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Effect of mesenchymal-epithelial transition amplification on
immune microenvironment and efficacy of immune checkpoint
inhibitors in patients with non-small cell lung cancer
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Background: Immune checkpoint inhibitors (ICIs) have brought clinical benefits to patients with various
histological types of lung cancer. Previous studies have shown an association between mesenchymal-epithelial
transition (MET) and the immunotherapy response in non-small cell lung cancer (NSCLC) but there is a
lack of clinical data on the correlation of MET amplification with the ICI response in NSCLC.

Methods: Copy number alteration (CNA), somatic mutation, and clinical data from two immunotherapy
cohorts (Rizvi ez al. cohort and our local cohort) were collected and pooled to further investigate the key role
of MET amplification in patients with NSCLC receiving ICIs. The correlations between MET amplification
and tumor immunogenicity and antitumor immunity were further investigated in The Cancer Genome Atlas
(TCGA)-NSCLC [lung adenocarcinoma (LUAD)/lung squamous cell carcinoma (LUSC)] data-set.
Results: In the immunotherapy cohorts, MET amplification was associated with longer progression-free
survival (PFS) times in patients receiving ICI treatment (P=0.039; HR =0.37; 95% CI: 0.18-0.73). In the
TCGA-NSCLC data-set, MET amplification was associated with high MET mRNA and protein levels,
tumor mutation burden (TMB), neoantigen load (NAL), immune-activated cell patterns, immune-related
gene expression levels, and the number of gene alterations in the DNA damage response and repair (DDR)
pathway. Gene set enrichment analysis (GSEA) results indicated significant up-regulation of the immune
response-related pathways in the MET-amplification group.

Conclusions: Our results suggest that MET amplification may be a novel predictive marker for
immunotherapy efficacy in NSCLC.
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Introduction

In recent years, immune checkpoint inhibitors (ICIs),
represented by anti-programmed cell death receptor ligand
1 (anti-PD-L1), its ligand PD-L1, and anti-cytotoxic
T-lymphocyte-associated protein 4 (anti-CTLA-4), have
opened a new chapter for the treatment of advanced non-
small cell lung cancer (NSCLC). A series of clinical trials
confirmed the therapeutic effect of ICIs in NSCLC (1),
and in advanced NSCLC, the response rate of anti-PD-1/
PD-L1 monotherapy was 17-21%, although some patients
responded very persistently. Therefore, the identification of
suitable biomarkers to screen the dominant population for
immunotherapy efficacy is particularly important (2).
Increasingly, studies have shown that inflammatory
tumor immune microenvironment is associated with the
effectiveness of immunotherapy (3-7). High expression
of PDL1, infiltration of inflammatory cells such as
CD8+ T lymphocytes and Expression of inflammatory
cytokines are all regarded as the important element of
inflammatory tumor immune microenvironment (8-10).
Therefore, the gene which can remodel the tumor immune
microenvironment to be inflammatory type, it could be the
efficacy biomarker to predict the efficacy of immunotherapy.
To date, studies have suggested that specific gene
mutations may be potential predictors of ICI treatment
response (11-14). TP53, mesenchymal-epithelial transition
(MET) and KRAS driver mutations in lung adenocarcinoma
(LUAD) have been found can regulate immune cell
infiltration and PD-L1 expression, both of which may
represent potential predictors guiding ICI treatment (11).
Similarly, a recent study found that recurrent mutations in
TET1 (TET1-MT) were predictive of a relatively good
durable clinical benefit from ICIs and an improvement in
overall survival (OS) across multiple cancer types (12).
High-level MET amplification, MET exon 14 skipping
alterations (META14), or MET overexpression are the
different type of MET gene alternation. MET amplification
has been reported as a valuable marker for poor prognosis
in advanced unresectable tumor such as colorectal cancer,
breast carcinoma and gastric carcinomas but not in
NSCLC patients (15,16). Studies have suggested that
patients with MET mutations and MET amplification may
be more responsive to immunotherapy than to targeted
therapy (15,17,18), as MET mutation, amplification, or
overexpression can upregulate coinhibitory molecule
expression and downregulate costimulatory molecule
expression (17). However, most of these studies were based
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on the cell molecular biology and immunohistochemistry,
lacking the data of clinical immunotherapy especially for
Chinese patients. Therefore, the correlation between MET
amplification and the efficacy of NSCLC immunotherapy
remains unclear.

