and limitations

The recently published cohort study showed that acellular 
ECM bioscaffolds promote stem cell mobilization and 
myogenesis concomitant with improved force production 
and functional task performance in patients suffering from 
VML (1). Ultrasound guided tissue biopsies taken from 
sites of ECM bioscaffold surgical placement showed the 
formation of myosin heavy chain positive skeletal muscle 
within the implant site. Histomorphology suggested that 
most of this skeletal muscle was present in discontinuous 
small islands of cells separated from adjacent healthy tissue 
by collagenous connective tissue. However, the distribution 
of these cells throughout both the center of the scaffold 
implantation site and near the interface with normal 
muscle tissue combined with the associated motor evoked 
potentials and/or improved force production suggests that 
the resulting remodeled tissue contributed to the improved 
functional outcomes. Histomorphology also showed the 
presence of collagenous connective tissue contiguous with 
all edges of the defect which could arguably contribute 
to, or interfere with, overall muscle function. The term 
“functional fibrosis” has been proposed (46), but any 
functional contribution would likely have to include a 
physical/mechanical continuity between proximal and distal 
remnants of normal muscle while simultaneously excluding 
inadvertent adhesion and attachments to surrounding 
muscle bodies, adjacent bone, and connective tissue. 

The positive outcomes in the aforementioned study 
are partially attributed to an aggressive, targeted physical 

therapy regimen prescribed to all patients, which was 
implemented within 24-48 h after ECM bioscaffold 
implantation. The application of physiologic mechanical 
load (i.e., concomitant physical rehabilitation) during the 
ECM-remodeling period has been shown to promote 
favorable pre-clinical and clinical outcomes including 
an increased cellular infiltrate, more rapid and extensive 
neovascularization, more organized and aligned connective 
tissue matrix, and influence upon gene expression and 
cellular behavior (47,48). VML patients treated with ECM 
bioscaffolds were subjected to exhaustive physical therapy 
prior to bioscaffold implantation during which time they 
achieved a plateau in their performance. Physical therapy 
was resumed immediately following implantation, and 
strength and functional outcomes were shown to improve 
from 0% to 1,820% above the preoperative maximum 
values by 24-28 weeks after implantation (1). Physical 
rehabilitation has also been shown to promote progenitor 
cell proliferation and immunomodulation (49,50), both of 
which are key mechanisms of ECM-mediated remodeling. 

While the present acellular ECM bioscaffold-based 
approach did not produce fully mature organized skeletal 
muscle tissue, the de novo formation of skeletal muscle 
islands could potentially be augmented by simultaneous 
delivery of myogenic stem/progenitor cell populations for 
the formation of continuous skeletal muscle fibers. Such a 
combination approach is worthy of investigation.

Future of scaffold-based skeletal muscle 
reconstruction

In addition to associated strict FDA regulatory restrictions, 
cell-based tissue engineering approaches are typically 
limited by chronic pro-inflammatory activation of the host 
immune system and failure of the cells to incorporate within 
host tissue, among others (51-55). Injected cells, lacking 
a scaffold material, are typically unable to redistribute 
throughout the injection site and do not migrate more 
than 200 μm in vivo (56). Intravenous (IV) cell delivery 
frequently results in unintentional cell engraftment within 
tissues such as the liver and spleen (57). Cell that are 
able to be adequately delivered to intended tissues are 
typically unable to engraft. In fact, it is widely accepted that 
myogenic stem/progenitor cell transplantation typically 
does not result in a significant engraftment of donor cells 
within host tissue. Favorable outcomes associated with cell-
based skeletal muscle tissue engineering approaches are 
most likely associated with a paracrine effect of the donor 
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cells upon the host injured microenvironment rather than 
by direct myogenesis from the delivered cells (58-63). 

Recent preclinical rodent studies have shown that 
skeletal muscle progenitor cells delivered in concert with 
an ECM bioscaffold have the potential to obviate the 
above limitations (64,65). Specifically, the studies combine 
allogeneic muscle-derived cells (MDCs) and bladder 
acellular matrices (BAMs) which are then subjected to a 
period of ex vivo bioreactor mediated preconditioning prior 
to surgical placement. The most recent study showed that 
acellular BAMs were able to promote a 26% functional 
improvement while MDC seeded BAMs showed a 61% 
functional improvement in a rodent model of tibialis 
anterior (TA) VML (65). These studies suggest that 
although ECM bioscaffolds facilitate endogenous cell 
recruitment, it may be possible to augment this response 
with exogenous cell delivery.

Summary

Tissue engineering and regenerative medicine-based 
strategies for the reconstruction of functional skeletal 
muscle tissue have included cellular and acellular 
approaches. Recent clinical results in a small cohort patient 
study using an acellular bioscaffold-based approach showed 
positive clinical outcomes associated with significant 
functional improvements, but was limited by incomplete 
myogenesis as identified by histologic methods. Recent 
rodent studies have shown the ability of similar bioscaffolds 
to serve as a substrate for myogenic cells prior to, and 
following surgical implantation. Although optimal strategies 
for successful functional tissue engineering have yet to be 
identified, they likely will be a combination of cell-based 
and bioscaffold-based techniques. 
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