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Background: MicroRNA (miRNA) plays an important role in hepatic stellate cell (HSCs) activation and 
liver fibrosis. The purpose of this study is to explore the effect of hypoxia on the differential expression of 
mRNAs and miRNAs in rat HSCs.
Methods: HSC-T6 cells were treated with cobalt chloride (CoCl2), and the activity of HSC-T6 cells 
was measured by the CCK-8 assay. The mRNA expression levels of hypoxia inducible factor-1α (HIF-1α), 
collagen type I, transforming growth factor-β1 (TGF-β1), and Smad7 were measured by RT-qPCR. The 
protein expression levels of HIF-1α, Bax, Bcl-2, and caspase-3 were assayed by western blot. We used basal 
medium and 400 μmol/L CoCl2 medium to treat HSC-T6 cells for 48 h. Cells were harvested after 48 h 
to extract RNA. Transcriptome sequencing was performed to investigate differentially expressed miRNAs 
and mRNAs (fold change >2; P<0.05). Bioinformatics analysis was performed to predict the functions of 
differentially expressed miRNAs and mRNAs. Further, we used RT-qPCR to detect the expression of 
mRNAs and miRNAs to confirm the accuracy of sequencing.
Results: With the increase of CoCl2 concentration, the activity of HSC-T6 cells decreased (P<0.05). The 
mRNA expression levels of HIF-1α, collagen I, TGF-β1, and Smad7, and the protein expressions levels of 
HIF-1α, Bax, caspase-3, and the Bcl-2/Bax ratio were increased compared with the control group (P<0.05), 
while the expression of Bcl-2 decreased. A total of 54 miRNAs (20 upregulated and 34 downregulated) and 
1,423 mRNAs (685 upregulated and 738 downregulated) were differentially expressed in the 400 μmol/L  
CoCl2 medium group compared to the control basal medium group. Further bioinformatics analysis 
demonstrated that the differentially expressed mRNAs and miRNAs were mainly enriched in the synthesis 
of extracellular matrix. In addition, we used RT-qPCR to detect the expression of mRNAs and miRNAs to 
confirm the accuracy of sequencing.
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Introduction

Liver fibrosis is the common outcome of several chronic 
liver diseases, eventually leading to cirrhosis and liver 
cancer. The activation of hepatic stellate cells (HSCs) 
is the core process in the development of liver fibrosis 
(1,2). Although some progress has been made in anti-
liver fibrosis treatment in recent years, there are still many 
patients with advanced liver disease. Therefore, clarifying 
the detailed mechanism of HSCs activation will provide 
an effective therapeutic approach for the treatment of liver 
fibrosis. Hypoxia is a common pathophysiological process. 
Increasing evidence has indicated that hypoxia can promote 
the activation of HSCs and accelerate the progression of 
liver fibrosis (3-5). In addition, hypoxia could promote 
the secretion of liver fibrosis factors such as collagen I and 
Alpha-smooth muscle actin (α-SMA) (6). However, the 
underlying mechanism of HSC activation caused by hypoxia 
is still unclear.

MicroRNAs (miRNA) are defined as small non-coding 
RNA molecules with a length of about 18–24 nucleotides, 
regulating embryonic development, cell proliferation, 
differentiation, signal transduction complex biological 
processes (7,8). They participate in the regulation of target 
gene expression mainly through incomplete pairing and 
binding with the 3' or 5' untranslated regions (UTRs) 
of their target mRNAs to inhibit target gene mRNA 
transcription, translation (9,10). Numerous studies have 
indicated that several miRNAs play important roles in the 
activation of HSCs and the development of liver fibrosis. 
For example, miR-145, miR-146b, miR-214, and miR-
942 can promote the activation of HSCs (11-14). MiR-122 
regulates collagen production by targeting HSCs (8,15). In 
addition, several miRNAs have been found to be consistently 
modulated during liver fibrosis, such as miR-15b, miR-16, 
miR-19a, miR-19b, miR-21 and so on (16). Although these 
studies have shown the importance of miRNAs in HSC 

activation, the changes of miRNAs in HSCs under hypoxic 
conditions still need to be clarified. RNA-sequencing 
analyzes the expression of various genes under pathological 
conditions, and may contribute novel insights into 
understanding the mechanisms of diseases. Furthermore, 
the development of bioinformatics can better clarify the 
complexity of biological processes and diseases (17).