In this study, we collected copy number alteration
(CNA), somatic mutation, and clinical data of patients with
NSCLC who were treated with ICIs to further assess the
correlation between MET amplification and the efficacy of
ICIs in patients with the disease. We found that in patients
with MET-amplified NSCLC, ICI treatment was associated
with longer progression-free survival (PFS) times, enhanced
immunogenicity, and activated antitumor immunity. Our
study suggests that MET amplification may be a novel
predictive marker for immunotherapy efficacy in NSCLC.
We present the following article in accordance with the
REMARK reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-4543).

Methods
Clinical coborts and cancer cell lines

To assess the correlation between MET amplification and
the efficacy of NSCLC immunotherapy, data from ICI-
treated patients in two NSCLC clinical cohorts were
collected and processed as shown in Figure S1. The first
ICI-treated cohort from Rizvi et a/. consisted mainly of 240
NSCLC samples (n=240) with CNA, somatic mutation,
and clinical data (19). Samples from the Rizvi et 4l. cohort
(n=240) were sequenced using the Memorial Sloan
Kettering-Integrated Mutation Profiling of Actionable
Cancer Targets (MSK-IMPACT) panel. As the ICI-treated
cohort from Samstein er /. (20) consisted of only four
patients with MET amplification, we collected CNA, tumor
mutation burden (TMB), and clinical data from another
ICI-treated cohort from Zhujiang Hospital of Southern
Medical University, Guangzhou Chest Hospital and First
People’s Hospital of Chenzhou. A total of 10 patients
received ICIs (anti-PD-1 monotherapy, >3 treatment
lines) to investigate the effect of MET amplification on the
prognosis of NSCLC immunotherapy. Detailed clinical
characteristics of patients with MET amplification are listed
in https://cdn.amegroups.cn/static/public/atm-21-4543-
1.docx. This research was performed in accordance with
the Declaration of Helsinki (as revised in 2013) and was
approved by the ethics committee of Zhujiang Hospital
of Southern Medical University, Guangzhou Chest
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Hospital and First People’s Hospital of Chenzhou. Written
informed consent was obtained from the individuals for the
publication of any potentially identifiable images or data
included in this article.

Clinical and sample data (mRNA expression and
somatic mutation data) from The Cancer Genome Atlas
(TCGA)-LUAD and TCGA-lung squamous cell carcinoma
(LUSC) datasets were downloaded from the Genomic
Data Commons (https://portal.gdc.cancer.gov/) using the
R package TCGAbiolinks (21). The TCGA-LUSC and
TCGA-LUAD datasets were combined into the TCGA-
NSCLC dataset for subsequent analysis. Gene expression
and protein expression levels in the TCGA-NSCLC dataset
were log2 normalized [fragments per kilobase of exon
model per million mapped fragments (FPKM) +1] and were
expressed as the normalized reverse-phase protein array
(RPPA) values.

In addition, we used cBioPortal (22) (https://www.
cbioportal.org) to download CNA data from the TCGA-
LUAD and TCGA-LUSC datasets. The units of CNA
were GISTIC 2.0 copy number.

We downloaded CNA and drug sensitivity data for 69
NSCLC cell lines from the Genomics of Drug Sensitivity
in Cancer (GDSC) database (23), and the units of CNA and
drug sensitivity data were GISTIC 2.0 copy number and in
half-maximal inhibitory concentration (ICj,) value.

Clinical samples and classification of lung cancer cell lines

Consistent with a previous study (22), for the TCGA-
NSCLC cancer immunotherapy datasets (from Rizvi et 4.
and the local cohort), a GISTIC score of >2 was defined
as MET amplification, and a score of <2 was defined as
non-MET amplification. Similarly, in the CNA data for
the GDSC-NSCLC cell lines, a GISTIC score of >2 was
defined as MET amplification, and a score of <2 was defined
as non-MET amplification.

mRNA expression profiling, RPPA analysis, and drug

sensitivity analysis

Methods for tumor RNA extraction, mRNA library
preparation, sequencing, quality control, and subsequent
data processing to quantify gene expression in TCGA-
NSCLC samples have been previously reported (24). MET
protein expression in the TCGA-NSCLC dataset was based
on the RPPA of the TCGA database (24). Drug sensitivity
data for human NSCLC cell lines are available from GDSC
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(https://www.cancerrxgene.org/).

