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Background: It has been reported that atractylodin has a potential antitumor effect. This study aimed to 
investigate the effects of atractylodin on Huh7 and Hccm hepatocellular carcinoma (HCC) cells and its 
molecular mechanism.
Methods: Huh7 and Hccm cells were cultured in vitro, and their viability was detected by CCK-8 assay and 
the half inhibitory concentration (IC50) was calculated. The cells were treated with different concentrations 
of atractylodin, and the migration and invasion ability of cells was detected by scratch assay and Transwell 
assay. The cell cycle change and apoptosis rate were detected by flow cytometry. IlluminaHiSeq4000 
platform was used for transcriptome sequencing, and the results were analyzed for gene differential 
expression, gene function, and signal pathway enrichment. Morphological changes of cells were detected 
by transmission electron microscopy, reactive oxygen species (ROS) levels were detected by DCFH-DA 
probe, and the expressions of ferroptosis related proteins GPX4, ACSL4, FTL, and TFR1 were detected by 
Western blot.
Results: The results showed that atractylodin could inhibit the proliferation, migration, and invasion of 
Huh7 and Hccm cells, regulate the cell cycle, and induce cell apoptosis and G1 phase cell cycle arrest. In 
addition, it could significantly induce the increase of intracellular ROS levels, decrease the expression of 
GPX4 and FTL proteins, and up-regulate the expression of ACSL4 and TFR1 proteins.
Conclusions: Atractylodin can inhibit the proliferation, migration, and invasion of Huh7 and Hccm liver 
cancer cells, and induce cell apoptosis and cell cycle arrest. In addition, our results suggest that atractylodin 
may induce ferroptosis in HCC cells by inhibiting the expression of GPX4 and FTL proteins, and up-
regulating the expression of ACSL4 and TFR1 proteins.
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Introduction

Primary liver carcinoma is the third leading cause of 
malignant tumor-related death, of which about 80% is 
hepatocellular carcinoma (HCC) (1). In recent times, the 
early diagnosis and treatment of liver cancer have gradually 
improved and the mortality and morbidity of HCC 
has reduced, based on the strengthening of preventive 
surveillance of hepatitis viruses and health examinations (2). 
However, in many countries and regions, including China, 
mortality remains high because the chance of surgical 
resection is already lost by the time of diagnosis in many 
cases (3). Significant progress has recently been made in 
drug therapy, especially anti-angiogenic drugs combined 
with immunotherapy, which has resulted in an objective 
response rate of about 30% and median survival time of 
about 20 months in patients with advanced or unresectable 
HCC (4,5). Although immune checkpoint inhibitors and 
targeted drugs have achieved good clinical efficacy, rash, 
gastroenteritis, endocrine system disease, and immune-
related adverse reactions often occur in the treatment 
process, and some patients may be complicated with serious 
reactions or even death (6,7).

Recent studies have shown that Chinese medicine can 
participate in the whole process of anti-tumor therapy and 
play an important role in immunotherapy. The anti-tumor 
effect of Chinese medicine monomers has gradually become 
the focus of research at home and abroad, and several studies 
have shown that Shikonin inhibits the progression of HCC 
by regulating cell proliferation, apoptosis, glycolysis, and 
epithelial-mesenchymal transformation (8-10). Astragalus 
polysaccharide can inhibit tumor growth and increase the 
immune response, and in combination with codonopsis 
polysaccharides, can also increase the expression of 
peripheral T lymphocytes and inhibit tumor invasion and 
metastasis (11,12). Atractylodin is a genus plant of Asteraceae 
and one of the effective components of atractylodes, and 
studies have shown that it can reduce limps-induced acute 
lung injury by inhibiting NOD-like receptor protein 3 
(NLRP3) inflammasome and Toll-like receptor 4 (TLR4) 
signaling pathways (13). Yu et al. reported that atractylodin 
had an enhanced contractile effect on inflation-induced 
intestinal motility disorders (14), and could induce apoptosis 
of bile duct cancer cells by inducing caspase cascade, 
indicating that its mechanism of inhibiting the activity of 
these cells is similar to its anti-inflammatory mechanism (15). 
These reports indicate that atractylodin has great potential 
value in clinical application.

