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Background: Oral squamous cell carcinoma (OSCC), as the most common oral cancer globally, is very 
harmful to people’s health. Hypoxia is closely related to many cancers. In this study, we have conducted a 
comprehensive exploration of the impact of hypoxia on OSCC.
Methods: First, we calculated the enrichment score (ES) of hypoxia-related genes in the sample based on 
the enrichment analysis of the single sample Gene Set Enrichment Analysis (ssGSEA) and expressed it as a 
potential hypoxia index (HPI). We first identified the relationship between HPI and survival time in OSCC 
tumor samples. Then we assessed the correlation between hypoxia and the degree of infiltration of various 
immune cells in OSCC tissues, and screened out gene mutations that may be related to HPI in OSCC. 
Finally, we constructed a prognostic model of hypoxia-related genes.
Results: In the immune cell infiltration of OSCC, we found that hypoxia was significantly related to 
the infiltration of eosinophils, macrophages, neutrophils, T helper cells and Th1 cells. In addition, NSD1 
mutations may become a signal to suggest that patients with OSCC have higher HPI. Finally, we constructed 
a prognostic model of 6 sets of hypoxia-related genes (PGK1, JMJD6, S100A4, SLC2A3, DDIT4 and HK1) 
in OSCC.
Conclusions: Hypoxia is closely related to immune cell infiltration, gene mutation, and prognosis in 
OSCC patients.

Keywords: Oral squamous cell carcinoma (OSCC); immune cells; The Cancer Genome Atlas (TCGA); hypoxia

Submitted Aug 26, 2021. Accepted for publication Oct 20, 2021.

doi: 10.21037/atm-21-4990

View this article at: https://dx.doi.org/10.21037/atm-21-4990

Introduction

As the most common oral cancer, oral squamous cell 
carcinoma (OSCC) has become a global health challenge (1).  
Risk factors for OSCC include smoking, drinking, viral 
infections (Epstein-Barr virus, human papillomavirus and 
herpes simplex virus), chewing betel nuts, occupational 
exposure to carcinogens, immune deficiency, radiation, diet, 

and genetic susceptibility (2).
Exploring the tumor microenvironment (TME) has 

attracted more attention to studying the mechanism of solid 
tumors (3). In TME, abnormal tumor growth consumes 
more oxygen and insufficient blood supply, making hypoxia 
a common phenomenon and an important sign in solid 
tumors (4). Many studies have confirmed that hypoxia is 
closely related to treating tumors (5,6). Hypoxia can induce 
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changes in gene expression and might be an independent 
predictor of tumors (7). Furthermore, hypoxia has been 
shown to regulate different factors in TME. Specifically, 
hypoxia can induce immune cells and immune cytokines, 
impair the immune response against cancer (8), and further 
affect immunotherapy (9). In head and neck cancer (HNC), 
the correlation between hypoxia and the efficacy of immune 
checkpoint inhibitors has been confirmed, and subsets of 
HNC have been identified based on the characteristics of 
hypoxia immunity (10-12).

In OSCC, hypoxia can induce epithelial-mesenchymal 
transition (EMT) and promote tumor progression (13). 
Similarly, increasing the level of hypoxia can affect the 
sensitivity of OSCC to chemotherapeutic drugs and reduce 
the efficacy (14). In general, hypoxia has not been fully 
explored in OSCC’s TME. In-depth exploration of the 
mechanism of hypoxia and OSCC, and the selection of 
hypoxia-related prognostic targets, are of great significance 
for understanding tumors and improving prognosis.

In this study, we first downloaded genes related to the 
hypoxia index from the Molecular Signatures Database 
(MSigDB). According to the single-sample Gene Set 
Enrichment Analysis (ssGSEA), different data from The 
Cancer Genome Atlas (TCGA)-OSCC and GEO database, 
the enrichment score (ES) is calculated for the sets samples 
(GSE25099, GSE30784, and GSE41613) and defined as 
hypoxia potential index (HPI). HPI was used to represent 
the hypoxic state in tumor samples. Next, we compared 
the difference in HPI between OSCC tumor samples and 
normal samples, and the relationship between HPI and 
patient survival. We also further explored the relationship 
between the impact of different HPI samples on immune 
cell infiltration in TME and the relationship between gene 
mutations. We found that the increase in HPI is related to 
the higher TME infiltration of eosinophils, macrophages, 
neutrophils, helper cells of T and Th1 cells, and the 
mutation of NSD1 may indicate the high HPI of OSCC. 
Finally, we constructed a prognostic model of 6 sets of 
hypoxia-related genes (PGK1, JMJD6, S100A4, SLC2A3, 
DDIT4 and HK1) in OSCC. These results help us better 
understand the role between immune cells and hypoxia 
and discover new therapeutic targets related to hypoxia in 
OSCC. In this study, we used a more rigorous prediction 
model construction approach to screen prognostic genes by 
cox risk regression, random survival forest variable hunting, 
and for genes with prognostic value, we used a permutation 
approach to screen the optimal combination for predicting 
patient prognosis. In addition, we also investigated the 