Immunological characteristics and correlation analysis of
tumor immunogenicity

We used the CIBERSORT web portal (http://cibersort.
stanford.edu/) (25) to analyze mRINA expression data from
the TCGA-NSCLC dataset to estimate the abundance of
22 immune cell types in the TCGA-NSCLC dataset. The
list of immune-related genes and the neoantigen data for
the TCGA-NSCLC dataset were obtained from Thorsson
et al. (26), and the expression levels of these genes were
quantified as log2 (FPKM +1) values.

TMB refers to the total number of substitutions and
insertion/deletion mutations per megabase in the exon-coding
region of a tumor gene in the tumor cell genome (27). TMB
was defined as nonsynonymous mutations in the TCGA-
NSCLC and local cohorts. We used the somatic mutation data
in the TCGA-NSCLC dataset as the raw mutation count and
38 Mb as the estimate of the exome size (28).

Functional and pathway enrichment analyses

For gene annotation enrichment analysis using the
clusterProfiler R package, differences in Gene Ontology (GO)
terms, Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, and Reactome pathways for which P<0.05 were
considered significant. The gene set enrichment analysis
(GSEA) gene set was obtained from the Broad Institute
Molecular Signatures Database (MSigDB) (29).

Gene set related to DNA damage response and repair
(DDR) patbway analysis

We used the DDR pathway gene set from the Broad
Institute MSigDB database (29), which includes the
following eight DDR-related pathways: “R-HSA-6783310_
REACTOME _Fanconi_Anemia_Pathway”,
“hsa03450_KEGG_Non_Homologous_End_Joining”,
“R-HSA-73884_REACTOME_Base_Excision_Repair”,
“hsa03430_KEGG_Mismatch_Repair”, “R-HSA-5696398_
REACTOME_Nucleotide_Excision_Repair”,
“R-HSA-5696398_REACTOME_Double_Strand_Break_
Repair”, “G0O:0003697_Single_Stranded_DNA_Binding”,
and “hsa03440_KEGG_Homologous_Recombination”.
Detailed gene sets related to DDR pathway analysis are
listed in https://cdn.amegroups.cn/static/public/atm-21-
4543-2 xlsx.

Ann Transl Med 2021;9(18):1475 | https://dx.doi.org/10.21037/atm-21-4543


http://cibersort.stanford.edu/
http://cibersort.stanford.edu/
https://cdn.amegroups.cn/static/public/atm-21-4543-2.xlsx
https://cdn.amegroups.cn/static/public/atm-21-4543-2.xlsx

Page 4 of 15

Statistical analysis

The Mann-Whitney test was used to compare TMB,
neoantigen load (NAL), immune cell content, and immune
gene mRNA and protein content between the MET-
amplification and non-MET-amplification groups. Fisher’s
exact test was used to compare correlations in smoking
history, clinical stage, and sex between the groups, and
the correlation between the MET amplification status and
sex was compared using the chi-square test. PFS and OS
in the MET-amplification and non-MET-amplification
groups were analyzed by the Kaplan-Meier method with a
log-rank test and by Cox proportional hazards regression
analysis. P<0.05 was considered statistically significant,
and all statistical tests were two-sided. R software (version
3.6) was used for statistical analysis, and the R package
“ComplexHeatmap” (30) was employed to visualize the
mutation and immune cell landscape.

Results
Mutation profile of the study population

We used cBioPortal to obtain a published study of NSCLC
immunotherapy from Rizvi e al. comprising 240 patients
receiving ICI treatment [anti-PD-(L)1 monotherapy or
combination treatment with anti-CTLA-4 therapy]. This
included CNA, somatic mutation, and clinical data for
patients with NSCLC, and was used to further investigate
the critical role of MET amplification in the prognosis of
NSCLC immunotherapy. In order to explored Chinese
patients data, we integrated the copy number variation,
somatic mutation, and clinical data of NSCLC patients
(n=10) with MET amplification from Zhujiang Hospital of
Southern Medical University, Guangzhou Chest Hospital
and First People’s Hospital of Chenzhou. In addition, we
used the TCGA-NSCLC dataset to further investigate
the mutation characteristics, immune cell infiltration
characteristics, immune-related gene expression profiles
(GEPs), tumor immunogenicity, and antitumor immunity
in patients with MET amplification (Figure S1).

