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A narrative review of prognosis prediction models for non-small 
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Objective: To discover potential predictors and explore how to build better models by summarizing the 
existing prognostic prediction models of non-small cell lung cancer (NSCLC).
Background: Research on clinical prediction models of NSCLC has experienced explosive growth in 
recent years. As more predictors of prognosis are discovered, the choice of predictors to build models 
is particularly important, and in the background of more applications of next-generation sequencing 
technology, gene-related predictors are widely used. As it is more convenient to obtain samples and follow-
up data, the prognostic model is preferred by researchers.
Methods: PubMed and the Cochrane Library were searched using the items “NSCLC”, “prognostic 
model”, “prognosis prediction”, and “survival prediction” from 1 January 1980 to 5 May 2021. Reference 
lists from articles were reviewed and relevant articles were identified.
Conclusions: The performance of gene-related models has not obviously improved. Relative to the 
innovation and diversity of predictors, it is more important to establish a highly stable model that is 
convenient for clinical application. Most of the prevalent models are highly biased and referring to 
PROBAST at the beginning of the study may be able to significantly control the bias. Existing models should 
be validated in a large external dataset to make a meaningful comparison.
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Introduction

Although the status of the most common cancers has 
changed, lung cancer remains the leading cause of cancer-
related death in the world, with a mortality of 22% in male 
and 13.8% in female in 2018 (1-3). The 5-year relative 
survival rate for lung cancer is also poor and is estimated at 

21% in 2021 for all stages combined (1). According to the 
WHO classification, lung cancer is histologically divided 
into two subtypes: non-small cell lung cancer (NSCLC) and 
small cell lung cancer (SCLC), with the former accounting 
for 85% and the latter for 15% (4). In recent years, therapy 
for NSCLC has progressed with the rise of targeted 
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therapy and immune therapy, and personalized treatment. 
Emphasized by The American Joint Committee on Cancer, 
this therapeutic approach has increased the importance of 
prognostic prediction to assist clinicians in making the most 
effective treatment plan for patients (5,6). At present, the 
prognosis prediction for NSCLC is based on tumor, node, 
and metastasis (TNM) staging system (7), which stratifies 
patients to four stages according to clinical and pathological 
characteristics. However, the staging system is too broad to 
make a prognosis prediction for treatment guidance.

A clinical prediction model, also known as a “clinical 
prediction rules” or “risk scores”, is a tool incorporating 
multiple predictors to predict the risk of some event (8) 
which has been developed explosively in recent years and 
has been applied to the detection, diagnosis, and prognosis 
of NSCLC. The model contains two sub-types: the 
diagnostic model and the prognostic model. The diagnostic 
model focuses on estimating the risk of developing a 
disease based on the epidemiological and clinical features 
of patients. Some guidelines, such as the National 
Comprehensive Center Network (NCCN) guidelines and 
the United States Preventive Services Task Force (USPSTF) 
(9,10), have recommended or applied some risk prediction 
models to the detection of NSCLC. The prognostic model 
focuses on the risk of disease recurrence, death, disability, 
and complications in the current state of the disease. An 
increasing number of prognostic predictors have been found 
to have potential for clinical application, and numerous 
models have been developed and validated. Compared to 
the TNM staging system, a prognosis prediction model can 
improve the accuracy of and guide personalized therapy 
through the combination of multiple prognostic factors.

Since the 1980s, many large cohort studies (11-13) have 
been performed to develop and validate risk prediction 
models for the screening of NSCLC because of their 
high effectiveness compared to the NLST criteria (14). 
However, there is a lack of research on prognosis prediction 
models for NSCLC in large cohort studies, and the small-
size sample of existing models may cause a reduction of 
persuasiveness.

Although there are many studies on NSCLC, there are 
few reviews on clinical prediction models of NSCLC, which 
focus on the methodology of model establishment. This 
paper focuses on the selection of predictors and the control 
of model bias to provide more ideas and suggestions for 
modelers. In this article, we reviewed existing lung cancer 
prediction models with an emphasis on those with utility 
for prognosis, analyzed the urgent problems to be solved in 

the field, and suggest novel approaches to the construction 
of models. The focus of this article is to inform readers of 
the kind of predictors which should be selected to build 
particular models at a time when greater attention is being 
paid to this method. 

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
dx.doi.org/10.21037/atm-21-4733).

Methods

PubMed and Cochrane Library were searched using 
the items “NSCLC”, “prognostic model”, “prognosis 
prediction”, “survival prediction”, and “PROBAST” from 
1 January 1980 to 5 May 2021. Reference lists from articles 
were reviewed and relevant articles were identified. Non-
English language articles and abstracts were excluded.

Screening of predictors

Screening of the predictors is fundamental to the 
development of prediction models. The predictive value of 
several classic predictors, such as the TNM staging system, 
WHO-PS/ECOG-PS, and pathological classification 
has been widely validated (4,5,15,16). These traditional 
predictors have been included as the classification standard 
of prognosis stratification and treatment decision making 
by guidelines and expert consensus (17,18). Hence, we 
consider these factors should be routinely incorporated in 
the prognostic prediction models of NSCLC.

The screening, diagnosis, and treatment of cancers has 
been promoted to the molecular genetic stage, benefiting 
from the development of high-throughput techniques such 
as next-generation sequencing and microarray (19-21).  
The classification of lung cancer has been further sub-
classified from pathological classification to molecular 
classification based on driver genes (4). The treatment of 
lung cancer has developed to a comprehensive treatment 
based on pathological classification, stage, and molecular 
classification. The extraordinary development and 
application of genomics and epigenomics is defining 
reproducible and scalable prediction models (22), and 
increasingly, modelers have incorporated gene-related 
biomarkers obtained from the aspect of genomics and 
epigenomics such as the expression of DNA/RNA, somatic 
mutations, and DNA methylation. Accordingly, we have 
conducted a special review and summary in this aspect. On 
the other hand, the progress of prediction models depends 
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on the discovery of innovative predictors, and we have 
summarized some factors that have not been incorporated 
or have been rarely used in models which we believe may 
hold some prediction value. 

