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Objective: To broadly review the modern management of brain metastases.
Background: Brain metastases are the commonest neurological manifestation of cancer and a major 
cause of morbidity in cancer patients. Brain metastases are increasing in frequency, as a result of longer 
life expectancy of cancer patients, more sensitive methods for brain metastasis detection and an ageing 
population. The proportional incidence of brain metastases according to cancer of origin, from greatest to 
least, is lung cancer, melanoma, renal, breast and colorectal cancers. Patients with lung cancer and melanoma 
are most likely to have brain metastases at diagnosis. Brain metastases cause a variety of symptoms, 
depending on their size and location, whether they cause mass effect and oedema, compression of the brain 
parenchyma, or focal neurological deficits. The major differential diagnoses of brain metastases include 
primary tumours and vascular/inflammatory lesions. Prognosis is dependent on the site, number and volume 
of lesions, the patients’ performance status, age and the activity and extent of extracranial disease. 
Methods: English literature articles in PubMed from 1950 to June 2021 were reviewed. Article 
bibliographies provided further references.
Conclusions: Treatment of brain metastasis patients has moved from considering them as a homogenous 
population of patients, to individualised treatment. In those brain metastases patients of satisfactory 
performance status with a solitary lesion, especially one in a non-eloquent/accessible area causing significant 
mass effect and/or raised intracranial pressure or for whom the diagnosis is in doubt (histology needed), 
surgical resection is usually the treatment of choice. For multiple brain metastases, radiotherapy with or 
without systemic therapies are usually employed. For relatively fit patients with limited numbers of brain 
metastases (e.g., 4 or less), stereotactic radiosurgery is standard of care. Current clinical trials are testing 
the efficacy of stereotactic treatment alone for >4 brain metastases (although it is increasingly used for such 
patients in many centres) as well as integration of local therapies with targeted and immunological therapies 
in appropriately selected cases. In certain circumstances, cranial irradiation can be omitted.
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Introduction

Brain metastases (BM) are the commonest neurological 
manifestation of cancer and a major cause of morbidity in 
cancer patients. It was estimated that in 2020, there were just 
under 150,000 cases of cancer in Australia, and just under 
50,000 cancer-attributable deaths (1). Of the 150,000 cancer 

cases, over 20% will develop BM (>30,000 patients) (2).  
BM are increasing in frequency, as a result of longer life 
expectancy of cancer patients, more sensitive methods for 
BM detection and an ageing population.

The proportional incidence of BM varies according 
to cancer of origin; from greatest to least: lung cancer, 
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melanoma, renal, breast and colorectal cancers (3). Patients 
with lung cancer [both small cell lung cancer (SCLC), 
and non-small cell lung cancer (NSCLC)] and melanoma 
are most likely to have BM at diagnosis (4). Furthermore, 
the molecular subtypes of different cancers effects BM 
incidence (and treatment—see below). Patients with 
melanomas with BRAFV00E or NRAS mutations are more 
likely to develop BM (5,6), as are patients with EGFR-
mutant NSCLC variants (7) and patients with HER2+ and 
triple-negative molecular subtypes of breast cancer (5).

BM can manifest pleiotropic clinical features. These 
depend on their size and location, whether they cause 
mass effect and oedema, compression of the brain 
parenchyma or focal neurological deficits. The major 
differential diagnoses of BM include primary tumours and 
vascular/inflammatory lesions. Intracranially, the most 
common sites for BM are the cerebral hemispheres (80%), 
cerebellum (15%) and basal nuclei/brainstem (5–10%) (8).  
Most hemispheric lesions occur at the grey-white matter 
interface. Prognosis is dependent on the site and number 
of lesions, the patients’ performance status, age and the 
activity and extent of extracranial disease. These factors 
have been incorporated by the Radiation Therapy Oncology 
Group (RTOG) into a useful prognostic index, the 
Graded Prognostic Assessment (GPA) scoring system (9).  
GPA scores closely correlate with overall survival. Since 
the extent of extracranial disease is commonly a major 
prognosticator, this can explain why even successful 
treatment of intracranial disease may not impact overall 
outcome: over 50% of patients with BM die of uncontrolled 
extracranial disease (10). Here, the major focus of BM 
management is the maintenance of quality and perhaps 
quantity of life and hopefully, avoidance of a protracted 
neurological death. 