The gene mutation landscape in the ICI-treated cohort
(Rizvi et al.) is shown in Figure 14, along with information
for other genes mutated in the MET-amplification group
(1.67%, 4/240), such as TP53 (75%, 3/4), KEAP1 (50%,
2/4), SMARCA4 (50%, 2/4), PTPRT (50%, 2/4), EGFR
(25%, 1/4), and PTPRD (25%, 1/4). Most were missense
mutations (6/11, 54.5%) and frameshift mutations (3/11,
27.3%). The gene mutation landscape in the non-ICI-
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treated cohort (TCGA-NSCLC) is shown in Figure 1B. In
the MET-amplification group (2.58%, 24/929), the TP53
(70.83%, 17/24), TTN (50%, 12/24), CSMD3 (45.83%,
11/24), LRPIB (41.67%, 10/24), ZFHX4 (41.67%, 10/24),
XIRP2 (37.5%, 9/24), COL11A1 (33.33%, 8/24), MUC16
(33.33%, 8/24), PCDH15 (33.33%, 8/24), NAV3 (29.17%,
7/24), and RYR2 (29.17%, 7/24) genes had the highest
mutation frequency.

Survival analyses based on the MET status

To further explore the correlation between MET
amplification and PFS on immunotherapy in patients
with NSCLC, we collected and pooled two ICI-treated
cohorts—the Rizvi et al. cohort (n=240) and our local
cohort (n=10). In this integrated ICI-treated cohort, the
MET-amplification group had a trend toward a longer
PFS than the non-MET-amplification group (Figure 1C;
P=0.149, HR =0.56, 95% CI: 0.30-1.04). As the local
cohort consisted of patients with MET amplification who
were treated with >3 treatment lines, we adjusted for the
treatment lines and further performed the comparison in
the integrated ICI-treated cohort restricted to >3 treatment
lines (n1=62, n2=10). This showed MET amplification
was associated with prolonged PFS after immunotherapy
(Figure 1D; P=0.039, HR =0.37, 95% CI: 0.18-0.73).

To confirm the efficacy of MET amplification for
predicting the PFS and OS of non-ICI-treated patients
with NSCLC, we further evaluated the survival difference
between patients with MET amplification and those
without MET amplification in the TCGA-NSCLC
LUAD/LUSC cohort and found no differences in OS or
PES between patients with MET amplification and those
without MET amplification (TCGA-NSCLC LUAD/
LUSC) (Figure 1E-17).

Association of MET gene amplification with upregulated
MET mRNA and protein expression

In NSCLC, ¢-MET gene amplification further leads
to abnormal activation of the ¢-MET pathway via
overexpression of the ¢-MET protein. Abnormal activation
of the ¢-MET pathway ultimately promotes tumor cell
proliferation and metastasis (31). We found higher MET
mRNA and protein expression in the MET-amplification
group than in the non-MET-amplification group in the
TCGA-NSCLC LUAD/LUSC cohort (Figure 2A4-21).
However, the regulatory effect of MET amplification on the
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MET protein CMET_pY1235

Figure 2 MET mRNA and protein expression is upregulated in MET-amplified NSCLC. Expression of MET mRNA (A) and MET proteins
CMET (B) and CMET_pY1235 (C) in the MET-Amp and non-MET-Amp groups in the TCGA-NSCLC cohort. Expression of MET
mRNA (D) and MET proteins CMET (E) and CMET_pY1235 (F) in the MET-Amp and non-MET-Amp groups in the TCGA-LUAD
cohort. Expression of MET mRNA (G) and MET proteins CMET (H) and CMET_pY1235 (I) in the MET-Amp and non-MET-Amp groups
in the TCGA-LUSC cohort. (*, P<0.05; **, P<0.01; and ****, P<0.0001). The MET protein list was obtained from the Human Protein Atlas.
The lines and boxes indicate the medians and upper and lower quartiles, respectively.) MET, mesenchymal-epithelial transition; NSCLC,
non-small cell lung cancer; MET-Amp, MET-amplification; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; LUSC,