Predictors that should be incorporated routinely

TNM staging system
The TNM staging system involves the combination of 
three important factors, and most prognostic models would 
take this system into consideration when screening for 
predictors. Although some models may only include one 
component, such as T stage or number of positive lymph 
node stations, almost all research involving univariate and 
multi-variate analysis in the field of NSCLC incorporates 
the TMN system (23-26). 

Oberije et al. developed a survival prediction model with 
a dataset of 548 stage III NSCLC patients (23). After the 
predictor screening, they constructed a multi-variates model 
(MV model) consisting of age, gender, number of positive 
lymph node stations, gross tumor volume, and three other 
factors. Compared to making survival prediction with only 
TNM staging, the new MV model had better discrimination 
(C-statistic: 0.62 vs. 0.57).

She et al. developed a deep learning model with a 
training data of 12,912 samples which incorporated 127 
predictors including the TNM staging system (26). At the 
same time, they developed a model only including TNM 
staging system, and the results showed that the performance 
of the deep learning model was better than the TNM model 
in C-statistics (0.739 vs. 0.706).

WHO-PS
WHO-PS is the Eastern Cooperative Oncology Group 
Performance Status Scale (ECOG-PS), which is mainly 
used to assess the functional status of cancer patients from 
the clinical manifestation of tumors, patient activity, and 
the proportion of time in bed. Although WHO-PS is a 
subjective factor that would, relatively speaking, cause a 
heterogeneous group, it is increasingly applied to prediction 
models of cancer (23,27).

Many researchers have suggested that WHO-PS 2 
is a precise indicator of a bad prognosis (16,28), and for 
patients whose WHO-PS ≥3, guidelines recommend the 
best supportive treatment, which most researchers take into 
exclusion criteria (28,29).

Prelaj et al. (27) conducted a retrospective study of  
154 patients with advanced NSCLC receiving immunotherapy 

to find prognostic predictors and develop an effective 
prognostic scoring system. The study highlighted the negative 
prognostic role for OS and PFS of WHO-PS. The researchers 
divided patients into an WHO-PS 0–1 group and WHO-PS 
2 group. The results of the multi-variates analysis suggested 
that WHO-PS had the worst prognostic significance for OS 
(HR =4.85, CI: 2.87–8.20) and PFS (HR =2.20, CI: 1.46–3.131) 
among the five variables finally incorporated, indicating 
patients with a lower WHO-PS might be less likely to be 
benefit from immunotherapy, possibly due to their poorer 
immune function.

While WHO-PS may be a very expectant predictor, both 
before and after treatment, there are some defects in its 
application. Many studies have highlighted the subjectivity 
and variability of WHO-PS due to the evaluator (30-32), 
and the question of how to standardize its evaluation needs 
to be solved.

Pathological classification
The pathological classification of lung cancer has 
been increasingly detailed with the development and 
popularization of immunotherapy and targeted therapy. The 
2015 WHO classification of lung tumors provides more 
information on improving outcomes in comparison to the 
2004 version, and at present, almost all clinical prediction 
models of lung cancer incorporate pathological classification 
or use it as a grouping factor to make a subgroup analysis.

However, the influence of the proportion of various 
subtypes on prognosis, such as whether the proportion of 
micropapillary and solid pattern is correlated with prognosis, 
is of great concern (33). It has been widely shown that the 
proportion of micropapillary is an independent prognosis 
predictor for OS and was associated with poor outcome 
(34-36), and some studies demonstrated that the presence 
or absence of micropapillary pattern is a poor prognostic 
factor. In cases where the micropapillary proportion is 
only 1%, the prognosis of patients is worse than that of 
patients without micropapillary (37,38). This suggests 
that whether as a dichotomous variable or continuous 
variable, micropapillary pattern can be incorporated into 
models as a very good predictor. Additionally, ground-glass 
opacification (GGO) of lung and spread of tumor through 
alveolar spaces (STAS) are both potential predictors to be 
considered (39,40).

The histological classification of squamous cell carcinoma 
is less specific than that of adenocarcinoma (41). According 
to the new WHO pathological classification, the former is 
only classified into keratosis and non-keratosis, which is not 
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significant for prognostic prediction. Therefore, more study 
of the histological classification of squamous cell carcinoma 
is required to determine its prognosis and treatment value.

Biomarker roles of gene-related information in lung 
cancer prognosis and their practical applications in models

Genomic biomarkers for NSCLC prognosis
Genomics has played a significant part in the prognosis 
and treatment management of patients with NSCLC by 
clarifying the role of driver genes and providing information 
on mutation and gene expression information (42-44). In 
NSCLC, any known somatic mutation is associated with 
a higher risk of disease recurrence than NSCLC with no 
mutations, regardless of the type and stage of lung cancer, 
although the mechanism by which this occurs remains 
unclear (45). Researchers have explored the prognosis 
prediction value of somatic mutations, and many studies 
have revealed the prognostic role of some individual 
mutations. For example, the mutation of EGFR (46,47), the 
mutation of TP53 (48), and the mutation of KRAS (49,50) 
have all been linked to a poor prognosis in NSCLC patients. 
Additionally, the mutation of EGFR, ALK, ROS1 and 
BRAF V600E have been defined as drive genes by NCCN 
guidelines, because of their significant roles in prognosis 
of NSCLC (9). In recent years, researchers have paid more 
attention to the prognosis value of co-mutations of multiple 
somatic mutations. For example, Jao and colleagues showed 
that multiple mutations were significantly associated with 
worse DFS but not OS, and multiple mutations with 
TP53 presented an additional risk to prognosis (51). In a 
different study, the same authors revealed the prognostic 
value of TP53 and EGFR co-mutations with data collected 
from 1,441 NSCLC patients (45). The results suggested 
that TP53 mutation is more frequent in EGFR mutated 
NSCLC patients compared to the EGFR wild types, and in 
patients with mutated EGFR, TP53 mutation is a negative 
prognostic factor, which highlighted the prognosis value of 
both co-mutations. However, some contradictions to these 
results have emerged, including those of the study by Labbé 
et al., which showed TP53 co-mutation in resected NSCLC 
patients with EGFR mutated had no significant association 
with OS nor PFS (52), although the small sample size may 
have skewed the results. Somatic mutation data are usually 
used in prediction models in the form of “0” and “1”, 
with “0” representing no mutation and “1” representing 
mutation. Most studies usually use gene mutation 
information to build models, such as EGFR [0/1], but more 