Ferroptosis is an iron-dependent non-apoptotic form that 
regulates cell death and is associated with an imbalance of 
intracellular REDOX homeostasis (16), while sorafenib is a 
commonly used first-line treatment for HCC. Studies have 
shown that sorafenib could induce increased lipid oxidation 
levels in HCC cells, resulting in cell death, which is closely 
related to ferroptosis (17). In addition, haloperidol, erastin, 
and sorafenib in combination can induce the increase 
of intracellular iron ions and production of many active 
oxygen species leading to the increase of lipid peroxidation, 
thereby inducing iron death in HCC cells (18). These 
reports suggest that iron, lipid peroxidation, and amino 
acid metabolism are the main regulatory mechanisms of 
ferroptosis, and the abundant free iron and high level of 
reactive oxygen species (ROS) in tumor cells provides a 
theoretical basis for the clinical use of ferroptosis in the 
treatment of tumors.

Various studies have demonstrated that atractylodin 
plays an anti-inflammatory role, regulates gastrointestinal 
motility, and plays an anti-tumor role, but its role in HCC 
remains unclear. Therefore, this study explored the effect and 
mechanism of atractylodin on human HCC cells and provided 
the theoretical basis for the development of its clinical 
application in HCC patients. We present the following article 
in accordance with the MDAR reporting checklist (available 
at https://dx.doi.org/10.21037/atm-21-4386).

Methods

Cell culture

Huh7 cell lines were purchased from the Chinese Academy 
of Sciences (CAS) Shanghai Cell Bank and were sourced 
from the American Type Culture Collection (ATCC). The 
Hccm cell line was derived from a 34-year-old Japanese 
patient who was hepatitis B surface antigen positive (19,20). 
Cells were cultured with 10% fetal bovine serum (Gibco-
Life Technologies, Carlsbad, CA, USA) and 1% penicillin/
streptomycin (P1400, Solarbio, China) Dulbecco’s Modified 
Eagle’s Medium (DMEM; BI, 06-1055-57-1A) in DMEM 
medium, and cultured in a 37 ℃ incubator with 5% CO2.

Reagents and antibodies

Atractylodin (C13H10O), purity ≥99%, relative molecular 
weight: GPX4 Polyclonal Antibody (#14432-1-AP), ACSL4 
Monoclonal Antibody (#66617-1-IG), CD71, GPX4 
Polyclonal Antibody (#14432-1-AP), ACSL4 Monoclonal 

https://dx.doi.org/10.21037/atm-21-4386
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Antibody (#66617-1-IG), CD71 Polyclonal Antibody 
(#10084-2-AP), Ferritin Light Chain Polyclonal Antibody 
(#10727-1-AP), HRP-conjugated Affinipure Goat Anti-rabbit 
IgG(H+L) (#SA00001-2) and HRP-Conjugated Affinipure 
Goat Anti-Mouse IgG(H+L) (#SA00001-1), analyzed with 
Cell Cycle and an Apoptosis Analysis Kit (#C1052) purchased 
from Proteintech Group and Beyotime Biotechnology.

Cell viability assay

A Cell Counting Kit-8 (Biosharp) was used to detect the 
degree of cytotoxicity of atractylodin on Huh7 and Hccm 
cells, and each group was repeated three times. The cell 
density was adjusted to 5×104 cells/mL, 100 μL was added 
to a 96-well plate, cultured at 37 ℃ in a 5% CO2 incubator 
overnight for 24 hours, and then treated with different 
concentrations of atractylodin for intervention. Ten µL 
CCK8 was added at different detection time points and 
incubated for 2 h. The optical density (OD) was read with 
an absorbance value of 450 nm on the microplate reader. 
The semicirculated inhibitory concentration (IC50) of 
acetylides at lodges on each cell was calculated by GraphPad 
Prism 8, and the proliferation curve was made.