I present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
dx.doi.org/10.21037/atm-21-3665).

Objective

Treatment  of  pat ients  with BM has  moved from 
considering them as a homogenous population of 
patients, to individualising treatment. Despite advances 
in surgery, radiotherapy and systemic therapies, the 
prognosis of patients with BM remains poor, with 
median survivals, depending on prognostic factors, of a 
few months to around a year (4,11). However, a notable 
exception is the more protracted survival in subsets of 

patients selected for appropriate molecular therapies, 
where survival can be as high as multiple years (5,12). In 
patients of poor performance status, best supportive care 
is often appropriate. In those BM patients of satisfactory 
performance status with a solitary lesion, especially one in 
a non-eloquent, accessible area causing significant mass 
effect and/or raised intracranial pressure or for whom the 
diagnosis is in doubt (histology needed), surgical resection 
is usually the treatment of choice. This has historically been 
followed by radiotherapy (RT) to the whole brain (WBRT), 
which can significantly increase local control (13), but has a 
lesser impact on overall survival.

M o r e  r e c e n t l y,  i n  a n  a t t e m p t  t o  r e d u c e  t h e 
neurocognitive and QoL deficits attributed to WBRT 
(see below), for limited numbers of BM (e.g., 4 or less), 
stereotactic radiotherapy (SRT) [or stereotactic radiosurgery 
(SRS), which is a single fraction of SRT] has been applied. 
(The term SRS will subsequently be used throughout this 
article to cover both SRS and SRT). Current clinical trials 
are testing the efficacy of SRS alone for >4 BM, as well as 
postoperative SRS (‘cavity SRS’). Ongoing SRS studies are 
also examining integration of SRS with targeted systemic 
therapies that cross, and are retained within, the blood-
brain-barrier and blood-tumour barrier and/or which 
generate an immune response. 

Methods

English literature articles in PubMed from 1950 to June 
2021 were reviewed. Article bibliographies provided further 
references. Keywords were: brain; metastases; metastasis; 
surgery; radiotherapy; targeted therapies; immunotherapy.

Symptomatic treatment 

The main symptomatic treatments in BM patients are 
anticonvulsants and steroids. Seizures occur in up to 
25% of BM patients (14). A meta-analysis concluded that 
prophylactic use of anti-seizure medications in BM patients 
without seizures did not reduce their incidence and they are 
hence not routinely recommended (15). 

Steroids, predominantly dexamethasone, are commonly 
used in BM patients to cause decompression from cerebral 
oedema in the short-term. They often lead to dramatic 
symptomatic and physical responses. However, beneficial 
effects of steroids are impermanent and patients should, 
clinical circumstances allowing, be weaned off them as 
early as practicable. Their role in avoiding RT-associated 
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oedema is variable: many patients do not develop oedema 
during WBRT and steroids are not required. For SRS, 
short courses of steroids are often used. Typical dosing is 
around 16 mg/day in divided doses, weaning as appropriate, 
usually within 2 weeks of initiation (16). This should 
avoid significant steroid-related morbidities such as poor 
glycaemic control, weight gain, proximal myopathy, 
impaired wound healing and mood changes. Another 
consideration which encourages judicious steroid use is 
treatment with systemic immune checkpoint inhibitor 
therapies whose effects can be diluted or abrogated by 
steroids (17). 

Local therapies: surgery

In patients of appropriate fitness (e.g.,  Karnofsky 
Performance Score ≥70) (18), surgery is usually employed 
for those with a single large BM. Surgery can establish a 
histopathological diagnosis, provide tissue for molecular 
analyses, achieve decompression and reduce cerebral mass 
effect. The morbidity and mortality of surgical resection is 
falling and improved outcomes are associated with higher-
throughput surgical centres (19). More recently, surgical 
resection of BM has been followed by focussed RT to the 
excision cavity—see below.