Hence, determining the expression of miRNAs and 
mRNAs under hypoxic conditions may provide new targets 
for the treatment of liver fibrosis. The present study aimed to 
analyze the differentially expressed miRNAs and mRNAs in 
the HSC-T6 cell line induced by cobalt chloride (CoCl2) via 
transcriptome sequencing. Bioinformatics analyses, including 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis, were used to clarify 
the biological functions of differentially expressed miRNAs 
and mRNAs. In order to verify the RNA sequencing data, 
reverse transcription quantitative polymerase chain reaction 
(RT-qPCR) was performed, and miRNAs with significantly 
different expression were identified. This can further screen 
diagnostic biomarkers and therapeutic targets for liver 
fibrosis. We present the following article in accordance with 
the MDAR reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-4215).

Methods

Materials

The rat HSC cell line HSC-T6 was donated by Professor 
Dr. Hong Chen, Xi’an International Medical Center, Xi’an, 
China. Dulbecco’s modified Eagle’s medium (DMEM, 
Hyclone, USA), penicillin/streptomycin (Sigma, USA), 
fetal bovine serum (FBS, Hyclone, USA), trypsin (Sigma, 
USA), CoCl2 (Sigma, USA), CCK-8 kit (Nanjing, China), 
TRIzol reagent (Invitrogen, USA), reverse transcription 
kit (Roche, Transcriptor First Strand cDNA Synthesis Kit, 
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Switzerland), fluorescence quantitative PCR kit (Roche, 
FastStart SYBR® Green Master, Switzerland), BCA 
kit (Beyotime, China), SDS-PAGE (Beyotime, China), 
polyvinylidene fluoride (PVDF ) membranes (Millipore, 
USA), and hypoxia inducible factor-1α (HIF-1α), caspase-3, 
β-actin (Santa Cruz Biotechnology Inc., USA), Bax, and 
Bcl-2 (Bioworld Technology Inc., USA) antibodies were 
used in our experiments.

Cell culture 

HSC-T6 cells were cultured in DMEM medium (Hyclone, 
USA) containing 10% FBS (Hyclone, USA) and 1 mg/mL 
penicillin and streptomycin (Sigma, USA) and incubated 
at 37 ℃ with 5% CO2. In the later stage, the medium was 
changed and passaged according to the growth of the cells, 
and 3–5 generations of cells were used in the follow-up 
experiments.

Establishment of the hypoxic microenvironment

CoCl2 (Sigma, USA) was used to establish a hypoxic 
microenvironment for cells. In the experiment, 0.238 g  
of CoCl2 hexahydrate powder was weighed in 10 mL 
of sterilized triple-distilled water to prepare a storage 
solution with a final concentration of 100 mM. According 
to the concentration gradient of CoCl2 required in the 
experiment, we diluted the 100 mM CoCl2 mother liquor 
into culture solutions with final concentrations of 0, 100, 

200, 400, and 800 μmol/L. HSC-T6 cells were treated 
with CoCl2 at different concentrations (0, 100, 200, 400, 
800 μmol/L) for 24 and 48 h to establish a cellular hypoxic 
microenvironment.

Cell viability assay

The CCK-8 assay (Nanjing, China) was used to assess cell 
viability. The HSC-T6 cells were plated in 96-well plates at a 
density of 3,000 cells/well. Following incubation at 37 ℃ for 
24 and 48 h time intervals, the optical density (OD ) values 
of absorbance were determined using a microplate reader 
(Bio-Rad, USA) at a wavelength of 450 nm, in accordance 
with the manufacturer’s protocol. All experiments were 
performed in triplicate. The cell survival rate of each group 
was calculated according to the OD value. Cell survival rate 
= (experimental group OD value-blank well OD value)/(OD 
value of control group-blank well).

Cell pre-treatment

HSC-T6 cells were cultured in conventional medium  
(3 groups) and medium containing 400 μmol/L CoCl2  
(3 groups) for 48 h. After 48 h, the total RNA in the cells of 
each group was extracted for follow-up experiments.