and more researchers begin to pay attention to the different 
effects of different mutation sites of the same gene, such as 
EGFR C. [2,573T >G] [0/1] (53,54).

Another significant prognostic biomarker resulting 
from genomics analysis is tumor mutational burden 
(TMB), which is defined as the number of nonsynonymous 
mutations, especially in immunotherapy patients (55). 
TMB is a comprehensive manifestation of copy number 
alterations and somatic mutations. A study by Devarakonda 
et al. reported high TMB (>8) had a strong positive effect on 
the prognosis of patients with lung cancer after resection, 
and patients with low TMB (<4) were more likely to benefit 
from adjuvant chemotherapy (56). Additionally, the value 
of TMB as a powerful biomarker in immune checkpoint 
indicators therapy has been proposed (57-59). Nevertheless, 
the gold standards for TMB calculation are whole-genome 
sequencing or whole-exome sequencing, which are time-
consuming and costly, and carry a high criterion for the 
quality and quantity of tissue samples. Recently, Tian and 
colleagues constructed a TMB estimation model with 
only 23 genes successfully correlated with whole-exome 
sequencing TMB (60), and the TMB estimated by the  
23-gene panel was shown to have significant correlation 
with DFS and OS in patients with early-stage NSCLC. The 
calculation principle of TMB is very complicated and will 
not be described here (61,62). It is defined as the number 
of non-synonymous somatic variation per Mb region. The 
form applied to the model is its value.

Advances in liquid biopsy provide a significant opportunity 
for acquiring genomics information from circulating tumor 
DNA (ctDNA). Circulating cell-free DNA is a substance 
found in blood and body fluids. The amount of cfDNA in 
cancer patients is much higher than in healthy people, most 
of which is produced in tumor tissue where it is referred to 
as ctDNA. ctDNA enters the periphery with necrotic or 
apoptotic tumor cells and has been proposed as having a 
significant prognosis value in NSCLC (63,64). On the other 
hand, it contains the same information as tumor tissue, such 
as tumor-specific somatic alterations and gene expression (65),  
and can be accessed with minimally invasive methods 
and in real time (66). Wang et al. conducted a study to 
explore whether TMB estimated by ctDNA in blood is 
associated with clinical outcomes in NSCLC patients with 
immunotherapy (63) by constructing a cancer gene panel 
including 150 genes and named this NCC-GP150, to 
estimate blood TMB and measured tissue TMB by whole-
exome sequencing. The results suggested that blood TMB 
estimated by a small set of genes in ctDNA had a stable 
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correlation with tissue TMB measured by whole-exome 
sequencing and was associated with superior PFS. This 
indicated that the clinical limitations of genomics have been 
largely addressed by liquid biopsy.

Epigenetic biomarkers for NSCLC patients
The wide diversity of tumor mutations is a great challenge 
for researchers developing effective biomarkers for diagnosis 
or prognosis because of the large proportions of the genome 
needed to be examined to provide adequate sensitivity (67). 
Moreover, epigenetic alterations are a good substitute due 
to their better stability and homogeneousness in cancer (68).  
The epigenetic biomarkers most studied are DNA 
methylation, histone modifications, chromatin remodeling 
complexes, and long non-coding RNA (lncRNA) (22,69). 
The form of its application to the model is its expression 
quantity.

DNA methylation, the most common epigenetic 
alteration, is also the most widely studied. It has been 
proved that aberrant methylation in the promoter of 
tumor suppress gene (TSG) could eliminate its function 
and promote carcinogenesis (70,71). Although DNA 
methylation is thought to occur at the early stages of 
carcinogenesis, researchers have found that some specific 
genes are also methylated at different tumor stages (72). 
Many methylated TSG promoters have been shown to 
be associated with a worse prognosis of NSCLC, such as 
APC, STXBP6, and RASSF1 (73-76), while many detection 
panels based on DNA methylation biomarkers were also 
shown to be suitable for prognosis prediction (77-79). In 
addition, researchers have acquired DNA methylation 
information based on liquid biopsy. There is considerable 
evidence that gene methylation detection in serum, plasma, 
and sputum is an effective prognostic prediction tool (22,68), 
and Ooki et al. have demonstrated that the methylation of 
gene sequences in malignant pleural effusion and malignant 
ascites is also significant for the prognosis of tumors (77).  
Thus far, only a few studies with small samples have 
reported the prognostic and monitoring effect of ctDNA 
methylation in NSCLC, and most were performed in 
advanced patients. However, many studies have found that 
the level of gene methylation seems to be closely related 
to the prognosis of patients with NSCLC treated with 
neoadjuvant chemotherapy and surgery combined with 
radiotherapy (68).

lncRNAs are non-protein-coding RNA molecules 
composed of more than 200 nucleotides and are often 
expressed in a spatial, temporal, and tissue-specific 

pattern (80). In recent years, some meta-analysis and 
studies have shown that the aberrant expression of 
lncRNA is a significant prognostic biomarker in a 
variety of cancers including NSCLC (81). For example, 
linc00673 could influence the prognosis of NSCLC by 
regulating its proliferation, migration, invasion, and 
epithelial mesenchymal transition (82), and by promoting 
aerobic glycolysis (83). At the same time, some prognostic 
models based on lncRNAs have also been developed, 
including a seven-lncRNAs signature to predict OS 
for patients with early-stage NSCLC (84), and a four-
lncRNAs signature to predict the prognosis of patients 
with NSCLC recently developed by a multicenter 
study in China (85). Around 3,000 lncRNAs have been 
discovered to have numerous biological functions in cell 
growth, differential, and disease progression (86) and 
more are expected to be identified as tumor prognostic 
biomarkers in the near future.