lung squamous cell carcinoma.
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expression of MET mRINA and protein during the evolution
of NSCLC is unclear. Our analysis based on the TCGA-
NSCLC LUAD/LUSC cohort showed that the MET-
amplification NSCLC group (2.41%, 24/992) had higher
expression levels of MET mRNA and MET proteins CMET
and CMET_PY1235 than the non-MET-amplification
group (Figure 24-2C; P<0.0001, P<0.05, and P<0.05,
respectively). Similarly, the MET-amplification LUAD
group had higher expression levels of MET mRNA and
MET proteins CMET and CMET_PY1235 than the non-
MET-amplification LUAD group (Figure 2D-2F; P<0.0001,
P<0.05, and P<0.05, respectively). In addition, the MET-
amplification LUSC group had higher expression levels of
MET mRNA (Figure 2G, P<0.01) and a trend toward higher
expression levels of the MET proteins CMET and CMET_
PY1235 (Figure 2H,2I) than the non-MET-amplification
LUAD group.

Most current treatment strategies for abnormal
activation of the c-MET pathway use multikinase MET
inhibitors such as crizotinib and cabozantinib. The GDSC
database contains data for approximately 1,000 human
cancer cell lines. Regarding the susceptibility to different
drugs, we further investigated the correlation between MET
amplification and the sensitivity to common drugs in 69
NSCLC cell lines from the GDSC database (Figure S2).
There was no significant difference in common
chemotherapeutic drugs (cisplatin, paclitaxel, docetaxel,
vinorelbine, and gemcitabine) and ¢-MET receptor kinase
inhibitors (cabozantinib; crizotinib; foretinib; and PHA-
665752), between the MET-amplification and non-MET-
amplification NSCLC groups. In addition, NSCLC cell
lines with MET amplification were resistant to common
targeted drugs, such as c-MET receptor kinase inhibitors
(e.g., crizotinib). These drug sensitivity data showed
that MET-amplified NSCLC may be less responsive to
chemotherapy or targeted therapy.

Landscape of immune cells and transcriptome traits based
on MET status

To further investigate differences in the immune cell
infiltration status and potential biological mechanisms
between NSCLC with and without MET amplification, we
used the CIBERSORT algorithm to estimate the immune
cell infiltration status in 992 samples from the TCGA-
NSCLC cohort (Figure 3). The heatmap indicated that the
immune cells and some clinical features were significantly
different between the MET-amplification and non-MET-

© Annals of Translational Medicine. All rights reserved.
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amplification groups. For example, CD8+ T cells (P<0.05),
M1 macrophages (P<0.05), gamma delta T cells (P<0.05),
and activated CD4+ memory T cells (P<0.0001) were more
abundant in the MET-amplification group. This pattern
indicated that immune-activated cells were significantly
enriched in the MET-amplification group. In addition,
patients in the MET-amplification group had a longer
duration of smoking (median: MET amplification vs. non-
MET amplification: 45 vs. 30 years, P<0.05) and were more
likely to have a history of smoking (P<0.01).

As MET amplification plays a key role in NSCLC
progression and prognosis, we analyzed the underlying
biological mechanisms of MET amplification in the TCGA-
NSCLC dataset. The TCGA-NSCLC dataset was divided
into two groups according to the MET amplification status,
and GSEA was performed using the gene set obtained from
the MSigDB. When the MET-amplification group was
compared with the non-MET-amplification group, immune
response-related pathways, such as downstream signaling
events of B cell receptors (BCRs), positive regulation of
interferon-gamma (IFN-y) production, immune response
to tumor cells, and downstream TCR signaling, were
significantly upregulated in the MET-amplification
group (Figure 4A4). Additionally, oncogenic signaling and
metabolic-related pathways, such as response to fibroblast
growth factor, ERKI and ERK?2 cascade, and fatty acids,
were significantly downregulated in the MET-amplification
group (Figure 4B).