However, surgery alone, even in contemporary series, 
has been found insufficient for achieving high rates of BM 
local control. When combined with adjuvant RT, surgery 
prolongs survival, as shown in two randomized trials of 
solitary BM (20,21). Some data indicate that up to three 
BMs can be successfully treated with surgical resection (22). 
As part of the modern management of BM, tissue obtained 
from resection can be used for molecular analyses, to guide 
subsequent selection of targeted therapies, depending on 
primary tumour type; such BM analyses are important, since 
major molecular differences may exist between the primary 
tumour, extracranial metastases and BM, for which the term 
‘molecular divergence’ has been used (5). Minimally invasive 
surgery is increasingly used to obtain tissue for analysis. 

Local therapies: WBRT

In the United States alone, around 200,000 patients receive 
WBRT each year for BM (23). WBRT has been employed 
for decades as the cornerstone of treatment of BM. It is 
a simple, cost-effective and straightforward treatment, 
provides good palliation and local lesion control as well 
as good distant in-brain control. Non-randomised data 

indicates that WBRT modestly extends survival from 
historical levels of 1–2 to 3–6 months (8). In at least two 
randomised Phase III trials, WBRT was successful in 
abrogating neurological deaths and was associated with 
much lower rates of intracranial recurrence compared to 
focal therapies (surgery, SRS) alone (13,24). 

However, not all clinical trials have demonstrated clear-
cut clinical benefits of WBRT. The QUARTZ (Quality of 
Life after Treatment for Brain Metastases) phase III study 
randomised 538 poor-prognosis NSCLC BM patients, unfit 
for surgery or SRS, to best supportive care or WBRT (25).  
The primary endpoint was quality-adjusted life years. 
There was no difference in quality-adjusted life years, 
survival or steroid use in either arm. This multicentre trial 
was criticised because of the extremely poor prognosis in 
both arms, where few modern BM cases would have met 
the eligibility criteria. However, from these data it could 
be concluded that in poor-prognosis NSCLC patients 
with BM, WBRT conferred no benefit compared with best 
supportive care. Likewise, an Australasian phase 3 study 
of 1-3 BM in metastatic melanoma patients showed no 
increase in in-brain control rates or survival by the addition 
of WBRT (26).

Further, omission of WBRT after focal therapies such as 
surgery or SRS did not impair overall survival in a number 
of randomised trials (24,27,28). WBRT is also associated 
with impairment of both neurocognitive function (NCF), 
as well as leading to deficits in quality of life (QoL) (27-29). 
These adverse effects of WBRT have become more evident 
using the sensitive NCF/QoL measurement instruments of 
the modern era. 

A number of strategies have been used to improve the 
toxicity profile of WBRT. The hippocampus subserves 
higher functions in terms of acute memory and cognition. 
In preclinical investigations, radiation doses as low as 2 Gy 
have been shown to cause hippocampal neural progenitor 
cell dysfunction (30,31). To attempt to reduce some of the 
neurocognitive decline associated with WBRT, hippocampal 
avoidance was developed. Using advanced RT with 
volumetric arc therapy (VMAT), the region surrounding the 
hippocampi can be selectively dose-spared during WBRT, 
using hippocampal avoidance (HA-WBRT) [(32); MJM, 
In the press)]. The HA-WBRT technique appears not to 
be associated with macroscopic recurrences within the 
proximity of the hippocampi, in MRI-screened cases (33). 
The RTOG 0933 Phase II single arm study of WBRT in 
patients with BM from epithelial malignancies (33) showed 
that cognition decline was reduced using HA-WBRT when 
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compared with historical WBRT controls. Specifically, 
HA-WBRT cases had less reduction in the Hopkins Verbal 
Learning Test - Revised (HVLT-R) delayed recall test 
scores than controls (7% at 4 months of 30% at 4 months 
in WBRT controls, P<0.001). Concerns have however been 
raised that the historical controls were different from the 
study subjects, for example, their median survivals were 
relatively lower than the study participants. The entire 
HA-WBT approach has also been questioned, in that the 
hippocampus does not subserve all memory and cognition 
functions and so its sparing may not significantly impact 
cognitive decline in general (34). 