RT-qPCR analysis

RT-qPCR was performed to detect HIF-1α, collagen I, 
TGF-β1, and Smad7 mRNA expression. The total RNA 
of each group was extracted using the TRIzol reagent 
(Invitrogen, USA) after HSC-T6 cells were treated 
with CoCl2 at different concentrations (0, 50, 100, 200,  
400 μmol/L) for 48 h. The corresponding cDNA was 
obtained using the reverse transcription kit (Roche, 
Transcriptor First Strand cDNA Synthesis Kit, Switzerland). 
The mRNA levels of the above-mentioned factors were 
detected by the fluorescence quantitative PCR kit (Roche, 
FastStart SYBR® Green Master, Switzerland) with cDNA 
as the template and β-actin as the internal reference. The 
primer sequences are shown in Table 1, synthesized by Jiang 
Lai company. The expressions levels of the target genes were 
determined by the 2−ΔΔCt method. 

To confirm the accuracy of gene sequencing analysis, the 
expression of 3 miRNAs and 3 mRNAs was measured by 
RT-qPCR using the SYBR-Green method (PerfectStartTM 
Green qPCR SuperMix) and a LightCycler® 480 Type 
Ⅱ fluorescence quantitative PCR instrument (Roche, 

Table 1 Primer sequences

Primer name Primer sequence

HIF-1α Forward: CGGGATCCTCTCTAGTCTCACGAGG 
GGTTTCC

Reverse: GCTCTAGAGATGCTACTGCAATGCAAT 
GGTT

Collagen I Forward: GTGCTAAAGGTGCCAATGGT

Reverse: ACCAGGTTCACCGCTGTTAC

TGF-β1 Forward: CGCGTGCTAATGGTGGAAA

Reverse: CGCTTCTCGGAGCTCTGATG

Smad7 Forward: TCCTGCTGTGCAAAGTGTTC

Reverse: AGTAAGGAGGAGGGGGAGAC

β-actin Forward: GAAACTACCTTCAACTCCATC

Reverse: CTAGAAGCATTTGCGGTGGAC
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Switzerland). Total RNA was extracted from HSC-T6 
cells using lysis/binding buffer, and cDNA was synthesized 
(TransScript miRNA First-Strand cDNA Synthesis 
SuperMIX) with the following reaction conditions: 37 ℃  
60 min, 85 ℃ 5 s, and −20 ℃ save. All of the primers (Table 2)  
used for RT-qPCR were designed by Shanghai Ouyi 
Biomedical Technology Co., Ltd and synthesized by Beijing 
Jingke Xinye Biotechnology Co., Ltd. PCR was performed 
under the following conditions: pre-denaturation for 30 s at 
94 ℃ with cycling, denaturation for 5 s at 94 ℃, annealing 
for 30 s at 60 ℃ with 45 cycles from denaturation to 
extension. The expression of each gene was calculated using 
the 2−∆∆Ct method and normalized to that of ACTB/5S.

Western blot

HSC-T6 cells treated with different concentrations of 
CoCl2 (0, 50, 100, 200, 400 μmol/L) were added to RIPA 
protein lysate to extract the total proteins. The protein 
concentration of each group was determined by the BCA 
method (Beyotime, China), and SDS-PAGE (Beyotime, 
China) was performed. After electrophoresis, proteins 
were transferred to a PVDF membrane (Millipore, USA). 
After blocking with 5% skimmed milk powder for 1 h, the 
membrane was incubated with primary antibodies against 
HIF-1α, caspase-3 (Santa Cruz Biotechnology Inc., USA), 
Bax, and Bcl-2 (Bioworld Technology Inc., USA) at 4 ℃ 
overnight. After washing, the membrane was incubated with 
horseradish peroxidase-conjugated secondary antibody at 
room temperature for 1 h. Finally, the ECL kit was used to 

develop color. β-actin (Santa Cruz Biotechnology Inc, USA) 
was used as an internal reference.

Transcriptome sequencing analysis

The total RNA of each group was extracted from HSC-T6 
cells with the TRIzol reagent (Invitrogen, USA), according 
to the manufacturer’s protocol. RNA concentration was 
determined by NanoDrop 2000 (Thermo Fisher Scientific, 
USA), and the quality of RNA was evaluated using Agilent 
2100 (Agilent Technologies, USA) and 1% agarose gel 
electrophoresis. The total RNA sample quality had to meet 
the experimental requirements RNA integrity number 
(RIN) ≥7 and 28S/18S ≥0.7 for the construction of the 
cDNA library and subsequent genome sequencing.