Similarly,  histone modifications and chromatin 
remodeling could also provide valuable prognostic 
biomarkers for NSCLC. Some studies have shown that 
epigenetic changes involving multiple histones, especially 
H2A and H3, have great prognostic value for early 
NSCLC (86), while others have demonstrated that the low 
expression of BRM and BRG1 contained in two functionally 
complementary chromatin remodeling complexes was 
associated with a poor prognosis in NSCLC (87,88). 
However, to date, prediction models incorporating these 
two epigenetic modifications are few, perhaps because such 
modifications are hard to quantify.

The practical application of gene-related biomarkers in 
prognosis prediction models
Increasingly, evidence has shown that molecular biomarkers 
can greatly benefit prognostic prediction. Molecular 
changes in tumors occur when tumor sizes are small and 
hard to capture, so models that combine genetic and non-
genetic factors will have better biological accuracy (79). 
Moreover, the increasing development of sequencing 
technology also provides a convenient condition for the 
application of gene information.

Most studies to date have preferred constructing a 
prediction model with data from a single omics. The 
genomics and epigenomics characteristics have been 
increasingly complex with the discovery of more driver 
genes and signal pathways, so as other omics (22,51). 
Compared with a single prognostic marker, integrating 
multiple prognostic markers into a simple prediction model 
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might effectively improve the predictive value for prognosis. 
For example, when making a prognosis prediction based 
on somatic mutations, the risk must be more accurately 
stratified with an integration of multiple mutations 
compared to predicting with only a simple gene mutation. 
In addition to the mutation of gene level, the specific 
mutation sites could also be incorporated into models (51).  
Similarly, integrating different kinds of biomarkers to 
build predictive models should also make predictions more 
accurate, but may also involve more cost to patients. 

Many researchers have commented on the issue of 
cost-effectiveness. Gray et al. (89) performed a meta-
analysis on lung cancer risk prediction models and found 
that although the discrimination of models incorporating 
genetic information has improved, there has been little 
improvement in epidemiological models, which remain 
costly and time consuming. As there are no systematic 
reviews on lung cancer prognostic prediction models, 
we conducted a literature screening to compare the 
performance of those incorporating gene-related 
biomarkers with those that do not (Table 1). The details of 
the literature screening process are summarized in Figure 1, 
and show that although only some models were compared, 
it appears that incorporating gene-related biomarkers 
cannot significantly improve the performance of prediction 
models.

This may indicate the benefits of incorporating genetic 
information into prediction models should be evaluated 
from more aspects. Despite prognosis prediction models 
being different from diagnostic prediction models in 
function, the cost-effectiveness of each is an issue that 
requires common attention, and whether the added cost 
and time to obtain gene-related biomarkers is worthy 
requires further investigation (89). Some authors believe 
that with the progresses in science and technology, the 
detection technology of bionomics will be more convenient 
allowing more patients to benefit from it (79). Overall, the 
most fundamental role of the clinical prognosis prediction 
model is to allow clinicians and patients to understand the 
prognosis of patients simply, quickly, and effectively, and 
to guide treatment in a timely manner. Therefore, how 
to reduce the number of genes that need to be detected 
as much as possible while ensuring the improvement 
of accuracy is more important than the continuous 
development of new biomarkers (99).

In fact, there is a solution to this problem. More and 
more researchers have begun to select genes based on 
their function in order to reduce the number of genes. At 

present, more and more mechanisms have been found to 
be related to tumor genesis, development and prognosis, 
such as hypoxia (100,101), autophagy (102,103), ferroptosis 
(104,105), immune microenvironment (106) and so on. At 
the same time, more and more genes have been found to 
be associated with these mechanisms. Genes with similar 
functions have been collected by some researchers into a 
set of genes called a functional gene set, such as ferroptosis-
related genes (107). Such models, based on specific 
functional gene sets, have practical applications, especially 
in drug use, and could provide clinicians with new ideas 
for treatment (103,108). For example, autophagy, has been 
found as a new way to treat cancer (109-111). It plays a role 
in the occurrence and development of tumors by virtue of 
various mechanisms. At the same time, various autophagy 
mechanisms can also inhibit cancer. On this basis, Zhang  
et al. (103) downloaded 210 autophagy-related genes from 
the Human Autophagy Database (HADb, https://autophagy.
lu/clustering/index.html). Then 1496 lncRNAs were 
identified by a coexpression analysis. Finally, a 9 autophagy-
related lncRNAs were screened to construct a prognostic 
model for NSCLC. According to this model, patients were 
divided into high-risk and low-risk groups. The significance 
of this model is that patients in the high-risk group may be 
more likely to receive autophagy-related therapy. Obviously, 
this model is more targeted from the selection of genes, 
which greatly reduces the amount of calculation needed 
to establish the model, and at the same time increases the 
practicality of the model, and puts forward more intuitive 
opinions on the treatment of diseases. Of course, the 
application of the model depends on the development 
of related drugs or treatments. Similarly, starting with 
a pathway, genes involved in an important pathway are 
selected to model the set of genes to be screened, which has 
the same effect with selecting the specific functional gene 
sets (111).