 Some investigators have examined HA-WBRT in the 
context of prophylactic cranial irradiation (PCI), a standard 
component of therapy in limited disease small cell lung 
cancer (SCLC) patients. Redmond et al. [2017] (35) found 
that of 20 SCLC patients treated with HA-WBRT PCI, 
only 20% developed asymptomatic brain metastases at 9 
months, and in none was there a decline in performance in 
any of a number of neurocognitive tests. They also noted 
two cases where recurrence occurred in the underdosed 
(avoidance) region. Further randomised Phase III trials on 
the topic of HA-WBRT are underway. Other investigators 
have pointed out that damage to the genu of the corpus 
callosum, both in cancer and other patients, is related to 
impairment of a broad range of NCFs, similar to those also 
observed in WBRT-treated patients. Analogous to HA-
WBRT, a clinical trial of genu-avoidance using VMAT 
WBRT is underway (NCT03223922). 

A high ratio of NMDA to GABA receptors is important 
for neuronal health. Memantine is a NMDA receptor 
antagonist and thereby neuroprotective agent. It has been 
postulated that RT may adversely affect this balance: in 
the NRG-CC001 phase III trial of memantine plus either 
WBRT or HA-WBRT for BM patients (36) the primary 
endpoint was preservation of memory as assessed by 
HVLT-R testing. With a total of 518 patients randomly 
assigned, the HA-WBRT arm had significantly lower 
cognitive decline than the WBRT arm. This was seen 
predominantly as a result of reduced deterioration of 
executive functioning at 4 months and memory and learning 
at 6 months. Patient-reported symptoms were also better 
in the HA-WBRT arm, but there were no differences in 
overall survival or intracranial progression-free survival in 
either arm. For patients with BM, but without metastases in 
the hippocampal region, these investigators suggested that 
HA-WBRT + memantine is a new standard of care. 

Donepezil is an acetylcholinesterase inhibitor used 

in the treatment of Alzheimer’s Disease. In a phase 
III investigation, it showed some promise (modest 
improvements in memory) in patients with pre-RT-
determined cognitive impairment (37). A single-arm phase 
2 study evaluated Ginko biloba in patients receiving WBRT 
or partial cranial irradiation and found improved NCF with 
increasing time from treatment with this agent (38).

Local therapies: stereotactic radiation

There has been a movement away from WBRT for 
treatment of a small number of BMs (e.g., <4), because of 
its toxicity, as addressed above. SRS is a form of focussed 
RT, where multiple often non-coplanar beams criss-cross 
the BM target, with extremely sharp dose gradients. SRS is 
delivered in one or a few fractions; fractionated regimens 
are often employed for BM lesions adjacent to or within 
particularly sensitive regions of the brain (e.g., brainstem). 
SRS alone however, has a relatively high distant in-brain 
failure rate, occurring without a decrease in overall survival, 
partly because of effective salvage in patients undergoing 
close MRI surveillance. Hence, WBRT was historically 
often given after SRS, as some, but not all (26) trials showed 
a decrease in distant in-brain failure rate when WBRT 
was added. Randomised trials comparing the safety and 
efficacy of SRS alone versus SRS plus WBRT showed, in 
the WBRT arms, a decline in NCF (e.g., HVLT-R scores) 
and QoL (26-28,39). The Brown et al. [2016] study (27) 
showed neurocognitive decline in any one of a number of 
tests, from > one SD from baseline to 3 months, in 64% 
vs. 92% of patients (SRS alone vs. WBRT; P<0.001). Even 
allowing for the costs associated with MRI surveillance and 
salvage therapy, SRS alone also demonstrates superior cost-
effectiveness over SRS+WBRT (40-42). Hence, SRS alone 
has become standard of care for fit patients with ≤4 BM, 
where close MRI surveillance is logistically possible (43-48).