Wound-healing invasion assay

Huh7 and Hccm cells were digested and inoculated on 
6-well plates, and according to their calculated IC50, were 
divided into a control group, atractylodin L group (5 µM/L),  
atractylodin M group (10 µM/L), and atractylodin H group 
(20 µM/L). When the cells reached 80% confluence, they 
were vertically crossed with a sterile 100 µL plastic suction 
head and washed with phosphate-buffered saline (PBS) 
three times. After washing, 2% FBS DMEM medium 
containing different concentrations of atractylodin was 
added in groups, and photographs were taken at 0 and 
24 hours under an inverted microscope (Olympus). The 
Transwell chamber (8 µm aperture, BD) was coated 
with 100 µL Matrigel (285 µg/mL, Corning) and then 
placed in an incubator at 37 ℃ for 1 h to gelatinize. A 
300 µL non-serum medium containing 5×104 cells with 
the corresponding concentration of atractylodin was 
then placed in each chamber. At the same time, a 700 µL 
medium containing 10% FBS was added to each well of 
the 24-well plates and the Transwell chambers were placed 
in the 24-well plates. After 48 hours of culture, the upper 
compartment was washed with PBS to remove the upper 
compartment cells, which were fixed in methanol on the 

underside of the chamber and stained with crystal violet 
(0.1%) at room temperature for 30 min. After washing and 
drying, the stained cells were considered those that had 
invaded the lower chamber. Photographs were taken under 
an inverted microscope.

Cell cycle analysis

Huh7 and Hccm cells were digested, and a 2 mL medium 
containing 2×105 cells was placed in each well of a 6-well 
plate and cultured overnight at 37 ℃ in an incubator of 
5% CO2 for 24 h. Cells in different groups were given the 
corresponding concentration of atractylodin and cultured 
for 24 hours. A Cell Cycle and Apoptosis Analysis Kit 
(Beyotime) was used to detect cell cycle, and flow cytometry 
was used to analyze its distribution.

Cell apoptosis analysis

Huh7 and Hccm cells were digested, and a 2 mL medium 
containing 2×105 cells was placed in each well of a 6-well 
plate and cultured overnight at 37 ℃ in an incubator of 
5% CO2 for 24 h. Cells in different groups were given the 
corresponding concentration of atractylodin and cultured 
for 24 hours. A Cell Cycle and Apoptosis Analysis Kit 
(Beyotime) was used to detect cell apoptosis, and flow 
cytometry was used to analyze its distribution.

RNA-seq

Huh7 cells were digested, and the cell density was adjusted 
to (2×105)/mL and inoculated in 6-well plates with 2 mL cell 
suspension per well. The cells were cultured in a DMEM 
medium for 24 hours. The blank control group and test 
group (10 µM/L) were set up, and each group was repeated 
with three samples. Cells were collected 24 hours after 
treatment and RNA was extracted by Trizol method, and 
the concentration and purity were detected. The mRNAs 
with polyA tail were enriched by Oligo(dT) beads, and then 
randomly fragmented by divalent cations in fragmentation 
buffer. The first strand of cDNA was synthesized in the 
M-MulV reverse transcriptase system by using the fragments 
of mRNA as a template and random oligonucleotides 
as primers, and the RNA strand was then degraded by 
RNaseH. The second strand of cDNA was synthesized in 
the DNA polymerase I system using dNTPs as raw material, 
and after end repair, a tail was added to the purified double-
strand cDNA and the sequencing connector was connected. 
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AMPure XP beads were used to screen the 370–420 bp 
cDNA for PCR amplification, then AMPure XP Beads were 
used to purify the PCR products to finally obtain the library. 
After library construction, the IlluminaHiSeq4000 platform 
was used for transcriptome sequencing.