relationship between hypoxia and mutations, tumor-related 
pathway. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
dx.doi.org/10.21037/atm-21-4990).

Methods

Data download and preprocessing

TCGA i s  a  c ancer  genomic s  da t aba se  (h t tp s : / /
cancergenome.nih.gov/) ,  which includes genome 
information from many cancer samples and corresponding 
normal samples (15,16). Transcriptome sequencing data 
(FPKM and count expression profile) from patients with 
TCGA-HNSC, corresponding clinical information, 
and mutation data, which were downloaded through 
the University of California Santa Cruz Xena (UCSC 
Xena; https://xena.ucsc.edu/) platform (17). Samples with 
hypopharynx, larynx, oropharynx, tonsil tissue types were 
excluded, and patient data with incomplete follow-up 
information were excluded. Finally, 326 OSCC samples 
were included in our study. The GEOquery R package was 
used to download OSCC sequencing data (GSE25099: 
57 tumor samples and 22 normal samples; GSE30784: 
17 dysplasia samples, 45 normal samples and 167 tumor 
samples; GSE41613: 76 tumor samples) from the Gene 
Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo). Among them, GSE41613 has complete 
patient follow-up information. The study design and 
characteristics of the samples used at each analysis stage are 
shown in Figure 1. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

The HPI of hypoxia index

Next, we continue to explore the relationship between 
HPI and common tumor-related pathways. The NFkB 
signaling pathway (18), the transforming growth factor 
(TGF)-beta signaling pathway (19-21), epithelial-to-
mesenchymal transition (22,23), glycolysis (24,25), 
and angiogenesis (26,27) as common tumor-related 
pathways play a vital role in various cancers. The sets 
of hallmark genes for hypoxia (200 genes) and other 
tumor-related pathways [TNFA signaling via NFKB 
(200 genes), TGF beta signaling (54 genes), Epithelial 
Mesenchymal Transition (200 genes), Glycolysis (200 
genes), and Angiogenesis (36 genes)] were downloaded 
from the Molecular Signatures Database (MSigDB). The 
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enrichment score (ES) of these gene sets was calculated by 
ssGSEA in the ‘GSVA’ package R (28,29), and the hypoxia 
gene list enrichment score was defined as the hypoxia 
potential index (HPI) to computationally dissect hypoxia 
levels/trends of tissue samples. Also, the HPI of the GEO 
datasets was evacuated by ssGSEA.

Survival analysis and intergroup difference of HPI

Calculate the HPI in each sample of TCGA-OSCC and 
GSE41613, and sort the samples. ‘Survival’ and ‘survminer’ 
are used to determine the best cut-off value to group 
samples and draw survival curves for high HPI groups and 
low HPI groups. Welch’s t-test was used to compare the 
intergroup difference between tumor and normal samples, 
and the ‘ggstatsplot’ package was used for plotting.

Tumor sample clustering based on HPI

To further explore the relationship between HPI and OSCC 
subtypes, we performed a gene expression differential 
analysis to identify differentially expressed genes between 
the HPIhigh group and the HPIlow group. Count expression 
profile and edgeR R package were used for differential 
analysis of gene expression. A total of 141 differential 
expression genes (|logFC|>1.2, P<0.01) were selected for 
a consistent cluster analysis. Different clustering variables 
(k) determine the cluster with the highest correlation within 
the group and the lowest correlation between the clusters. 
The ConsensusClusterPlus package and TCGA-OSCC 
data were used for the identification of subgroups (30). The 
‘survival’ package and the ‘survminer’ package were used for 
survival analysis between subgroups.