In an attempt to avoid the neurocognitive decline 
associated with WBRT in the setting of resected BM (where 
historically, postoperative WBRT has been utilised), two 
randomized studies reporting in parallel have employed 
cavity SRS (49,50). The Mahajan et al. study [2017] (49) 
showed that, for patients who had 1-3 BM resected, 
postoperative SRS significantly lowered local recurrence, 
whereas the Brown et al. randomised trial [2017] (50) 
reported less cognitive decline in the SRS versus WBRT 
groups, with no difference in survival between the arms. 
These studies support the use of cavity SRS as a standard of 
care after resection of 1–3 BMs. 
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Interestingly, the response of BM appears to be more 
favourable to SRS in breast cancer patients with HER2+ 
disease than in those with triple-negative breast cancer 
(TNBC) (Cagney et al., 2019).

Nguyen et al. [2019] (51) described an SRS technique 
(SPARE: spatially partitioned adaptive radiosurgery) for 
multiple BM that provides relatively lower off-target doses, 
including markedly less dose to the hippocampus. Such a 
single-isocenter SRS technique, delivered in ≤1 hr, may 
ultimately provide the best hippocampal sparing approach; 
SPARE is being prospectively tested in patients with  
5-20 BM (NCT03775330).

Systemic therapies: chemotherapy

Traditional chemotherapy has been largely unsuccessful 
in the treatment of BM, and usually reserved until after 
the failure of local therapies. This has been due to a 
combination of factors, including the blood-brain barrier 
(BBB), blood-tumour barrier (BTB) and the presence of 
efficient CNS drug efflux pumps such as p-glycoprotein, 
which all combine to reduce local drug concentrations in 
BM. Drug concentration heterogeneity in BM is also a 
factor (52). However, traditional chemotherapy responses 
do occur. For patients with BM from NSCLC, responses of 
the order of 10–15% in pretreated patients, to the following 
drug pairs have been recorded: cisplatin in combination 
with vinorelbine, pemetrexed or paclitaxel (53). Likewise, 
similar response rates are seen in breast cancer BM patients, 
but systemic chemotherapy is of little value in melanoma 
BM cases (53). 

Systemic therapies: targeted and immunotherapies, 
according to tumour type

The major tumour types giving rise to BM, for which 
targeted and immunotherapies have made a significant 
contemporary impact, are (I) NSCLC, (II) melanoma and 
(III) breast cancer. 

NSCLC
In NSCLC patients with EGFR mutations, first generation 
EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib, 
icotinib and erlotinib showed activity in NSCLC 
patients with BM in retrospective studies and Phase  
II/III clinical trials (5). In-brain response rates were typically 
of the order of 50–80%, generating overall survivals of  
15–22 months (54,55). Second-generation NSCLC-TKIs 

include neratinib, afatanib and dacomitinib. In two Phase 
III randomised trials of BM in patients with EGFR mutant 
NSCLC, using afatanib, an increase in PFS was observed 
in the study arm versus conventional chemotherapy arm, in 
all patients receiving afatanib. However, despite impressive 
response rates, response durations have been an issue with 
these drugs. Osimertinib, a third-generation EGFR-TKI, 
has improved CNS penetration and shows more durable 
response durations than earlier generation TKIs (53,56) 
and can be considered the TKI of choice for EGFR-mutant 
lung cancer patients with BM. In the Phase III randomised 
FLAURA trial, osimertinib was compared with first line 
EGFR-TKIs as initial therapy. In the brain subgroup 
analysis, the CNS objective response rate was 91% in 
the osimertinib arm versus 68% for the first-line agents, 
while median PFS was not reached in the osimertinib arm  
(13.9 months for the first line TKIs) (57).

Other targeted therapies in NSCLC are directed against 
ALK rearrangement (ALKr) -positive NSCLC brain 
metastases. ALKr occurs in around 4–7% of NSCLC (58). 
A range of ALK-inhibitor TKIs are available, including the 
first generation inhibitor crizotinib, which, although it has 
limited BBB permeability, had higher in-brain activity that 
chemotherapy in a randomised Phase III trial (59), as did 
a later-generation ALK-TKI, ceritinib, which has greater 
BBB penetration (60). Lorlatinib is a third-generation ALK 
inhibitor TKI, which showed in a Phase II trial a 63% 
intracranial response rate after failure of at least one other 
ALK-TKI (61).