According to the TruSeq Stranded Total RNA with 
Ribo-Zero Gold kit (Illumina, RS-122-2301, USA) reagent 
manufacturer’s instructions, the ribosomal RNA was 
removed, and the interrupting reagent was added to cleave 
the RNA into short fragments. Using the interrupted RNA 
as a template, a strand of cDNA was synthesized with 
reverse transcriptase and six-base random primers. Then, 
a two-strand synthesis reaction system was prepared to 
synthesize two-strand cDNA. After connecting the two-
strand cDNA to different linkers, the one strand containing 
dUTP was digested by the UNG enzymatic method, and 
only the first strand of cDNA with different linkers in the 
connecting strand was retained. The cDNA strand was 
purified, the end of the purified cDNA strand was repaired, 
poly A tail was added and the sequencing connector 
was connected, then the fragments of suitable size were 
amplified by PCR. The length and quality of the library 
was confirmed, then the Illumina sequencer was used for 
sequencing.

Identification of differentially expressed genes

The raw reads were first filtered and low-quality sequences 
were removed by the Trimmomatic software (18).  
Differential expression was assessed using Cufflinks software 
with fragments/kb of transcript per million fragments a 
protein-coding gene (19). The count number of each sample 
gene was standardized by DESeq software (20), the difference 
multiple was calculated, and the difference significance test of 
read number was carried out by NB. Differentially expressed 
genes were identified according to the following criteria: 
fold-change >2 and adjusted P value <0.05.

Table 2 miRNA primer sequences

miRNA Forward primer (5’-3’) Tm (℃)

rno-miR-23a-5p TTCCTGGGGATGGGATTTAAA 60

novel11_star GGTTGGGGATTTCGCTCAGT 60

novel32_mature CCTGGTGGGCCCTGCAAA 60

novel500_mature CGGAGGCTGTAGGTCCAAA 60

novel591_mature ACAGATGGCTGGCTGAGAAA 60

novel783_mature ACAGCAGGCACAGACAGAAA 60

rno-miR-145-3p GGATTCCTGGAAATACTGTTC 60

rno-miR-351-5p AGGAGCCCTTTGAGCCTGA 60

rno-miR-702-3p CCCTTTACCCCACTCCAAAA 60

5S GGAGACCGCCTGGGAATA 60
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GO and KEGG pathway analysis

The differentially expressed mRNAs and miRNAs in 
HSC-T6 cells after hypoxia treatment were analyzed by GO 
analysis and KEGG pathway analysis. For GO analysis, the 
differentially expressed mRNAs and miRNAs were classified 
into 3 categories: biological process, cellular component, 
and molecular function. KEGG pathway analysis was 
performed to analyze the potential pathways enriched by 
the differentially expressed mRNAs and miRNAs.

Gene co-expression network analysis

According to the correlation between differentially 
expressed miRNAs and mRNAs, the regulatory relationship 
between miRNAs and mRNAs was determined by 
miRanda software, and the gene co-expression network was 
constructed.

Statistical analysis

All data were expressed as x±s, and at least 3 independent 
experiments were carried out. The experimental data 
were plotted by GraphPad Prism software and statistically 
analyzed by SPSS 24. The two-sample t-test and analysis 
of variance were used for normally distributed data, while 
the rank sum test was used for non-normally distributed 
data. P<0.05 was considered statistically significant, and 
transcriptomic sequencing analyses were completed by 
Shanghai Ouyi Company.

Results

Effect of hypoxia on the activity of HSC-T6 cells

After HSC-T6 cells were treated with different concentrations  

of CoCl2, the results of the CCK-8 assay showed that the 
activity of HSC-T6 cells gradually decreased with the 
increase of CoCl2 concentration, mainly after 48 hours of 
culture (P<0.0001). At the same time, the survival rate of 
HSC-T6 cells also gradually decreased with the extension 
of the culture time (P<0.0001) (Figure 1).

Effect of hypoxia on the expression of HSC-related factors

As a key transcription factor regulating hypoxia response, 
the level of HIF-1α can be used to reflect the degree of 
hypoxia in cells to a certain extent. The expression of 
HIF-1α in each group after CoCl2 treatment was detected 
by RT-qPCR. The results suggested that compared 
with the control group without CoCl2 treatment, the 
mRNA expression of HIF-1α in CoCl2 treated HSC-T6 
cells gradually increased with the increase of CoCl2 
concentration (P=0.0008, 0.0308, and 0.0064, respectively), 
which was also accompanied by an increase in collagen I 
mRNA expression (P=0.0161, 0.0024, 0.038, and 0.0164 , 
respectively) (Figure 2).