Transmission electron microscope (TEM)

Huh7 cells in the logarithmic growth phase were inoculated in 
6-well plates with 2 mL cell suspension per well and cultured 
in DMEM medium for 24 hours. The blank control group and 
20 μM/L group were added to the culture medium containing 
different concentrations of atractylodin for 24 h. The cells 
were digested by trypsin without EDTA and collected, and 
samples were prepared after fixation with 2.5% glutaraldehyde 
and observed under TEM (JEM-1200EX, Japan).

Intracellular ROS assay

Huh7 and Hccm cells were digested, and a 1 mL medium 
containing 1×106 cells was placed in each well of a 6-well 
plate and cultured overnight at 37 ℃ in an incubator of 
5% CO2 for 24 h. DMEM complete media containing 
different concentrations of atractylodin were added to the 
cell plates for 24 h according to the groups, and treatment 
was performed according to the Reactive Oxygen Species 
Assay Kit (Beyotime). Observation and photography were 
taken under an inverted fluorescence microscope, and the 
fluorescence intensity was calculated and analyzed using 
Image J software.

Western blotting analysis

Huh7 and Hccm cells were treated in groups for 48 hours, 
and lysates, PSMF, and protein phosphatase inhibitors were 
added to extract proteins. Protein concentration was measured 
using BCA, and protein loading buffer was added in a ratio 
of 4:1 and mixed. The proteins were separated by 10% SDS-
PAGE and then transferred to the PVDF membrane, which 
was closed with 5% skim milk for 1 hour and incubated 
overnight with a primary antibody at 4 ℃. The membrane 
was then incubated with the secondary antibody at room 
temperature for 1 hour. The bio-rad ChemiDoc MP system 
was used to detect and analyze the western blot results.

Statistical analysis

The results were analyzed by GraphPad Prism 8 software. 

All data are represented as mean ± standard deviation 
(n=3), and one-way analysis of variance (ANOVA) was 
used to compare differences between the experimental and 
control groups. We used edgeR software for the analysis 
of the quantity of gene expression differences between 
groups using FDR and log2FC genetic variations to filter, 
filter condition for FDR ≤0.05, and |log2FoldChange| 
>0. For GO/pathway enrichment analysis of differential 
genes, cluster profile software was used for GO and DO 
function enrichment analysis of differential genes and 
KEGG pathway enrichment analysis. FDR ≤0.01 was set 
as the threshold for gene function and enrichment analysis 
of signal pathways, and LPBM was tested and corrected. 
P<0.05 was considered statistically significant.

Results

Effect of atractylodin on cell proliferation

CCK8 assay showed that atractylodin significantly inhibited 
the proliferation of Huh7 and Hccm cells compared with 
the control group and showed a positive correlation with the 
concentration. After 24 hours of atractylodin intervention, 
the IC50 of Huh7 cells was 22.36 μM and that of Hccm was 
59.71 μM (Figure 1). Huh7 and Hccm cells were treated 
at 5, 10, and 20 μM (as L, M, and H concentrations) for 
subsequent experimental treatment.

Effects of atractylodin on cell migration and invasion

The effect of atractylodin on cell migration was examined 
by scratch. The results showed that the migration ability 
of Huh7 and Hccm cells were significantly inhibited, and 
their migration ability gradually decreased with the increase 
in concentration of atractylodin (Figure 2A-2D). The effect 
of atractylodin on cell invasion was detected by Transwell 
based on Matrigel, and the results showed that the 
infiltrating cells in the atractylodin group were significantly 
reduced and positively correlated with the concentration 
(Figure 2E-2H). These results suggest that atractylodin can 
reduce the invasiveness of Huh7 and Hccm cells.

Effect of atractylodin on cell cycle

Cell cycle test showed that with the increase in concentration 
of atractylodin, the number of Huh7 cells in the G1 phase 
gradually increased, and the number of CELLS in the S/G2 
phase gradually decreased, and the same performance was 
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shown in Hccm cells (Figure 3). These results showed that 
atractylodin significantly induced cell cycle arrest in the G1 
phase.