A variety of additional molecular targets are emerging for 
NSCLC, and some may prove to show efficacy for NSCLC 
BM. These have been recently reviewed (5).

In recent years, immunotherapies have revolutionized 
the treatment of many cancer types. Immunotherapeutics 
have been raised against various cell surface antigens, 
including PD-1 (e.g., nivolumab and pembrolizumab), 
CTLA4 (e.g., ipilimumab), and PD-L1 (e.g., atezolizumab). 
Response rates are significantly lower for those on steroids 
[e.g., (46)], which is an impediment to ICI efficacy in BM. 
To maximise ICI efficacy, interest has increased in the use 
of the angiogenesis inhibitor bevacizumab as a steroid-
sparing approach to BM-associated cerebral oedema, to 
maximise ICI responses. This is particularly pertinent 
in that ICI treatment can, in the case of an intracerebral 
response, be associated with peritumoural oedema (62), so-
called pseudoprogression, which may be partially or wholly 
abrogated by an antiangiogenesis approach.

ICIs have shown emerging efficacy in patients with 
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BM from subtypes of NSCLC not bearing druggable 
alterations. Pembrolizumab, the anti PD-1 monoclonal, was 
used in a Phase II trial of EGFR wild type NSCLC patients 
with BM. The intracranial response rate in those with PD-
L1 expression was 30%, while none of those without PD-
L1 expression responded (63). Likewise, atezolizumab, an 
anti PD-L1 monoclonal, showed in a subgroup analysis of a 
Phase III randomised NSCLC trial, improved intracranial 
control compared to chemotherapy (64).

Melanoma
For melanoma patients with BM and BRAF mutations, 
targeted therapies have proved highly efficacious. BRAF 
status has been added to the melanoma-specific Graded 
Prognostic Assessment: BRAF mutation has a positive effect 
on prognosis, and melanoma BM patients in the best GPA 
group now have survivals ranging up to 36 months (65).  
BRAF mutations are the only molecular targets currently 
clinically druggable with TKIs in melanoma patients with 
BM. The BRAF inhibitors, dabrafenib and vemurafenib 
have in-brain response rates of 20–38% (66,67). Neither 
dabrafenib nor vemurafenib have been trialled head-to-
head in melanoma patients with BM, but preclinical studies 
suggest that CNS penetration is superior for dabrafenib (68).  
Molecular combination approaches, based on their greater 
efficacy in systemic melanoma, have also been used in 
melanoma BM patients: in a seminal Phase II trial, COMBI-
MB, the mitogen-activated protein kinase (MAPK)-
inhibitor, trametinib, in conjunction with dabrafenib, 
yielded in-brain response rates as high as 55% (69).  
In patients in the most favourable cohort, intracranial 
control was 78%. However, as for other tumour types, 
TKI response durations are often limited to less than  
6 months [summarised in (53)]. Future targeted therapy 
trials should also incorporate QoL and NCF indices, 
especially in combination therapy trials.

ICIs have improved outcomes for melanoma patients 
with BM. In a Phase II study, ipilimumab, a CTLA4 
inhibitor, achieved an 18% objective in-brain response 
rate in those melanoma BM patients not on steroids (70). 
Likewise, pembrolizumab, a PD-1 inhibitor, showed a 
26% intra- and extra-cranial response rate, maintained at  
24 months; most responders were PD-L1-high, whereas 
none of the non-responders were (71).

In melanoma BM patients, dual ICI therapy has 
achieved impressively high intracranial response rates. In 
the CHECKMATE 204 Phase II trial (12), melanoma BM 

patients could be pretreated with SRS or BRAF inhibitors, 
or were treatment-naïve (the majority); with a median 
follow-up of over 20 months, the intracranial response 
rate was 55% (26% complete responses), with 70% 2-year 
survivals, a massive improvement compared with pre-
immunotherapy times.

