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Weighted gene co-expression network analysis reveals specific 
modules and hub genes related to immune infiltration of 
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Background: The incidence of osteoarthritis (OA), a chronic degenerative disease, is increasing every year.  
There is no effective clinical treatment for OA and the pathological mechanism remains unclear. Early 
diagnosis is an effective strategy to control the progress of OA. In this study, we aimed to identify potential 
early diagnostic biomarkers.
Methods: We downloaded the gene expression profile dataset, GSE51588 and GSE55235, from the 
National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) public database. 
The differentially expressed genes (DEGs) were screened out using the “limma” R package. Weighted 
gene co-expression network analysis (WGCNA) was utilized to build the co-expression network between 
the normal and OA samples. A Venn diagram was constructed to detect the hub genes. Potential molecular 
mechanisms and signaling pathways were enriched by gene set variation analysis (GSVA). Single sample gene 
set enrichment analysis (ssGSEA) was used to identify the immune infiltration of OA.
Results: We screened out three hub genes based on WGCNA and DEGs in this study. GSVA results 
showed that nuclear factor interleukin-3 (NFIL3) was related to tumor necrosis factor alpha (TNF-α) 
signaling via nuclear factor kappa-B (NF-κB), the reactive oxygen species pathway, and myelocytomatosis 
(MYC) targets v2. Highly-expressed ADM (adrenomedullin) pathways included TNF-α signaling via NF-
κB, the reactive oxygen species pathway, and ultraviolet (UV) response up. OGN (osteoglycin)-enriched 
pathways included epithelial mesenchymal transition, coagulation, and peroxisome.
Conclusions: We identified three hub genes (NFIL3, ADM, and OGN) that were correlated to the 
development and progression of OA, which may provide new biomarkers for early diagnosis.
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Introduction

Osteoarthritis (OA) is a degenerative disease that is caused 
by numerous factors, including aging, obesity, strain, 
trauma, congenital abnormality, joint deformity, and so on 
(1,2). OA is common in middle-aged and elderly people, 
especially in weight-bearing joints (knee and hip). With the 
aging of the population, the incidence of OA is increasing 
every year, which becomes a leading cause of disability 
and confers a heavy burden on the both patient’s family 
and society (3). OA is recognized as having a complicated 
pathological process and a long course of disease. At 
present, diagnosis based on clinical manifestations is the 
standard to confirm OA, while early diagnosis and treatment 
intervention remain challenging (4,5). Some studies 
have shown that biomarkers provide useful diagnostic 
information by detecting cartilage degradation in OA, 
reflecting the biological activities related to the disease, and 
predicting the process of disease progression. Therefore, 
exploring diagnostic biomarkers of OA may have important 
clinical application value (6,7).

In recent years, an increasing number of studies have 
shown that immune cell infiltration plays an important 
role in the development of OA (8,9). Pro-inflammatory 
cytokines secreted by infiltrated immune cells can 
aggravate chondrocyte apoptosis and cartilage matrix 
proteolysis (10,11). However, the pathological mechanism 
of immune cell infiltration in the process of OA is still 
unclear. Although exploring the pathological mechanism 
of osteoarthritis can provide potential therapeutic targets 
for treatment (12,13), it is more significant to explore the 
biomarkers for early diagnosis (14). Therefore, evaluating 
the infiltration of immune cells and determining the 
different composition of infiltrating immune cells might 
aid in the development of new diagnostic biomarkers and 
immunotherapy targets.

With the evolution of high-throughput sequencing 
technology, microarray has been used in a large number of 
OA studies (15-17). Weighted gene co-expression network 
analysis (WGCNA) involves the construction of a network 
based on systematic gene expression levels and analyzes 
gene expression microarray profiling data, with the aim of 
determining the co-expression relationship between genes. 
Thus, genes with similar expression patterns may be co-
regulated, functionally related, or in the same pathway 
(18,19). In this study, we used microarray data from OA 
patients and normal control subjects to analyze differentially 
expressed genes (DEGs) and immune cell infiltration by 

WGCNA, in order to identify effective biomarkers for the 
early diagnosis in order to control the progress of OA. We 
present the following article in accordance with the MDAR 
reporting checklist (available at https://dx.doi.org/10.21037/
atm-21-4566).

Methods

Microarray data sources and processing

The series matrix file, GSE51588, was downloaded from 
the National Center for Biotechnology Information (NCBI) 
Gene Expression Omnibus (GEO) public database (20). 
There were 40 groups of human OA data (including 20 LT 
groups and 20 MT groups) and 10 groups of human non-
OA data (including five LT groups and five MT groups) 
for the WGCNA co-expression network construction. The 
series matrix file data file, GSE55235, was also downloaded 
from the NCBI GEO public database (21). There were 
data from 20 transcriptional groups, including human non-
OA groups (n=10) and human OA groups (n=10), which 
were used for subsequent model validation. This study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