Potential predictors that were not included or were not 
examined in detail in the model

Marital status
Recently, Chen et al. recognized the prognostic role 
of marital status in lung cancer (112). In the model for 
predicting the prognosis of NSCLC with marital status, 
the HR of married patients versus unmarried patients was 
0.914 (CI: 0.896–0.933, P<0.001) by univariate analysis and 
0.869 (CI: 0.851–0.887, P<0.001) by multivariate analysis. A 
prognostic model of squamous cell carcinoma in the elderly 
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Table 1 Discrimination performance of the prediction models screened by the systematic review

Title Reference Gene-related
Training 

sample size
C-statistics in 

training set
Test sample 

size
C-statistics in 
validation set

The development and external validation of 
an overall survival nomogram in medically 
inoperable centrally located early-stage non-
small cell lung carcinoma

Duijm et al. (90) No 220 0.640 92 0.620

A nomogram based on CT deep learning 
signature: a potential tool for the prediction of 
overall survival in resected non-small cell lung 
cancer patients

Lin et al. (91) No 231 0.800 77 0.723

Development and validation of a nomogram 
for preoperative prediction of lymph node 
metastasis in lung adenocarcinoma based 
on radiomics signature and deep learning 
signature

Ran et al. (92) No 200 0.820 60 0.861

A seven-gene signature with close immune 
correlation was identified for survival 
prediction of lung adenocarcinoma*

Zou et al. (93) Yes 499 0.781 180 0.659

Identification and validation of a tumor 
microenvironment-related gene signature for 
prognostic prediction in advanced- stage non-
small-cell lung cancer*#^

Zhang et al. (94) Yes 192 0.681 91 0.637

Development of an immune-related gene pairs 
signature for predicting clinical outcome in 
lung adenocarcinoma*#

Wu et al. (95) Yes 465 0.87 431 0.803

Identification of a 5-gene metabolic signature 
for predicting prognosis based on an 
integrated analysis of tumor microenvironment 
in lung adenocarcinoma

Yu et al. (96) Yes 535 0.767 442 0.685

A model of twenty-three metabolic-related 
genes predicting overall survival for lung 
adenocarcinoma*#

Zhao et al. (97) Yes 445 0.734 393 0.742

A prognostic nomogram combining immune-
related gene signature and clinical factors 
predicts survival in patients with lung 
adenocarcinoma#

Song et al. (98) Yes 500 0.652 442 0.632

*, more than one external validation set was used, and the one with the largest sample size was compared; #, time-dependent ROC curves 
were made, and the ROC curve with the longest predicted survival time was compared; ^, several models were made according to the 
different end points of the study, and the model with OS as the end point was compared.

carried out by Chen et al. (113) included marital status as 
one of the predictors, and the HR of unmarried versus 
married persons was 1.146 (CI: 1.103–1.190, P<0.001) by 
univariate analysis, and 1.042 (CI: 1.000–1.085, P=0.049) 
by multivariate analysis. While studies showing the effect 
of marital status on the prognosis of lung cancer patients 
date back to 2007 (114), those examining the relationship 

between marital status and prognosis in patients with 
NSCLC have yielded different results using data from 
different regions. Studies conducted in the United States 
have generally concluded that unmarried patients have a 
worse prognosis than those who are divorced or married, 
while studies in Japan have shown that divorced patients 
have a worse prognosis (115,116). Overall, unmarried 
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patients have worse overall survival than those who had 
been married (married or divorced) (112-118). The 
differences in these results may indicate marriage is not a 
direct influence on tumor prognosis, which could result 
from several factors, such as sociodemographic differences 
in culture and economy between regions.

Chen et al. also noted that the current studies only 
recorded marital status at the time of diagnosis and did 
not record information on changes in marital status after 
diagnosis, which could lead to biased results (113). On the 
other hand, the present data used in most relevant studies 
we reviewed are from 10 years ago, and the data source is 
relatively single. Due to changes in social demographics, 
published conclusions may be different from the current 
situation, and it is difficult to translate the existing research 
conclusions into practical applications. Therefore, more 
new data are needed to carry out relevant studies.

Inflammation scores
The difficulty of obtaining extensive lung cancer tissue in 
many cases underscores the value of blood biomarkers (119). 
The role of inflammation in cancer progression is broadly 
accepted and inflammatory biomarkers are established 
prognostic predictors (120). However, using a single 
biomarker of inflammation to predict prognosis may be 
premature. Therefore, inflammation scores combined with 
multiple inflammatory biomarkers, such as NLR, PLR, 
ALI, and SII may provide greater accuracy (121-127). The 

examination indexes included in inflammation scores can be 
obtained in routine diagnostic tests, including blood routine 
and blood biochemical tests. These tests are convenient and 
cheap to implement and have great potential for clinical 
application.

Mandaliya et al. (127) collected data from 279 patients 
with advanced NSCLC to conduct unified evaluation 
of PLR, NLR, ALI, and LMR (110) for the first time. 
The prognostic effect of these factors was assessed by 
establishing their association with OS before and after 
treatment, and it was found that basal high PLR and 
NLR were associated with poor prognosis. However, 
while the study illustrated the relationship between these 
inflammatory scores and prognosis, it did not establish a 
quantitative relationship within a model.