Association of MET gene amplification with enbanced
immunogenicity and activated antitumor immunity

To better identify the immune profile, we analyzed
differences in immune-related gene expression patterns
between the MET-amplification and non-MET-
amplification groups in the TCGA-NSCLC database
(Figure 5A-5D). Consistent with the elevated immune cell
infiltration, the expression of many immunostimulation-
related genes, such as chemokine genes (CXCL9, CXCLI0,
and CCLS) and cytolysis-related genes (PRFI and GZMA),
was significantly upregulated in the MET-amplification
group (Figure 5A,5B). The MET-amplification NSCLC
group exhibited significant upregulation of immune
checkpoint-related genes (such as LAG3 and PDCDI1LG?2)
compared to the non-MET-amplification NSCLC group.
In addition, the MET-amplification NSCLC group
exhibited significantly upregulated expression of antigen
presentation-related genes, such as HLA-A, HLA-B,

Ann Transl Med 2021;9(18):1475 | https://dx.doi.org/10.21037/atm-21-4543
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HLA-C, and MICB (Figure 5A). Further subgroup analysis
showed that the MET-amplification TCGA-LUAD group
also had upregulated immune-related gene expression
patterns such as chemokine-related, cytotoxicity-related and
immune checkpoint-related genes (Figure 5A4,5B). These
results suggest that MET amplification is closely associated
with enhanced tumor immunogenicity and an activated
immune microenvironment, providing a theoretical basis
for the benefit of immunotherapy in patients with MET-
amplified NSCLC.

We further compared tumor immunogenicity and
antitumor immunity between patients with and without

© Annals of Translational Medicine. All rights reserved.

MET amplification in the TCGA-NSCLC cohort. Figure SE
shows that 10 patients with MET amplification (local
cohort, ICI-treated) had a higher TMB than those without
(TCGA-NSCLC, non-ICI-treated; P<0.0001), whereas
all patients with MET amplification had a trend toward a
higher TMB than those without (TCGA-NSCLC, non-
ICI-treated; P<0.01). Subgroup analysis (Figure 5F) showed
that the MET-amplification LUAD group (local cohort) had
a higher TMB than the non-MET-amplification (P<0.001)
and MET-amplification (P<0.05) TCGA-LUAD groups,
whereas the MET-amplification TCGA-LUAD group
also had a higher TMB than the non-MET-amplification

Ann Transl Med 2021;9(18):1475 | https://dx.doi.org/10.21037/atm-21-4543
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TCGA-LUAD group (P<0.05). Similarly, the MET-
amplification LUSC group (local cohort) had a higher TMB
than the non-MET-amplification TCGA-LUSC group
(P<0.05, Figure 5G). In addition, the MET-amplification
TCGA-NSCLC group had a trend toward a higher NAL
than the non-MET-amplification TCGA-NSCLC group
(Figure SH). Further subgroup analysis showed that the
levels of NAL between the MET-amplification and non-
MET-amplification in the TCGA-LUAD group (Figure 51)
and TCGA-LUSC group (Figure 5).

Increasingly, studies have shown that alterations in
DNA damage response- or DNA damage repair-related
pathways are associated with immunotherapeutic efficacy
(32-34). For example, the number of DDR pathway gene
mutations is positively correlated with markers of tumor
immunogenicity, such as TMB and NAL. In addition,
DDR may be a biomarker for predicting the efficacy of
immunotherapy (32). Therefore, we used the DDR gene set
from the MSigDB (https://cdn.amegroups.cn/static/public/
atm-21-4543-2.xlsx) to compare differences in the number
of mutations in the DDR-related pathway between the
MET-amplification and non-MET-amplification groups in
the TCGA-NSCLC/LUAD/LUSC cohort and in GDSC-

© Annals of Translational Medicine. All rights reserved.

NSCLC cell lines (Figure S3). The number of mutations
in multiple DDR pathways was significantly higher in the
MET-amplification TCGA-NSCLC LUAD group than in
the non-MET-amplification TCGA-NSCLC LUAD group.

Discussion

MET amplification plays critical roles in the NSCLC
mutagenic process, contributing to subclonal diversification,
intratumor heterogeneity. Here, our study focused on the
association between MET amplification and the efficacy
of ICIs for NSCLC treatment, and the results showed it
was associated with superior PFS times in the ICI-treated
cohort (n=72; P=0.039, HR =0.37, 95% CI: 0.18-0.73)
but not in the non-ICI-treated cohort (e.g., the TCGA-
NSCLC LUAD/LUSC cohort). Thus, MET amplification
can distinctly function in NSCLC to predict the prognosis
of immunotherapy. Through analyses of immune cells,
immune-related gene expression, immunogenicity, and
antitumor immunity, we identified significant correlations
between MET amplification and immune-related gene
expression, increased immune cell infiltration, enhanced
immunogenicity, activated antitumor immunity, and