Breast cancer
In breast cancer BM patients, HER2+ cases have been the 
focus of most targeted therapy trials. The most established 
anti-HER2 therapy for systemic and newly diagnosed 
disease, trastuzumab, has minimal BBB penetration 
however (72). Despite this, some responses to anti-HER2+ 
monoclonal antibodies in HER2+ BM patients have been 
observed: high dose trastuzumab plus pertuzumab was 
delivered in the Phase II PATRICIA study (73). Ten percent 
of patients had an objective CNS response, while over 50% 
achieved a clinical benefit (complete or partial response or 
stable disease for >6 months). 

For HER2+ breast cancer cases with BM, the oral 
TKI lapatinib has been used mainly in conjunction with 
capecitabine, demonstrating in phase II trials response rates 
of 20–66% (depending on whether patients had had prior 
RT) (74). Other HER2-targeted TKIs include neratinib 
and tucatinib. HER2CLIMB was a randomised Phase III 
trial of tucatinib in combination with capecitabine and 
trastuzumab, versus capecitabine/trastuzumab doublet 
therapy in advanced HER2+ metastatic breast cancer (75). 
BM patients had longer progression free and overall survival 
in the tucatinib-containing regimen. 

In the case of TNBC BM patients, ICIs have started 
to contribute to intracranial control. In the IMpassion130 
Phase III Study, atezolizumab plus taxane was compared 
to taxane alone in metastatic TNBC patients, previously 
untreated and with PD-L1-positive cancers (76). Compared 
to the general study population, the hazard ratio for 
progression-free survival was similar for patients with 
BM. Characterisation of CNS responses are awaited from 
subsequent subgroup analyses.

ER/PR-positive, HER2-negative breast cancer has a 
lower predilection than other breast cancer subtypes to 
metastasize to the brain. However, BM are not uncommon 
in advanced disease. In this context, CDK4/6 inhibitors have 
been employed, where abemaciclib seems to have superior 
CNS penetration to palbociclib. In the JPBO Phase II Study, 
abemaciclib yielded a 6% intracranial overall response rate, but 
there was a 25% rate of clinical benefit (defined as above) (77).
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Situations where targeted therapies may 
replace or delay RT

It has been suggested (78) that, based on recommendations 
from the National Comprehensive Cancer Network 
(NCCN), The European Society for Medical Oncology 
(ESMO) and the Japan Lung Cancer Society, cerebral 
irradiation can be avoided until disease progression 
occurs, in the case of asymptomatic NSCLC patients with 
EGFR mutations or ALK rearrangements (ALKr), as 
long as the appropriate TKIs and close MRI surveillance 
are available. Preferred TKIs are osimertinib for EGFR 
mutant patients, and alectinib, brigatinib or ceritinib for 
ALKr patients. Another situation where radiation may 
be omitted or delayed is in melanoma BM patients, with 
small, asymptomatic brain metastases, where ipilimumab/
nivolumab combination therapy could be considered as 
first-line therapy (12).

Combination of targeted therapies and ICIs with 
SRS

There are various theoretical rationales for drug-radiation 
combinations in the treatment of BM (5,53,79-81).  
Such combinations could be considered with the intent 
of improving both local tumour control and distant 
intracranial disease control. Combinations may exert 
biological  co-operation, with resultant treatment 
intensification. Furthermore, drug CNS penetration and 
hence efficacy may be enhanced by localised blood-brain- 
and blood-metastasis-barrier disruption by irradiation, 
whilst p-glycoprotein degradation by irradiation may 
abrogate drug efflux from the irradiated area. For distant 
intracranial disease control, the different modalities can 
spatially co-operate; in the case of immunotherapies, 
abscopal effects can additionally occur, with radiation acting 
as an in situ personalised vaccine (82). De-intensification of 
SRS in lower risk disease by concomitant drug use might 
be considered, with reduction in SRS side-effects, e.g., 
radionecrosis, thereby improving the therapeutic ratio.

There have been many trials of radiotherapy and TKIs 
in NSCLC patients with BM [reviewed in (83)]. Most have 
employed WBRT, and have been Phase II or III trials; three 
meta-analyses are also available (with 980, 1,552 and 2,810 
patients respectively) (84-86). All meta-analyses showed, in 
the radiation+TKI arms, greater response rates, CNS time-
to-progression and overall survival. Although one reported 
no difference in serious adverse events between arms (84), 

the other two reported an increase in any adverse event in 
the radiation+TKI arms (85,86). However, the latter studies 
showed that in general adverse events were tolerable. 
Hence, concurrent use of EGFR TKIs and radiation 
appears effective and tolerable. Remaining questions include 
the optimal sequencing of the two modalities and whether 
NSCLC TKIs increase the risk of radionecrosis after SRS 
radiotherapy. The same question remains for combination 
ICIs and SRS.