Sandfeld-Paulsen et al. (128) evaluated five existing 
inflammatory scoring systems (NLR, PLR, GPS, 
optimization of three of them—CNG, ACBS) using a dataset 
of 275 people, with the systems optimized by including 
comorbidity, age, PS score, TNM stage, and smoking. After 
the model was established and tested, the order of C statistics 
from small to large was as follows: original inflammatory 
score model, TNM staging model, original inflammatory 
score +TNM+PS model. Among them, ACBS, which is 
a scoring system developed by the authors themselves 
and differs from CNG in that the rate is replaced with a 
parameter and globulin is included, had the best prognostic 
effect. Most patients with lung cancer have comorbidities that 

Figure 1 The literature screening flow chart. Studies published in PubMed in the past one year were searched on April 26, 2021. The 
key words were: ((prognosis) AND (survival) AND (non-small-cell lung cancer) AND (prediction model) OR (signature) AND (AUC) 
OR (C-index)). Literatures were excluded by the following exclusion criteria: (I) not a study for the prognosis of NSCLC, (II) a model or 
signature was not developed, (III) the full articles could not be acquired, (IV) the prediction model was not validated in external datasets, (V) 
the c-index and sample size of prediction models were not assessed or reported in both training and validation datasets. NSCLC, non-small 
cell lung cancer.

Studies identified 
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affect inflammatory factors (129), and their influence must be 
considered when using inflammatory cytokines as prognostic 
predictors, and Sandfeld-Paulsen et al. addressed this by 
building a multi-factor model. However, the limitation of that 
study is that the measurement of inflammatory factors was 
only conducted at one time point, and it may be necessary to 
measure them several times at different time points to more 
accurately and dynamically evaluate the treatment effect and 
patient prognosis.

Although many articles have revealed the relationship 
between various inflammatory scores and the prognosis 
of NSCLC, this indicator has rarely been included as a 
predictor in the prognosis prediction model of NSCLC. 
It is well known that inflammatory markers are easily 
affected by body states, such as complications, so the use 
of an inflammatory score alone for prognosis prediction 
may be unreliable. However, their role as a predictor in an 
appropriate model should be considered. 

Radiomics features
Radiomics involves the study of quantitative features 
extracted from medical images such as CT, MRI, and 
PET, and has been used to assess the prognosis of cancer 
patients (130-133). The use of quantitative information on 
cancer phenotypic characteristics obtained from imaging to 
develop clinical predictive models is an important goal of 
radiomics (134). Existing radiomics studies have provided 
multiple predictors for the prognostic model of NSCLC. 
For example, it has been shown that the imaging features 
of CBCT (cone-beam CT) can be used to evaluate the 
therapeutic effect of lung cancer patients (135). CBCT is 
a clinical image promoted to use in recent years, and its 
image quality is lower than that of conventional CT. In this 
study, through a two-step calibration process, we showed 
the imaging features of CBCT and conventional CT had 
internal conversion, that is, the imaging features of CBCT 
could be used to predict the prognosis of patients with 
NSCLC instead of conventional CT. While this provided a 
subset of new factors for the prognostic model of NSCLC, 
the authors also put forward problems that need to be 
addressed. Compared with conventional CT, CBCT is more 
sensitive to artifacts, and more studies are needed to explore 
the influence of artifacts on CBCT radiomics. In addition, 
we believe that the excessive selection of predictors is also 
a problem. In this study, 149 features were included in the 
establishment of the model from 1,119 candidate features, 
which was a great obstacle to the clinical application of the 
model. Future studies should focus on screening out more 

representative features for model building.
There is another key advantage that radiomics features 

could provide is that it overcomes the problem of continuity 
of predictors, including of time and space continuity. It 
is wide known that tumors are a continuously envolving 
biological system, a continue predictor could greatly improve 
models. Profiting from the development of machine learning 
technology, radiomics features used for modeling have been 
developed from quantifiable features extracted manually 
from traditional images to imaging images without artificial 
definition (136-138). In 2019, Xu et al. (139) constructed a 
deep learning model from time-series CT-images to predict 
lung cancer treatment response to chemoradiation. The 
researchers included 179 stage III NSCLC patients treated 
with chemoradiation, and established a deep learning model 
using their pre- and post-treatment CT images at 1,3, and  
6 months. The AUC of the model predicting 2-year overall-
survival was 0.74 (P<0.05). The models stratified patients into 
low and high mortality risk-groups, significantly associated 
with overall survival (HR =6.16, 95% CI: 2.17–17.44,  
P<0.001). Regardless of the discrimination of the model, 
after all, AUC can be improved by increasing the sample size 
or changing the statistical analysis method. The key point of 
this study is that it solved the problem that the predictors in 
the prognostic prediction model are not capable of dynamic 
evaluation. Moreover, the change of input predictors 
from traditional numbers to two-dimensional images is a 
qualitative leap in the development of models.

The development of radiomics has promoted the 
development of personalized medicine. By the early 
identification of quantitative markers of treatment response, 
treatment can be adjusted in time (140). Currently, 
most predictive models characterized by imaging omics 
lack reproducibility and external validation, and cannot 
be applied in clinical practice (141). In addition, the 
standardization of imagomics features, including the 
standardization of images and workflow, should be a focus 
of development (134,140,142).

Development, validation, and assessment of 
models

Development

First, data is the basis on which models are built. Nowadays, 
more and more databases are being created and published, 
such as The Cancer Genome Atlas (TCGA), Gene 
Expression Omnibus (GEO). More and more researchers 
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tend to use data from databases to build their own models. 
This has promoted the development of clinical prediction 
models. Data should be cleaned prior to application to 
modeling, including steps of quality control, standardization, 
and batch removal. Part of the database or datasets has 
completed this step of processing, researchers can directly 
use the data. Some researchers tend to combine multiple 
data sets to build models. Because different data sets have 
different data processing methods, different sources, and 
even different sequencing platforms, direct integration of 
them into a new data set leads to very large heterogeneity. 
Therefore, it is necessary to remove batch effects and 
standardize before integration. R packages “lumi”, “limma” 
and “beadarry” can be used for quality control and 
normalization, “sva” can be used for batch removal. 