Data download: download the expression 
profiles and clinical information of 

TCGA-HNSSC, GSE25099, GSE30784 
and GSE41613 datasets

Identification of potential 
hypoxia index

Hypoxia gene lists

Univariate Cox hazard analysis 
(P<0.05)

Screened the prognostic genes 
by random survival forest variable 
hunting (RSFVH) algorithm

Protein-protein interaction (PPI) 
network construction

Nomogram

Survival analysis of hypoxia index

Intergroup differences between 
normal and tumor

Grouped according to survival analysis: 
high HPI and low HPI group

Intergroup differences of tumor-related 
pathways and immune cell infiltration 
between normal and tumor

Correlation between hypoxia and tumor-related 
pathways, hypoxia and immune cells

The relationship between HPI and 
gene mutation

Gene set enrichment analysis and 
GO function enrichment

Gene expression differential 
analysis

Subgroups identification

Survival analysis

TCGA-OSCC

GSE41613

Figure 1 The general design of the research and the flow of the study.
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HPI-related Gene Set Enrichment Analysis (GSEA) and 
Gene Ontology (GO) function enrichment

GSEA helps us determine the correlation between HPI and 
multiple pathways in OSCC (29). In the TCGA-OSCC 
tumor samples, we sorted the samples according to HPI and 
identified differentially expressed genes between the high-
HPI and low-HPI samples. Functional enrichment analysis 
of GSEA and GO based on HPI-related differential genes 
was completed with the ClusterProfiler package (31), and 
the GOplot package is used to visualize the visualization of 
biological data.

The relationship between HPI and tumor-related pathways 
and immune cell infiltration

The study by Bindea et al. provided marker genes for 
24 immune cells (32); based on the marker genes, the 
infiltration level of 24 immune cells in samples from this 
study was calculated by ssGSEA (29). Wilcoxon rank sum 
tests were used to compare the difference in immune cell 
infiltration between samples from the high HPI group 
and the low HPI group. Similarly, the enrichment scores 
of tumor-related pathways (TNFA signaling via NFKB, 
TGF BETA signaling, Epithelial Mesenchymal Transition, 
Glycolysis, and Angiogenesis) and immune cell infiltration 
levels were also compared.

Correlation between hypoxia and tumor-related pathways, 
hypoxia, and immune cells

Whether hypoxia in OSCC is related to common tumor-
related pathways is worthy of further exploration. The 
Pearson correlation coefficient was used in the TCGA-
OSCC and GSE41613 datasets to identify the correlation 
between hypoxia and tumor-related pathways. Furthermore, 
we also analyzed the correlation between different immune 
cells and hypoxia in OSCC.

The relationship between HPI and gene mutation

From UCSC Xena (xenabrowser.net), we downloaded 
the somatic mutation data of TCGA-HNSC. Samples of 
somatic mutation data in the samples we selected before 
were used for the next analysis. The independence test was 
used to calculate the correlation between gene mutation and 
the hypoxia index.

Construction of hypoxia gene prognosis model

There were 200 genes related to hypoxia. First, we used 
univariate Cox hazard analysis to identify hypoxic genes 
with prognostic values, genes with P value <0.05 were 
selected as prognostic genes. We further screened the 
prognostic genes using the random survival forest variable 
hunting (RSFVH) algorithm, after passing the gene 
combinations, the combination with significant P value 
and less number of genes was taken using log-rank test 
and defined as prognostic signature. By “rms” R package, 
the nomogram was constructed based on prognostic genes 
which selected by last step, the nomogram was used to 
calculate each gene’s risk score and predict 1- and 3-year 
survival of OSCC patients in the TCGA dataset. The 
calibration plots were used to evaluate the performance 
of the prognostic nomogram in the TCGA-OSCC and 
GSE41613 datasets.

Construction of a protein-protein interaction (PPI) 
network of hypoxia-related genes

The String database (https://string-db.org/) is a searchable 
database of known PPIs and predicted PPIs. After univariate 
Cox hazard analysis, genes with P<0.05 were selected for 
the construction of PPI.

Statistical analysis

All analyses were performed by R version 4.0.5. Welch’s 
t test, Wilcoxon rank-sum test were used to compare 
differences between groups and Kaplan-Meier method was 
used to compare the prognostic value of different subgroups. 
A P value <0.05 was considered statistically significant.

Results

Survival prediction of HPI in OSCC

According to the best HPI cutoff value, tumor samples in 
TCGA-OSCC and GSE41613 were divided into the HPI 
high group and the HPI low group. Compare the prognosis 
between the two groups and draw the patient’s survival 
curve (Figure 2A,2B). The results showed that in samples 
of TCGA-OSCC and GSE41613, low HPI was associated 
with a better survival time (GSE41613: P=0.00022; TCGA-
OSCC: P=0.013). In the GSE25099 data set, we compared 
the difference in HPI between tumor tissue and normal 
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tissue (Figure 2C). The results suggest that HPI in tumor 
tissue is higher than in normal tissue (P=0.030). In the 
GSE30784 data set, we compared HPI differences between 
normal and tumor (P=4.16e-10), normal and dysplasia 

(P=0.007), dysplasia and tumor (P=0.019), respectively 
(Figure 2D). HPI in normal dysplasia and tumor tissues 
gradually increased, which was consistent with the survival 
curve.