Hypoxia causes the activation of HSCs

In order to further clarify the mechanism of HSCs 
activation induced by HIF-1α, we detected the expression 
of TGF-β1 and its downstream factors in each group. The 
results showed that compared with the control group, the 
expression of TGF-β1 and Smad7 gradually increased in 
CoCl2 treated HSC-T6 cells with the increase of CoCl2 
concentration (P=0.004). In addition, the experiment also 
explored the role of apoptosis and anti-apoptotic factors in 
HSC activation. The results of western blot showed that 
the level of HIF-1α protein increased with the increase 
of CoCl2 concentration (P<0.0001) (Figure 3), which was 
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Figure 1  Effect of hypoxia on HSC-T6 cell activity. *, compared with the control group (P<0.05). CoCl2, cobalt chloride. 
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consistent with the results of RT-qPCR. Furthermore, the 
expression of apoptosis factors Bax and caspase-3 increased, 
while the level of the anti-apoptosis factor Bcl-2 decreased 
(P<0.0001) (Figure 3). We also found that the ratio of Bcl-
2/Bax increased with the increase of CoCl2 concentration 
(P<0.0001) (Figure 3).

RNA quality analysis

The purity of each group of RNA detected by the 
NanoDrop 2000 spectrophotometer indicated that the ratio 
of OD 260/280 of all RNA samples was between 1.8–2.2 
(Table 3). Two clear, complete, and bright electrophoretic 
bands could be seen in agarose gel electrophoresis, with 28s 
ribosome above and 18s ribosome below. The width ratio 
of the 2 electrophoretic bands was about 2:1 (Figure S1, 
Figure S2). The Agilent 2100 results indicated that each 
group had RNA integrity (RIN) =10 (Figure S1, Figure S2), 
which met the condition of RIN ≥7 and the requirements 
for sequencing. Therefore, follow-up experiments could be 
carried out.

Differentially expressed miRNAs and mRNAs

MiRNA and mRNA expression levels between the hypoxia 
treatment groups and control groups was analyzed by the 
DESeq algorithm, and differentially expressed miRNAs 
(DEmiRNAs) and mRNAs (DEmRNAs) were identified. 
A total of 54 miRNAs and 1,423 mRNAs were identified 
as differentially expressed between the 2 groups through 
gene sequencing analysis. Among the 54 miRNAs, 20 
were upregulated and 34 were downregulated. Of the 
1,423 mRNAs, 685 were upregulated and 738 were 
downregulated (Figure 4). The top 20 differentially 
expressed genes are presented in Table 4. A volcano plot was 

used to identify DEmiRNAs and DEmRNAs between the 
2 groups, where red represents upregulation of significantly 
different miRNAs and green represents downregulation of 
significantly different miRNAs. 

GO analysis

GO analysis indicated that the differentially expressed 
miRNAs were associated with numerous important 
biological processes, cellular components, and molecular 
functions. The present study indicated that the biological 
functions of differentially expressed miRNAs mainly 
included processes such as signal transduction, biological 
function, and protein phosphorylation. In terms of cellular 
components, they mainly included cell matrix and cellular 
components. The molecular functions mainly included 
protein binding and protein dimerization (Figure 5).

KEGG analysis

KEGG analysis was used to investigate the pathways 
associated with important differentially expressed genes. 
There were 132 signaling pathways for the hypoxia treatment 
groups. The signal transduction pathways enriched by 
differentially expressed miRNA target genes included the 
mitogen-activated protein kinase (MAPK) signaling pathway, 
the extracellular matrix (ECM) receptor interaction pathway, 
and the focal adhesion pathway (Figure 6).