Effect of atractylodin on cell apoptosis

Apoptosis detection showed that atractylodin could 
significantly increase the apoptosis rate compared with the 
control group, but with the increase of concentration, the 
apoptosis rate did not significantly increase (Figure 4).

Screening of differentially expressed genes in cells treated 
with atractylodin

A total of 3,622 differentially expressed genes were screened, 
among which 1,497 genes were significantly up-regulated, 
and 2,125 genes were significantly down-regulated (P<0.05) 
(Figure 5A). The results showed that atractylodin had a 
significant effect on Huh7 transcriptome expression.

Differential gene function and signal pathway enrichment 
analysis

Enrichment analysis of gene function of the control group 
and experimental group, using FDR for inspection with Р 
value correction and FDR <0.05 as the threshold, showed 
a total of 458 genes by the screening of biological process, 
and significantly enriched the biological function of main 
substances such as amino acids, cholesterol metabolism, 
biological control, cell growth, protein translation, catalytic 
activity, and signal transduction . KEGG analysis showed that 
the differentially expressed genes were mainly concentrated 

in the ferroptosis, ECM-receptor interaction, cholesterol 
metabolism, and PI3K-Akt pathways (Figure 5B-5C).

Effect of atractylodin on cell morphology

The effects of atractylodin on Huh7 cells was observed 
by cell electron microscopy, and the results showed that 
mitochondria were small and atrophied, the mitochondrial 
crest was reduced or even disappeared, the membrane 
density proliferated, and the nuclear morphology was 
normal, in line with the morphological characteristics of 
ferroptosis (Figure 6).

Effects of atractylodin on ROS levels in cells

A Reactive Oxygen Species Assay Kit was used to detect 
the ROS level in cells, and the results showed that these 
were significantly increased with atractylodin, and that this 
increase was drug concentration dependent (Figure 7). 

Changes to atractylodin in ferroptosis protein levels

Western blot results showed that, compared with the control 
group, atractylodin decreased the protein expressions of 
GPX4 and FTL in Huh7 and Hccm cells, and up-regulated 
the protein expressions of ACSL4 and TFR1 (Figure 8).

Discussion

HCC is a global health problem. As drugs currently used to 
treat HCC have many adverse reactions in clinical practice, 
there is a need to establish less toxic methods to treat 
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the disease. The clinical practice of treating tumors with 
traditional Chinese medicine has a long history in China, 
and the extraction of effective anticancer active ingredients 
from plants has attracted more and more attention from 
scholars, playing an important role in alleviating the toxic 
and side effects of chemoradiotherapy, delaying survival, 
and improving survival rates (21,22). Studies have reported 

that atractylodin inhibited bile duct cancer cell migration 
and induced autophagy through the PI3K/AKT/mTOR and 
p38MAPK signaling pathways (23), and could significantly 
improved the survival rate of tumor-bearing rats (24). At 
present, the effect of atractylodin on HCC has not been 
reported. In our study, we proved that atractylodin can 
inhibit the proliferation, migration, invasion, and promote 
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apoptosis of liver cancer cells in vitro, preliminarily proving 
that atractylodin can kill liver cancer cells. Further studies 
found that atractylodin could increase the intracellular ROS 
level and induce ferroptosis in liver cancer cells.