The establishment of new models relies on the proposal 
of innovative predictors. After potential predictors are 
identified, they are further screened with univariate and 
multi-variates analysis as the candidate variables. In fact, 
after determining the predictors to be screened, the 
researchers generally did not include all of this information, 
but selected variables that were significantly different 
between the experimental and control groups. For example, 
in the prognostic prediction models of NSCLC with gene 
expression, the researchers will first compare the gene 
expression in cancer tissue with that in normal tissue, the 
basic way is that the two samples are tested with Student’s 
t test, and then select the genes with significant differences 
in expression in the two groups to be included in the next 
screening, such as those whose adj.P value is less than 
0.05 and whose absolute value of logFC (log2FoldChange) 
is greater than 1. In fact, this method of screening for 
variables that vary significantly between the experimental 
and control groups is universal when there are many 
predictors to screen for, not just for gene-related models. 
For example, Nair et al. (143) have carried out a study 
that using machine learning techniques to predict EGFR 
mutations in NSCLC by radiogenomics. Before feature 
screening and model building, 326 imaging omics features 
were analyzed by linear discriminant analysis (LDA) to 
screen out those more important features and rank them 
by importance. Although the author did not specify how 
many features were screened out by this step, the author 
also clearly indicated that this step could greatly reduce the 
possibility of overfitting the model. In fact, this approach 
is similar to difference analysis. In this study, 326 imaging 
features of patients with EGFR mutated and patients with 
EGFR wild-type were analyzed, among which adj. P<0.05 

were screened out, and the features with greater changes 
were sorted according to the absolute value of logFC to 
enter the next stage of screening. This approach has the 
same effect as the LDA method adopted by the author. 
After that, univariate analysis is used to primarily screen 
out the predictors which have influence on the outcome, 
and multi-variates analysis can eliminate the bias caused 
by other confounding factors by stepwise regression or 
The Least Absolute Shrinkage and Selection operator 
(LASSO). According to different types of predictors, clinical 
prediction models can also be divided into epidemiological 
models, clinical models, and biomarker models (89). 
There are many ways to develop models, such as logistic 
regression to dichotomous outcomes and COX regression 
to time-event outcomes (144). Prognosis prediction models 
are used to evaluate the survival probabilities in future 
years, so COX regression is used widely. In recent years, 
machine learning has been applied to the development of 
clinical prediction models (145,146), and in a background 
of the rapid development of high-throughput sequencing, 
more models are incorporating gene-related information 
for analysis. Machine learning can effectively analyze 
large samples of biomedical data containing genomic and 
genetic information and elucidate the complex biological 
mechanisms involved (146). Researchers should choose the 
most appropriate way to develop a model according to the 
difference of the outcome variables.

Validation

When a regression model is developed and fitted on a 
particular data set, the model must fit the random changes 
within the data set. However, when the model is applied to 
other data, its fitting performance may not be satisfactory due 
to the unique internal random variation of the data set (147). 
Therefore, models must be validated by internal validation 
and external validation. Internal validation is mainly used for 
the correction of overfitting and optimism by cross-validation 
and optimism-corrected bootstrapping (11). However, 
external validation that tests the model with different data 
from the original is more convincing. It is also necessary to 
assess the accuracy of models. Tammemägi et al. (147) found 
that internal validation tends to underestimate the loss of 
predictive performance observed when the model is applied 
to new data. However, in reviewing existing prognostic 
models, every model has its own external validation dataset, 
and there is no unified dataset for external validation of 
existing models to create a rigorous evaluation environment, 
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which means that comparison is difficult. Additionally, the 
independent external validation of biomarker models and 
clinical models is inadequate, which could be due to the high 
cost and disinterest of volunteers.

Assessment

After the development and validation of models, some 
critical indexes should be used to assess them, and when this 
does not take place, serious bias may occur (148). The main 
components of model assessment are discrimination and 
calibration. Discrimination refers to the ability to distinguish 
case from control, which is most widely represented by an 
area under the receiver operator characteristic curve (AUC) 
and concordance or c-statistic, and the two are numerically 
equal. However, discrimination can only evaluate the ability 
to classify correctly, and does not reflect the ability of a 
model to predict individual probabilities accurately. To 
correct this, calibration is introduced. Calibration has been 
measured by goodness-of-fit tests (149), and the Hosmer-
Lemershow statistic has been used for logistic regression. 
However, this method has been criticized for its instability of 
P value (150). The most widely applied method for assessing 
calibration is plotting-observed probabilities versus model-
predicted probabilities. Some modelers also use the Brier 
score, which is a proper scoring rule that is affected by both 
discrimination and calibration (151). However, differentiation 
and calibration alone can only reflect the accuracy of model 
prediction and cannot directly reflect whether patients can 
benefit from it in clinical practice. Decision curve analysis 
(DCA) integrates the preferences of patients and decision 
makers into the curve, directly showing the extent to which 
patients can benefit from a decision, which meets the needs 
of clinical application and is an effective supplement to an 
ROC (146,152).

The performance of models developed by different 
methods with the same data set will not be the same, and 
no method is consistently better than others. This leads to 
a status quo, in that modelers may report the best indexes 
alternatively, which increases the difficulty for comparison, 
and calls for a unified assessment rule to be identified.

While development, validation, and assessment are 
indispensable in clinical prediction model research, most 
currently published models are unsatisfactory in their 
validation and evaluation. As the focus of this study is not 
on the methodology of the model, we have provided a brief 
introduction only, and more details on the development, 
validation, and assessment of clinical prediction models are 

discussed in Harrell et al. (153).

Visualization of models

Generally, the regression formula should be reported in a 
logistic or COX regression model to allow validation by 
other researchers. Some modelers have also transformed 
the formula to a risk score to make it easier to understand 
and practice. For example, we have developed a survival 
prediction model for NSCLC and reported a risk score 
formula: 
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Age: represented age of diagnosis; stage: I/II =1, stage 
III/IV =2; EGFR, PIK3CA, TP53: mutation =1, no 
mutation =0 (53).