MiRNA-mRNA co-expression network

The miRNA-mRNA co-expres s ion  network  was 
constructed based on the differentially expressed genes 
detected between the hypoxia treatment groups and control 
groups. The study found that a total of 244 mRNAs were 

Figure 2 Effects of hypoxia on HIF-1α and collagen I expression. *, compared with the control group (P<0.05). HIF-1α, hypoxia inducible 
factor-1 alpha, HYP, hydroxyproline. 
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Figure 3 Effects of hypoxia on HIF-1α, caspase-3, Bax, and Bcl-2 expression. *, compared with the control group (P<0.05). HIF-1α, hypoxia 
inducible factor-1 alpha. 

0           50          100        200        400
CoCl2 (μm)

0           50          100        200        400
CoCl2 (μm)

0           50          100        200        400
CoCl2 (μm)

0           50          100        200        400
CoCl2 (μm)

0           50          100        200        400
CoCl2 (μm)

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

l o
f H

IF
-1
α

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

l o
f B

ax

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

l o
f B

cl
2

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

l o
f B

cl
2.

ba
x

R
el

at
iv

e 
ex

pr
es

si
on

 le
ve

l o
f C

as
pa

se
-3

HIF-1α Caspase-3

Bax Bcl2

Bcl2/bax

*

* *
*

*

*

*

*

* *

*
*

* * * *

*

*

**

2.5

2.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

4

3

2

1

0

4

3

2

1

0

Table 3 RNA concentration in each group

Groups Concentration (µg/µL) A260/280 A260/230

con-1 0.6858 2.13 1.96

con-2 0.7850 2.15 1.97

con-3 0.8977 2.13 2.18

tre-1 0.7276 2.11 1.85

tre-2 0.4563 2.15 2.10

tre-3 0.8151 2.16 2.19

combined with the significantly differentially expressed 
miRNAs in the sample. As shown in Figure 6, we found that 
a complex regulatory network is formed between miRNAs 
and mRNAs. It can be seen that one miRNA can be 
attached to multiple mRNAs. Similarly, one mRNA can also 
regulate the expression of multiple miRNAs. For example, 
rno-miR-351-5p can be regulated by many mRNAs, such as 
Cspg4, Col4a6, Cdh3, Chrd, E2f2, and Usp2, while Cspg4 
not only regulates rno-miR-351-5p, but also regulates 
miRNAs such as rno-miR-702-3p, novel112_mature, and 
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Figure 4 DEmRNAs and DEmiRNAs between the hypoxia treatment groups and control groups. The volcano plot includes all of the 
DEmRNAs and DEmiRNAs in the 2 groups. Red represents upregulation of DEmRNAs and DEmiRNAs, while green represents 
downregulation of DEmRNAs and DEmiRNAs. Gray represents non-differential mRNAs and miRNAs. DE, differentially expressed.
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Table 4 Top 20 differentially expressed (DE) miRNAs between the hypoxia treatment groups and control groups

DE miRNAs Fold change P Regulation

rno-miR-129-1-3p 9.11 0.0013847 Up

rno-miR-672-5p 4.87 0.0024757 Up

rno-miR-210-3p 3.95 2.13E-12 Up

rno-miR-210-5p 3.36 0.0002577 Up

rno-miR-410-3p 3.25 0.0439687 Up

rno-miR-351-3p 2.78 0.0024633 Up

rno-miR-503-3p 2.74 2.49E-05 Up

rno-miR-351-5p 2.66 4.08E-07 Up

rno-miR-702-3p 2.36 0.0481438 Up

rno-miR-450b-5p 2.31 0.0139076 Up

rno-miR-148a-5p 3.06 0.0125532 Down

rno-miR-195-3p 3.05 1.06E-05 Down

rno-miR-214-5p 2.94 0.0111410 Down

rno-miR-181b-1-3p 2.55 0.0364944 Down

rno-miR-32-3p 2.50 0.0243643 Down

rno-miR-152-5p 2.33 0.0001583 Down

rno-miR-32-5p 2.25 0.0345910 Down

rno-miR-145-3p 2.24 0.0040549 Down

rno-miR-92a-1-5p 2.23 0.0055308 Down

rno-miR-99a-3p 2.17 0.0203648 Down



Annals of Translational Medicine, Vol 9, No 18 September 2021 Page 9 of 14

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(18):1451 | https://dx.doi.org/10.21037/atm-21-4215 

Figure 5 GO analysis of the differentially expressed miRNA. The horizontal axis is the name of the GO item, and the vertical axis is the 
number of genes enriched by the GO item. GO, Gene Ontology.
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Figure 6 KEGG analysis of the differentially expressed miRNA. Each dot in the figure corresponds to a pathway, and the colors are sorted 
by red, orange, yellow, green, blue, indigo, and purple corresponding to the P value from small to large. The smaller the P value, the 
more the color tends to red. The larger the dot, the more the number of genes in the pathway. KEGG, Kyoto Encyclopedia of Genes and 
Genomes.
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novel591_mature (Figure 7).