The regulation of the cell  cycle to inhibit cell 
proliferation is an important anti-tumor mechanism. The 
prophase (G1 phase), phase (S phase), and phase (G2 
phase) of DNA synthesis are important stages of the cell 
cycle, during which a large amount of DNA is synthesized 

and replicated (25). The results of cell cycle analysis  in 
the present study showed that atractylodin induced 
G1 phase stagnation in HCC cells in a concentration-
dependent manner. Cell cycle arrest is also one of the main 
characteristics of inhibited tumor cell proliferation (26). 
The cell survival analysis of the present experiment also 
showed that cell proliferation was significantly inhibited, 
and the number of viable cells decreased significantly 
with the increase in drug concentration. Apoptosis is an 
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Figure 4 Effects of atractylodin on apoptosis of Huh7 and Hccm cells. (A,B) Are the effects of atractylodin on apoptosis of Huh7 cells. (C,D) 
Are the effects of atractylodin on apoptosis of Hccm cells. Rhizoma atractylodin contrast group, control group with different concentration, 
and contrast group, **, P<0.01.
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active death process regulated by genes, and its regulatory 
mechanism is very complex. In this study, it was found that 
atractylodin could significantly increase cell apoptosis, 
but with the increase of drug concentration, the apoptosis 
rate did not change significantly. Our study shows that 
atractylodin can effectively inhibit the proliferation of HCC 
cells and induce cell cycle arrest and apoptosis.

RNA-seq is a transcriptome analysis technique developed 
in recent years, which uses deep sequencing to provide 
qualitative and quantitative expression information of tissue 
samples (27). After drug intervention in cells or bodies, 
transcriptomes were fully sequenced, and the differentially 
expressed genes in different expression profiles were 

obtained through screening and comparison, to understand 
the target of drug action and the possible mechanism of 
action. Therefore, we took Huh7 cells as the sequencing 
object and found that atractylodin could cause significant 
up-regulation or down-regulation of many gene expressions 
in HCC cells through RNA-SEQ detection and analysis. 
Analysis of the functions and signaling pathways of the 
differentially expressed genes showed that the differentially 
expressed genes were mainly enriched in functions related 
to cell metabolism, biological regulation, and immune 
conduction, and mainly involving ferroptosis and ECM-
receptor interaction. The cholesterol metabolism and 
PI3K-Akt pathway affected the metabolism, proliferation, 
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apoptosis, and cycle of HCC cells.
Ferroptosis is a programmed form of death that is 

morphologically, biologically, and genetically distinct from 
necrosis and autophagy (28). Increasingly, reports have 
shown that iron death features such as lipid peroxides 
aggregation and iron metabolism disorders are found in 
various liver diseases to varying degrees, and regulation of 
ferroptosis can affect the course of the disease (29-31). It has 
been reported that ferroptosis is regulated by the cysteine/
glutamate transporter (system XC

−) and GPX4, that the 
effect of system XC

− or GPX4 activity can induce ferroptosis 
in HCC cells, and the inhibition or deletion of GPX4 can 
directly lead to the accumulation of lipid peroxides leading 
to ferroptosis in HCC cells (32,33). Lipid peroxidation and 
iron metabolism are also closely related to the regulation 
of ferroptosis. The core process of iron death is the 
accumulation of lipid peroxidation products in cells, and 
iron is one of the necessary factors for the accumulation of 
lipid peroxides and ferroptosis (34-36). Based on the results 
of RNA-seq analysis, we found that the death of HCC 
cells caused by atractylodin may be related to ferroptosis. 
TEM was first performed to confirm that atractylodin 
could induce ferroptosis in HCC cells, and showed their 
mitochondria were smaller, their density increased, and 
their cristae decreased, which was consistent with the 
morphological changes of ferroptosis and preliminarily 
confirmed this finding. Subsequently, ROS was detected at 
the cellular level and found to be significantly elevated and 
positively correlated with concentration. GPX4 and FTL 
proteins associated with ferroptosis were down-regulated, 
while ACSL4 and TFR1 were up-regulated, which further 
confirmed that atractylodin could induce ferroptosis in 
HCC cells.

Conclusions

This study confirmed that atractylodin could effectively 
inhibit the proliferation, migration and invasion of HCC 
cells to promote apoptosis, and that ferroptosis plays a 
significant role in this effect. However, the exact mechanism 
by which this occurs requires further study.
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