Figure 2 The survival relationship and the analysis of the difference of HPI in OSCC. (A,B) Survival curves in patients with GSE41613 and 
TCGA-OSCC tumors; (C,D) in GSE25099 and GSE30784, the difference in HPI between tumor patients and normal patients was shown 
as violin charts. HPI, hypoxia index.
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Identification of hypoxia-related tumor clusters

Next, we downloaded the OSCC sample count expression 
matrix from UCSC and grouped the samples according 
to HPI. Then, using the edgeR package, the difference 
between the OSCC high HPI group and the low HPI 
group was analyzed, and 141 hypoxia-related differential 
genes (|logFC| >1.2, P<0.01) were obtained. To further 
explore the association between differential genes and 
OSCC subtypes, we performed a consistent cluster analysis 
in 326 tumor samples in the TCGA cohort. By increasing 
the clustering variable (k) from 2 to 10, we found that when 
k=2, the correlation within the group is the highest, while 
the correlation between the groups is low (Figure 3A).  
The overall survival time (OS) was compared between 
the two groups, but no obvious differences were found 
(P=0.088, Figure 3B). Subsequently, a heat map was drawn 
to show the relationship between HPI and patient clinical 
information (tumor grade stage, T, N and M) between the 
two clusters (Figure 3C). The results suggest that there is 
no significant cluster between HPI and the patient’s clinical 
characteristics.

Enrichment analysis of differential genes

We first performed GSEA on the hypoxia-related gene set 
in TCGA. We found that 141 DEGs are enriched in Base 
excision repair, DNA replication, Fanconi anemia pathway, 
Mismatch repair, Ribosome and Ubiquinone, and other 
terpenoid quinone biosynthesis pathways (Figure 4A). The 
results of the GSEA results suggest that OSCC may be 
involved in the damage repair process in tumor tissues, 
which is similar to the role of hypoxia in other tumors  
(33-35). Through the GO annotation, analyze the potential 
functions of differential genes. Muscle system process, 
extracellular matrix structural constituent, and collagen 
binding were the most common GO terms for biological 
processes, cellular components, and molecular functions, 
respectively (Figure 4B).

The relationship between HPI and immune cells

In addition, we compared the relationship between 
immune cell infiltration and HPI in the TCGA-OSCC 
and GSE41613 datasets. The results showed that in 
TCGA-OSCC and GSE41613, the common differentially 
infiltrated immune cells include eosinophils, macrophages, 
neutrophils, helper T cells, and Th1 cells (Figure 5A,5B). 

Infiltration of these immune cells was significantly increased 
in the high HPI group. However, the five tumor-related 
pathway enrichment scores in the high HPI group and the 
low HPI group were also compared using the Wilcoxon 
rank sum test. They showed significant differences in 
the different HPI groups; the HPI high group showed 
significantly higher enrichment scores (Figure 5C,5D).

Correlation between hypoxia and tumor-related pathways, 
hypoxia, and immune cells

Given that both immune cell tumor infiltration and tumor-
related pathways are significantly associated with hypoxia, 
we continue to study the correlation between hypoxia 
and these pathways. The results showed that hypoxia 
and tumor-related pathway ES (TNFA SIGNALING 
VIA NFKB, TGF BETA SIGNALING, EPITHELIAL 
MESENCHYMAL TRANSITION, GLYCOLYSIS, and 
ANGIOGENESIS) in TCGA-OSCC and GSE41613 
have significant correlations (Figure 6A). The correlation 
between HPI and immune cell tumor invasion showed a 
correlation between HPI and eosinophils, macrophages, 
neutrophils, and Th1 cells (Figure 6B).

Relationship between HPI and gene mutation

Gene mutations are frequent in tumors and can affect the 
treatment of tumors (36,37). The relationship between 
hypoxia and gene mutations in OSCC tumors is still 
unclear. Here, we perform independent tests on HPI and 
mutant genes to screen for highly related mutant genes to 
HPI. The results showed that NSD1 was correlated with 
the HPI level in OSCC (P=5.55e−04, Figure 7). 