RT-PCR verification results

The results of RT-PCR showed that compared with the 
control group, the expression levels of miR-23a-5p, miR-
145-3p, and miR-702-3p in HSC-T6 cells after hypoxia 
treatment were significantly downregulated (P<0.001), while 
the expression of miR-351-5p was significantly upregulated 
(P<0.001). This conclusion is similar to the results of gene 
sequencing, which verifies the experimental results (Figure 8).

Discussion

Here, we used CoCl2 to clarify the relationship between 
hypoxia and HSC activation and the related mechanisms, 
as well as the changes of miRNAs and mRNAs in HSC-T6 
cells under hypoxia regulation. It was found that hypoxia 
can activate HSC-T6 cells, accompanied by an upregulation 
of the expression of matrix-related factors. Furthermore, 

hypoxia activated HSCs mainly through HIF-1α-mediated 
TGF-β signal transduction. RNA-sequencing analysis 
showed that compared with the control group, a total of 
54 miRNAs and 1,423 mRNAs were identified in HSC-T6 
cells after hypoxia treatment. Further bioinformatics 
analysis showed that the differentially expressed miRNAs 
were related to matrix synthesis and signal transduction, 
and the results of gene sequencing were verified by RT-
PCR. To the best of our knowledge, the present study is the 
first to use RNA-sequencing and bioinformatics analysis to 
clarify then verify the expression of miRNAs in HSC-T6 
cells after hypoxia.

Hypoxia is an important factor that causes cell damage 
and liver damage (21). Our previous studies have shown 
that hypoxia exists in mouse models of cirrhosis (22), and 
other studies presented that hypoxia can activate HSCs 
(23,24). The study reported that hypoxia could induce the 
activation of HSCs through autophagy, while autophagy 
could control intracellular homeostasis through lysosomal 
enzyme self-digestion (5). Thus, the studies presented that 

Figure 7 MiRNA-mRNA co-expression network. In the figure, miRNAs are triangles, and mRNAs are circles. Red represents upregulation 
and green represents downregulation. The larger the graph, the more nodes connected to it.



Annals of Translational Medicine, Vol 9, No 18 September 2021 Page 11 of 14

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(18):1451 | https://dx.doi.org/10.21037/atm-21-4215 

several autophagy related pathways were contributed to 
activation of HSCs under hypoxia condition, including 
Ca2+-5'-adenosine monophosphate-activated protein kinase 
(AMPK)-mammalian target of rapamycin (mTOR), protein 
kinase C-theta (PKCθ) activation (5), and the plasmacytoma 
variant translocation 1 (PVT1)-miR-152-autophagy-related 
gene 14 signaling pathway (25). Additionally, other studies 
found hypoxia directly or indirectly inhibits the expression 
of peroxisome proliferator-activated receptors (PPAR) by 
inducing Phosphatidylinositol-4,5-bisphosphate 3-kinase 
(PI3K)/protein kinase B (Akt) signal transduction, which 
may be play a role in the activation of HSCs induced by 
hypoxia (4). Liu et al. pointed out BCL2/adenovirus E1B  
19 kDa interacting protein 3 (Bnip3) interacts with vimentin 
could regulated autophagy of hepatic stellate cells (26). HIF-
1α may make the body adapt to the hypoxia environment, 
since it could maintain the survival and function of cells 
by regulating the expression of genes related to cell 
proliferation, energy metabolism, cell migration, and 
angiogenesis (27,28). Hong et al. (29) found that nuclear 