Ann Transl Med 2021;9(18):1475 | https://dx.doi.org/10.21037/atm-21-4543
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decreased DDR efficacy. In addition, in the GDSC
database, the MET-amplification group exhibited a trend
toward resistance to many common chemotherapeutic
drugs, such as ¢-MET receptor kinases (e.g., crizotinib).
Studies have shown that patients with MET overexpression
may be more responsive to ICI immunotherapy than to
targeted therapy (15), and MET amplification, mutation, or
overexpression may be manifested by upregulation of PD-
L1 and other immunosuppressive molecules at the mRNA
and protein levels (17). Furthermore, we summarized the
possible mechanisms underlying the improved efficacy and
prognosis in MET-amplified NSCLC patients receiving
ICIs (Figure 6).

Tumor immunogenicity is the developmental basis of
tumor immunity, and many somatic mutations can produce
antigens to activate CD8+ cytotoxic T cells, thereby
exerting a T cell-mediated antitumor effect. In addition,
IFN-y is generally produced by effector T cells or antigen-
presenting cells (APC) to support antigen presentation and
the recruitment of other immune cells, thereby initiating
antiproliferative and apoptotic effects on the tumor. To
date, T cell-inflamed GEPs, specific gene mutations, high
MSI (MSI-H), TMB, NAL, and the TME (such as the
CD8+ T cell abundance) have gradually become potential

© Annals of Translational Medicine. All rights reserved.

markers for the immunotherapy response (3,10,35). When
TMB increases, it promotes the production of new antigens
in tumors which are presented to APC, which can lead to
the transformation of T cells into mature and activated T
cells and increase the sensitivity of patients to treatment
with PD-1 and CTLA-4 inhibitors (36). Recently,
mutations in DDR pathway-related genes have attracted
attention in immunotherapy (37). For example, functional
mutations in the DDR pathway reduced genome stability
and increased tumor immunogenicity via the accumulation
of DNA damage to increase the efficacy of immunotherapy
(37,38). This effect suggests ICI therapy may be a potential
strategy for patients with MET-amplified NSCLC.
However, no clinical correlation has been identified for
MET immunotherapy in NSCLC.

As is known to all, MET amplification is a de novo
driver gene in NSCLC about 5%. So far, there are
several c-MET inhibitors approved by FDA/CFDA for
MET exon 14 skipping in advanced NSCLC. However,
for de novo MET amplification, MET-TKI monotherapy
demonstrated a short PFS of 4 months in NSCLC clinical
study. In a subgroup analysis of PROFILE 1001, patients
with high level MET amplification demonstrated an
objective response rate (ORR) of 38.1% and a long PFS of

Ann Transl Med 2021;9(18):1475 | https://dx.doi.org/10.21037/atm-21-4543



Annals of Translational Medicine, Vol 9, No 18 September 2021

6.7 months. These result suggested MET inhibitors maybe
only efficacy to patients with high level MET amplification
in NSCLC. And our study demonstrated immunotherapy
maybe another selective strategy for patients with low level
MET amplification. On the other side, MET amplification
is an acquired resistance gene closed to 20% after using
EGFR-TKI. In a phase I/II clinical study “INSIGHT”,
tepotinib combined with gefitinib demonstrated a dramatic
PFES of 16.6 months which provided a new therapy for
patients with resistance from EGFR-TKI, especially from
third EGFR-TKI in future. In this study we found MET
gene amplification was associated with inflammatory tumor
microenvironment, but whether it can remodel the immune
desert type of tumor microenvironment in EGFR-mutant
NSCLC has not been known. Whether these patients can
be benefit from immunotherapy still need further research.