For ALK TKIs, there is currently minimal evidence 
for or against their combined use with irradiation; one 
retrospective study of ALKr NSCLC patients suggested 
an increase in ototoxicity with combined ALK TKIs 
and WBRT (87). For WBRT (where the globes receive 
radiation dose), care may need to be exerted because of 
potential overlapping ocular toxicity with crizotinib (83). 
Oto- and ocular-toxicity from the WBRT component might 
be circumvented by using VMAT.

Regarding drug-SRS combinations, it is informative 
to consider 12-month radionecrosis risk rates. For SRS 
alone, the risk is 5.3% (88). When all drugs combined are 
considered, the risk rises minimally, to 6.6%, whereas it is 
8.8% for all targeted therapies, as it is for PD-1/CTLA-
4 ICIs. For anti-HER2 monoclonals combined with SRS, 
the 12-month radionecrosis risk is 9.0%, peaking at 14% 
for EGFR-TKIs (88). Despite this, one meta-analysis 
showed no increased radionecrosis risk with EGFR-TKI 
combinations (84). A number of studies [including (89,90)] 
and including an international meta-analysis of individual 
patient data (79) showed clearly improved overall survival 
in BM patients when ICIs were administered concurrently 
with irradiation. Clearly, caution must be taken if ICIs are to 
be routinely and concurrently combined with SRS. Minimal 
prospective data on the risk of ICI-induced radionecrosis is 
available because the combination of SRS with ICIs is fairly 
new. Caution is especially pertinent in that radionecrosis is 
a delayed phenomenon, and future prospective studies will 
be required to better elucidate the efficacy and toxicity of 
concurrent and sequential ICI-SRS combinations. 

Summary and future

Improved understanding of the biology of BM, including 
the brain- and BM-microenvironment (91,92), BBB and 
BTB (93), as well as the use of in vivo models (e.g., patient-
derived xenografts in immunodeficient mouse strains) (94) 
is expected to aid the development of novel diagnostic and 
therapeutic approaches to BM. Minimally invasive surgery 
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will be increasingly used for obtaining tissue for molecular 
BM classification. Integration of such knowledge into 
prognostic models should improve patient selection for 
precision medicine approaches to BM patients, reduce the 
toxicity of therapy and hopefully extend the current largely 
poor prognosis for this disease. 

In BM patients, new druggable targets are under 
investigation in breast cancer (e.g., CDK4/6 and ER 
signalling pathways, DNA repair pathways), in NSCLC 
(e.g., NTRK fusions, ROS1 rearrangements, KRAS and 
BRAF mutations) and in melanoma (e.g., MEK pathway) 
(5,46,53). In vivo analysis of new candidate drugs will be 
facilitated by phase 0 clinical trials.

Liquid biopsies will almost certainly be increasingly used 
for BM diagnosis and monitoring of the response of BM 
to therapy. Such minimally invasive approaches will aid in 
optimising the personalised use of targeted- and immuno-
therapeutics. For example, for multiple tumour types, there 
is a discordance between the molecular phenotype of the 
peripheral and BM tumours in the same patient (53); liquid 
biopsies could avoid craniotomies in such cases. Advanced 
neuroimaging is expected to shed earlier light on therapy 
responses.

In the future, drugs, including immunotherapeutics 
and targeted therapies, with satisfactory CNS penetration 
and activity against BM, could increasingly and rationally 
be combined with focal BM therapies for the reasons 
mentioned previously. However, their incorporation 
into clinical use will require initial testing, in particular, 
characterisation of radionecrosis rates, in clinical trials. 
Improved integration and sequencing of focal BM therapies 
with targeted and immunotherapies should improve the 
therapeutic ratio.
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