Visual depictions such as nomograms, graphical score 
charts, and website/mobile apps convey research results in an 
accessible manner. In this study, we used a nomogram (Figure 2) 
to assign a score to each patient on the corresponding axis of 
variation, and the sum of these numbers could determine the 
location on the total points axis. This carries the advantage of 
displaying multiple time points which, along with continuous 
and categorized predictors can also be presented on the one 
interface. However, nomograms can appear complex at first 
sight and require an explanation as to how they should be 
used (148). In addition, the result can be inaccurate due to 
the low pointers number for predictors resulting in personal 
equation during observation. A dynamic nomogram can 
be plotted by the R package “DynNom” (154), which is a 
web calculator, offering a high-precision and convenient 
method which may gradually replace the basic nomogram. In 
addition, this evaluation method, which relies on the network 
and mobile devices, can be easily embedded into the patient's 
diagnosis and treatment system to monitor their condition 
anytime and anywhere.

The format depends on user  and environment 
conditions. Guides to presenting clinical prediction models 
for use in clinical settings provide key information for 
modelers when selecting visualization form (155). However, 
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there is a restriction in that the guideline is only appropriate 
for traditional models using logistic or COX regression. 
As machine learning is increasingly used, so are some new 
forms of visualization, and a standard which is similar to the 
guide to presenting clinical prediction models should be 
formulated and applied.

Bias assessment based on PROBAST

PROBAST is a prediction model of bias assessment tool 
for assessing the risk of bias (ROB) and has applicability to 
review prediction models (156). It consists of four domains: 
participants, predictors, outcome, and analysis, and includes 
twenty specific items facilitating quality control (157). The 
assessment tool was designed for the systematic review of 
prediction model studies and has been applied in many 
areas including breast cancer, kidney cancer, lymphocytic 
leukaemia, and oropharyngeal cancer (158-161). We 
assessed the bias of the nine studies mentioned above 
using PROBAST and the results are shown in Table 2. 
While the applicability to review was not assessed because 
a systematic review question was not set, the results of 
the overall judgement are strict. The prediction models 
identified as “low ROB” were set when low ROB was seen 

in all domains, and a “high ROB” was reached if at least one 
domain had high ROB. While the overall judgement about 
concerns regarding applicability was the same, a prediction 
model was not validated in an external dataset, the study 
was judged as high ROB even if all domains had low 
ROB. Therefore, we excluded the studies without external 
validation.

From the results, all included studies had a “high ROB” 
in the overall judgement. The main ROB was due to the 
domain “analysis”, and the domain “participants” was 
unclear because many researchers did not note the inclusion 
and exclusion criteria of subjects.

The designers of PROBAST have broadened its scope 
of application to allow it to be used as a tool or yardstick 
for critically evaluating the original studies of predictive 
models. The development team of PROBAST recommend 
that researchers should refer to it to avoid the ROB from 
study design and datasets at the commencement of a study 
and should assess the applicability of statistics methods 
according to PROBAST during the study. After the study 
is completed, scholars or experts independent of the 
model development team should be invited to evaluate the 
methodological quality of the model to control the bias of 
the study (157).
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Figure 2 Nomogram for predicting the survival of patients with lung cancer at 3, 5, and 10 years based on data from TCGA. TCGA, The 
Cancer Genome Atlas.
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Table 2 Results from the ROB assessment of nine studies using PROBAST

Study
ROB Applicability Overall

Participants Predictors Outcome Analysis Participants Predictors Outcome ROB Applicability

The development and external 
validation of an overall survival 
nomogram in medically inoperable 
centrally located early-stage non-
small cell lung carcinoma

– – – + +

A nomogram based on CT deep 
learning signature: a potential tool 
for the prediction of overall survival 
in resected non-small cell lung 
cancer patients

– – – + +

Development and validation of 
a nomogram for preoperative 
prediction of lymph node metastasis 
in lung adenocarcinoma based 
on radiomics signature and deep 
learning signature

– – – + +

A seven-gene signature with close 
immune correlation was identified 
for survival prediction of lung 
adenocarcinoma

? – – + +

Identification and validation of a 
tumor microenvironment-related 
gene signature for prognostic 
prediction in advanced-stage non-
small-cell lung cancer

– – – + +

Development of an immune-
related gene pairs signature for 
predicting clinical outcome in lung 
adenocarcinoma

? – – + +

Identification of a 5-gene metabolic 
signature for predicting prognosis 
based on an integrated analysis 
of tumor microenvironment in lung 
adenocarcinoma

? – – + +

A model of twenty-three metabolic-
related genes predicting overall 
survival for lung adenocarcinoma

– – – + +

A prognostic nomogram combining 
immune-related gene signature and 
clinical factors predicts survival in 
patients with lung adenocarcinoma

? – – + +

+, low ROB/low concern regarding applicability; –, high ROB/high concern regarding applicability; ?, unclear ROB/unclear concern 
regarding applicability. ROB, risk of bias.
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Conclusions

The wide application of next-generation sequencing 
technology provides a variety of predictive factors for 
clinical prediction models. However, it seems that 
gene-related biomarkers cannot obviously improve the 
performance of models. An urgent solution as to how to 
simplify the required biomarkers while ensuring stability 
is required. The TNM staging system, WHO-PS, and 
pathological classification should be incorporated into all 
models, and the existing models should be validated in a 
large external dataset to make a meaningful comparison. 
Moreover, the current prognosis prediction model of 
NSCLC is at a high ROB, and promoting the application 
of PROBAST may improve this situation. In addition, 
a systematic review of the prognosis prediction model 
research of NSCLC is required.
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