transport of HIF-1 molecule, and autophagy and activation 
of HSC were apparently inhibited in hypoxia-induced HSC, 
as trimethylation of H3 histone on lysine 4 (H3K4me3) 
histone methylation was inhibited by methylthioadenosine 
(MTA), suggesting that histone methylation modification 
plays an important role in HIF-1 signaling cascade to 
regulate cell activities. The interplay between HIF1-α and 
Rho-associated coiled-coil-forming kinase 1 (ROCK1) was 
reported as a critical factor that regulates cell proliferation 
and collagen synthesis in rat HSCs under hypoxia (3). 
Copple et al. demonstrated that hypoxia, through activation 
of HIF-1α, regulates the expression of genes that may 
alter the sensitivity of HSCs, that important for collagen 
deposition and angiogenesis (21). In addition to exosomes 
derived from HSCs contained glycolysis-related proteins 
and were regulated by HIF-1α, while the mechanism was 
also involved in the activation and metabolic switch of HSCs 
and other liver nonparenchymal cells (30). In this study, 
we found that the expression of HIF-1α increased with the 
increase of CoCl2 concentration, and the increase of HIF-

Figure 8 The mRNA expression levels determined by RT-qPCR. **, compared with the control group (P<0.01). RT-qPCR, reverse 
transcription quantitative polymerase chain reaction.
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1α was accompanied by the increase of collagen I level, 
which might be related to hypoxia regulating the expression 
of extracellular matrix protein genes such as fibronectin 
and collagen I through HIF-1α (21). The results showed 
that the expression of TGF-β1 and Smad7 mRNA gradually 
increased with the increase of CoCl2 concentration after 
hypoxia treatment. The balance between cell activation and 
apoptosis plays an important role in liver fibrosis, whist the 
inactivation of HSCs is related to the upregulation of anti-
apoptosis genes (31,32). In addition, the downregulation 
of Bcl-2 expression also reflected the HSC inactivation  to 
a certain extent. Further calculation of the Bcl-2/Bax ratio 
showed that the anti-apoptotic factor Bcl-2 was dominant 
after hypoxia treatment, which may also be the reason for 
the upregulation of TGF-β1 expression. 

Increasing studies have shown that miRNAs play an 
important role in HSCs activation and liver fibrosis (33-35),  
but limited studies focused on the under hypoxic conditions. 
The previous study clarified that the miRNA-21was involved 
in arsenite-induced hepatic fibrosis through aberrant 
cross-talk of hepatocytes and HSCs, through the HIF-
1α/vascular endothelial growth factor (VEGF) signaling 
pathway (36). In our study, we screened the differential 
expression profiles of miRNAs and mRNAs in the control 
and hypoxia treatment groups based on RNA-sequencing. 
In a carbon tetrachloride-induced liver fibrosis model, a 
total of 71 DEmiRNAs were detected by high-throughput 
sequencing, and these DEmiRNAs were involved in 
matrix synthesis and signal pathway conduction (37).  
The functional analyses presented DEmiRNAs were 
closely related to matrix synthesis, signal transduction, and 
protein binding. A total of 132 signaling pathways might 
be essential for the hypoxia treatment groups. Several 
of these pathways were already known to be involved in 
the progression of liver fibrosis, such as the MAPK, focal 
adhesion, Wnt, p53, mTOR, and PI3K-Akt signaling 
pathways (38,39). The KEGG analyses showed that the 
pathways included the MAPK signaling pathway, the 
ECM receptor interaction pathway, and the focal adhesion 
pathway. Therefore, the imbalance of miRNA regulation in 
MAPK signal transduction may be related to the hypoxia 
regulation of HSCs. Further, miR-351-5p was significantly 
increased in HSC-T6 cells treated with hypoxia compared 
to the control group through RT-PCR to validation. 
Finally, the miRNA-mRNA network presented the complex 
interconnections and effects between these two and further 
shown the biological functions of miRNAs.

There are some limitations in the present study. Firstly, 

further experiments are required to study the detailed 
functions and mechanisms of these miRNAs. Secondly, 
no in vivo research was involved in this study, and HSC-6 
cells were from donation, thus, further investigations of the 
experiment and cells are needed. Thirdly, next-generation 
sequencing technology itself has certain limitations, which 
may be improved with the further development of the 
technology.

Conclusions

In summary,  our results  indicated that a hypoxic 
microenvironment can activate HSCs, which may be related 
to the promotion of collagen fiber and hydroxyproline 
production mediated by HIF-1α. The study provided the 
information on related miRNAs, signaling pathways, and 
co-expression networks in HSCs after hypoxia treatment, 
suggesting novel insights and potential biomarkers for the 
early diagnosis and treatment of HSC activation and liver 
fibrosis.
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