Construction of a prognostic model of hypoxia-related 
genes

We performed a univariate Cox hazard analysis on the 200 
hypoxia genes and found that 36 genes were associated with 
the prognosis of OSCC patients (P<0.05, Figure 8A). Then 
we selected 10 genes (PGK1, HS3ST1, ALDOC, JMJD6, 
ADM, S100A4, SLC2A3, DDIT4, TIPARP, and HK1) 
using the random forest-supervised classification algorithm 
(Figure 8B). The prognostic risk model that these genes 
constitute - The log10 plog-rank value is sorted, and the 
results show that the prognostic model is composed of 6 
genes (PGK1, JMJD6, S100A4, SLC2A3, DDIT4 and HK1) 
has the highest ranking (Figure 8C). A total of 326 patients 
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Figure 3 Clustering of tumors based on differential genes of hypoxia. (A) Consistent grouping of 330 tumor patients (k=2); (B) survival 
curve of two clusters (P=0.088); (C) heat maps of the clinical characteristics (tumor grade, T, N, and M) of patients in the two sets of high 
HPI and low HPI samples. HPI, hypoxia index.
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Figure 4 Enrichment analysis of differential genes. (A) GSEA of hypoxia-related genes; (B) GO function enrichment analysis of hypoxia-
related differential genes. GSEA, Gene Set Enrichment Analysis; GO, Gene Ontology.
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from TCGA-OSCC were used to establish a predictive 
nomogram for the six genes to predict overall survival at 1 
and 3 years based on the Cox regression model (Figure 8D).  
The calibration curves estimating survival probability 
at 1 and 3 years showed good agreement between the 
nomogram-predicted and observed values (Figure 8E,8F). 

Construction of the PPI network of hypoxia genes

Finally, according to the result of the univariate Cox hazard 
analysis on hypoxia genes, 36 genes with P<0.05 were used 
to construct a PPI network (Figure 9). We found that the six 
hub genes (PGK1, JMJD6, S100A4, SLC2A3, DDIT4, and 
HK1) were used to construct a prognostic model. PGK1, 

SLC2A3 and HK1 have high interactions with other genes 
in the hypoxia gene set. This result further indicates that the 
hub gene we have screened may play a crucial role in OSCC.

Discussion

As the most common oral cancer, OSCC has a higher 
recurrence rate and risk of metastasis, lowering the overall 
survival rate of patients and becoming an important risk 
that endangers the life safety of patients (38,39). Hypoxia 
has been found in previous studies to play an important role 
in the prognosis and treatment of breast cancer (40,41), 
nonsmall cell lung cancer (42), and ovarian cancer (43). In 
this study, we have comprehensively explored the various 

Figure 5 Relationship between HPI and immune cell tumor infiltration. (A,B) In GSE41613 and TCGA-OSCC, the difference in immune 
cell infiltration between the high HPI group and the low HPI group; (C,D) In GSE41613 and TCGA-OSCC, the relationship between 
tumor-related pathways and immune cell infiltration. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. HPI, hypoxia index; TCGA, The Cancer 
Genome Atlas; OSCC, oral squamous cell carcinoma.

GSE41613 TCGA-OSCC

Groups
High
Low

Groups
High
Low

Groups
High
Low

Groups
High
Low

0.6

0.4

0.2

0.0

–0.2

Im
m

un
e 

in
fil

tr
at

io
n

0.6

0.4

0.2

0.0

–0.2

Im
m

un
e 

in
fil

tr
at

io
n

0.6

0.4

0.2

Im
m

un
e 

in
fil

tr
at

io
n

0.75

0.65

0.55

0.45

Im
m

un
e 

in
fil

tr
at

io
n

A

C

B

D

TCGA-OSCC

Type

GSE41613

Type



Han et al. Hypoxia-related genes as prognostic biomarkers for OSCC

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(20):1565 | https://dx.doi.org/10.21037/atm-21-4990

Page 10 of 16

mechanisms of action of hypoxia indicators in OSCC.
In the hypoxic microenvironment, the ability to invade 

and metastasize tumors is strengthened (6). In oral cancer, 
changes in the expression of genes related to hypoxia have 
been described (44). Higher HPI is associated with a poor 
prognosis in patients with OSCC (45) and mediated apoptosis 

through two pathways (both intrinsic (mitochondrial) and 
extrinsic (cell death receptor-mediated) pathways) (46). We 
first compare the HPI in the OSCC samples and verify the 
higher HPI in tumor tissues through different datasets. 
Survival analysis showed that higher HPI was associated with 
a worse patient prognosis in the TCGA and GEO data sets. 