Different from target therapy and chemotherapy,
immunotherapy in advanced NSCLC is focus on the long-
term survival. Existing studies suggest that RECIST 1.1
evaluation underestimated the benefit of immunotherapy,
further research is required to optimize iRECIST and
establish some criteria for selecting patients who will benefit
from continued immunotherapy beyond PD per RECIST
1.1. Tumor micrometastasis maybe one of key point about
recurrence after lung cancer surgery. It was reported that
tumor immune microenvironment is predictive of prognosis
after surgery in NSCLC. This suggested immunotherapy
may impact on tumor micrometastasis and improve the
prognosis of early lung cancer. Lambrechts ez a/. (39)
reported that the expression profiles of tumor stromal
cell marker genes and tumor stromal cell subsets differed
between LUAD and LUSC, and that low expression of
CD8+ T cell cluster marker genes in LUAD was associated
with an improved survival prognosis. In contrast, CD8+
T cell cluster marker genes expressed in LUSC were
associated with a worse survival prognosis in LUSC. All
these studies suggested some special patients maybe benefit
from immunotherapy after surgery. To date, clinical research
about evaluation of immunotherapy after lung cancer surgery
are going on. In this study, we found MET amplification is
closely associated with enhanced tumor immunogenicity and
an activated immune microenvironment. Therefore, it worth
waiting for whether patients with MET amplification after
surgery can benefit from checkpoint inhibitors.

"This study has some limitations. First, our analysis did not
compare MET amplification with non-MET amplification in
patients with NSCLC on first-line immunotherapy. Second,
unlike the NSCLC IClI-treated cohort from Rizvi et 4l., our
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local datasets represent only the Chinese population, and
differences in genetic backgrounds between ethnicities may
affect the results of the analysis. Third, we found patients in
the MET-amplification NSCLC group (local cohort) had a
higher TMB than those in the MET-amplification TCGA-
NSCLC group, which showed, TMB may be a predictive
marker of the clinical immunotherapy response in the
MET-amplification NSCLC group (local cohort) to select
patients for immunotherapy. Fourth, MET amplification
has been reported to show intratumoral heterogeneity in a
number of cases (40), and intratumoral heterogeneity should
be considered when interpreting our results on MET and
phospho-MET protein expression. Fifth, the threshold used
to define MET amplification varies among studies. Sixth,
because of the difference in structure, there still a certain
difference in the efficacy of different ICIs. But in this study,
the number of patients treated with ICIs was unfortunately
very small. So we cannot to explore it further. Finally, our
analysis considered only the two most important subtypes of
NSCLC, and the remaining subtypes were not considered.
Therefore, more research involving a large number of
samples and diverse ethnic groups is needed for analysis and
validation.

Conclusions

Our study provides evidence that MET amplification
is associated with long PFS times and with known
immunotherapy response markers, including TMB, NAL,
immune-related genes, and the high infiltration of specific
immune cells. Therefore, MET amplification could be a
predictive biomarker for ICIs. A series of prospective clinical
studies and molecular mechanistic explorations is required.
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Supplementary

Figure 1 Mutation landscape and survival information of NSCLC patients stratified by the MET amplification status. (A) Top 20 frequently
mFigure S1 Flowchart of data processing of the TCGA dataset and the ICI-treated NSCLC cohort. TCGA, The Cancer Genome Atlas;

ICIL, immune checkpoint inhibitor; NSCLC, non-small cell lung cancer.
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Figure S2 Comparison of the drug sensitivity of cell lines from the GDSC-NSCLC database between MET-Amp and non-MET-Amp

cell lines. (Mann-Whitney U test; *, P<0.05). GDSC, Genomics of Drug Sensitivity in Cancer; NSCLC, non-small cell lung cancer; MET,
mesenchymal-epithelial transition; MET-Amp, MET-amplification.

© Annals of Translational Medicine. All rights reserved. https://dx.doi.org/10.21037/atm-21-4543



a 4 * * *k * BES Not MET-Amp (958) z *
ES MET-Amp (24)

3 L]
8 . L] L]
zl 2 . . .
é L] . L] l
2 1 . . . e e
of — 3 _ .
b 4 *kk *% ¢ *
B3 Not MET-Amp (485) «
a3 . ES MET-Amp (17)
< . L]
D L]
;" 2 . . .
8 . 3 3 . l
"E i 1 . . . 3 .
-
: i
3 o — — N — :
S c ¢ '
o ES Not MET-Amp (473) e
=
s o3 . E3 MET-Amp (7)
s 3 : : :
: <I 2 . 3
o 8 0 0
o P4

W s bl g8
: : S !:n";;l“_"il;,’,‘;:';jm i
= *ﬁ:”!ﬁ!“;f

BER HR NHEJ F DR

GDSC-NSCLC
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