Figure 6 The correlation between hypoxia, tumor-related pathways, and immune cells. (A) Correlation between hypoxia and tumor-related 
pathways; (B) the correlation between hypoxia and immune cell TME infiltration. TME, tumor microenvironment.
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Figure 7 The relationship between hypoxia and gene mutation. In patients with OSCC, mutations in the NSD1 gene are significantly 
associated with hypoxia. OSCC, oral squamous cell carcinoma.

In this study, in addition to conventional cox risk regression, 
we also used random survival forest variable hunting, and for 
genes with prognostic value, we used permutation to filter 
the optimal combination for predicting patient prognosis. In 
addition, we also explored the relationship between hypoxia 
and immune cells, tumor-related pathways, and explored the 
mechanism of the role of hypoxia in tumor prognosis from 
various aspects. Furthermore, we elaborated on the impact 
of HPI on OSCC from three aspects: immune cells, gene 
mutations, and tumor prognosis.

Hypoxia in tumor tissues has been proven to reduce the 
effect of immunotherapy (47) and may enhance myeloid-
derived suppressor cells (MDSC)-mediated T cell activation 
(48,49). When analyzing the TME infiltration of HPI and 
immune cells, we found that eosinophils, macrophages, 
neutrophils, helper T cells, and Th1 cells had higher 
infiltrations in the high HPI group. Previous studies have 
shown that the main immune cells associated with hypoxia 
in OSCC are Macrophages (50,51) and Neutrophils (50,52). 
Eosinophils, T helper cells, and Th1 cells have also been 
reported in OSCC (53,54), but they are also related to 
hypoxia, our first discovery. Together, the increase in other 
hypoxia-related phenotypes (TNFA signaling via NFKB, 
TGF BETA signaling, Epithelial Mesenchymal Transition, 
Glycolysis and Angiogenesis) is also related to increased 
immune cell infiltration. However, we found that the NSD1 
gene mutation in OSCC was significantly related to the 
hypoxia index. The NSD1 mutation has shown a close 
relationship with tumor malignancy in colorectal cancer (55) 
and head and neck cancer (56,57) and is a possible marker 

of a poor prognosis of tumors. However, there have been 
no studies in OSCC that describe the relationship between 
hypoxia and NSD1 mutations. Finally, we constructed 
a survival prediction model for hypoxia-related genes 
in OSCC, and determined the relationship between six 
hypoxia-related genes (PGK1, JMJD6, S100A4, SLC2A3, 
DDIT4 and HK1) and prognosis, and evaluated them with a 
calibration curve. Tumor cells tend to produce ATP through 
aerobic glycolysis, rather than oxidative phosphorylation 
(Warburg Effect). Phosphoglycerate Kinase 1 (PGK1) is the 
key rate limiting enzyme in the aerobic glycolysis process (58) 
and has been verified as hypoxia-related OSCC prognostic 
genes (59). Jumonji Domain Containing 6 (JMJD6) 
inhibition may be the way to treat the oral cavity (60). 
Calcium binding protein A4 (61) (S100A4), Solute Carrier 
Family 2 Member 3 (62) (SLC2A3), hexokinase 1 (63) (HK1) 
in OSCC are related to a poor prognosis of patients. DNA 
Damage Inducible Transcript 4 (DDIT4) is the first to be 
related to the poor prognosis of OSCC tumors.

Conclusions

In general, we rely on hypoxia-related HPI to explore 
the immunity, gene mutations, and patient prognosis of 
OSCC patients. In addition to determining the TME 
infiltration of immune cells (Eosinophils, Macrophages, 
Neutrophils, T cells and Th1 cells) associated with HPI, we 
also constructed a prediction model based on the six best 
hypoxia-related genes (PGK1, JMJD6, S100A4, SLC2A3, 
DDIT4, and HK1).
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Figure 8 Construction of a prognostic model of genes related to hypoxia. (A) The volcano plot shows the P value of the hypoxia index 
gene in the univariate Cox regression analysis. (B) Random survival forest analysis screened 10 genes. (C) After Kaplan-Meier analysis of 
210−1=1,023 combinations, we rank the survival P value of the first 20 gene sets, and the gene set composed of 6 genes has the best survival 
assessment. (D,E) nomogram to show the relationship between the six genes and the clinical characteristics of OSCC patients. (F) Draw a 
correction curve to evaluate the accuracy of the risk score prediction. OSCC, oral squamous cell carcinoma.
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