DEG identification and WGCNA

We screened out the DEGs using the “limma” R package 
(https://bioconductor.org/packages/release/bioc/html/
limma.html) with P<0.05 & |log2 fold change (FC)| >2 (22). 
By building a weighted gene co-expression network, we 
could find the gene modules of co-expression, and explore 
the relationship between the gene network and phenotype, 
as well as the core genes in the network. We used the R 
package ‘WGCNA’ (http://www.genetics.ucla.edu/labs/
horvath/CoexpressionNetwork/Rpackages/WGCNA) 
to build the co-expression network of all genes in the 
GSE51588 dataset (19). The first 5,000 genes were screened 
by this algorithm for further analysis; the soft threshold 
was set to 12, and the soft threshold of GSE55235 was set 
to 4. The weighted adjacency matrix was converted into 
the topological overlap matrix (TOM) in order to estimate 
the network connectivity, and a hierarchical clustering 
method was used to generate a cluster tree structure of the 
TOM matrix (23). Different branches of the cluster tree 
represented the different gene modules, and different colors 
represented the different modules. In view of the weighted 
correlation coefficient of genes, the genes were classified 

https://dx.doi.org/10.21037/atm-21-4566
https://dx.doi.org/10.21037/atm-21-4566
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA
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based on the expression patterns. Genes showing similar 
patterns were divided into one same module, and thousands 
of genes were divided into multiple modules via the gene 
expression patterns. Finally, the overlapping hub module 
genes from GSE51588 and GSE55235 were identified by 
the Venn method.

Immune gene correlation analysis

The effect of genes on immune infiltration was evaluated. 
The level of immune cell infiltration in each sample 
was quantified by single sample gene set enrichment 
analysis (ssGSEA) (24). Spearman correlation analysis was 
performed on gene expression and immune cell content.

Gene set variation analysis (GSVA) analysis

GSVA is a nonparametric and unsupervised method 
for assessing transcriptome gene set enrichment (25). 
GSVA changes the gene level into the pathway level by 
comprehensively scoring the gene set of interest, and then 
evaluates the biological function of the sample. In this 
study, to evaluate the potential biological function changes 
of different samples, we downloaded gene sets from the 
Molecular signatures database (v7.4) (http://www.gsea-
msigdb.org/gsea/msigdb/), and used the GSVA algorithm 
to comprehensively score each gene set.

GeneMANIA analysis

GeneMANIA (http://www.genemania.org) is a flexible 
and user-friendly protein-protein interaction (PPI) 
network construction database, which is used to visualize 
the functional network between genes and analyze gene 
functions and interactions (26). The website can set the data 
sources of gene nodes, and has a variety of bioinformatics 
analysis methods, such as physical interaction, gene co-
expression, gene co-location, gene enrichment analysis, and 
website prediction. In this study, geneMANIA generated 
the core gene network to explore its possible mechanism in 
patients with OA.

Statistical analysis 

All statistical analysis was conducted with R language 
(version 3.6.3) (https://cran.r-project.org/bin/windows/
base/old/3.6.3/). Statistical analysis was performed using 
the two-tailed Student’s t-test. P<0.05 was considered to 

indicate a statistically significant difference.

Results

Important DEGs in GSE51588 and WGCNA

The GSE51588 disease-related dataset was downloaded 
from the NCBI GEO public database to identify DEGs 
between the normal (n=10) and disease (n=40) groups. 
We further calculated the DEGs between the two groups 
using the “limma” R package. DEGs were screened out on 
the basis of the threshold of P<0.05 & |log2 fold change 
(FC)| >2. A total of 95 DEGs were screened out, including  
24 up-regulated genes and 71 down-regulated genes  
(Figure 1A). According to the patients’ clinical characteristics, 
the WGCNA network was further constructed to detect the 
key modules in OA. The soft threshold β was determined 
by the “sft$powerEstimate" function and set to 12  
(Figure 1B-1F). Based on the TOM, 12 gene modules were 
detected in this analysis, which were blue [1,166], cyan [186], 
grey [621], light cyan [692], light green [76], light yellow [59], 
magenta [262], midnight blue [149], pink [508], purple [553], 
red [283], and turquoise [445] (Figure 1G). Through module-
trait correlations analysis, we found that the pink module 
had the highest correlation with clinical features (cor =0.69,  
P=2e-08), and thus, the pink module was selected for 
subsequent verification (Figure 1H).

Important DEGs in GSE55235 and WGCNA

We downloaded the GSE55235 disease-related dataset from 
the NCBI GEO public database to identify DEGs between 
OA patients (n=10) and controls (n=10) using the “limma” 
R package. Based on the threshold of P<0.05 & |log2 
FC|>2, 164 DEGs were screened out, including 84 up-
regulated genes and 80 down-regulated genes (Figure 2A). 
Similarly, the WGCNA network was constructed to detect 
the key modules in OA based on the clinical characteristics 
of patients. The soft threshold β was determined by 
“sft$powerEstimate” function and set to 4 (Figure 2B-2F). 
Based on the TOM, eight gene modules were detected, 
including black [1,173], brown [776], green [363], green 
yellow [70], magenta [107], purple [79], red [2039], and 
yellow [393] (Figure 2G). Furthermore, through correlation 
analysis of the modules and traits, we found that red module 
had the highest correlation with clinical features (cor 
=0.94, P=1e-09), and thus, the red module was selected for 
subsequent verification (Figure 2H).

http://www.gsea-msigdb.org/gsea/msigdb/
http://www.gsea-msigdb.org/gsea/msigdb/
http://www.genemania.org
https://cran.r-project.org/bin/windows/base/old/3.6.3/
https://cran.r-project.org/bin/windows/base/old/3.6.3/
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Figure 1 Identification of DEGs in the GSE51588 dataset and construction of the WGCNA. (A) Volcano plot of DEGs in GSE51588; 
(B) clustering dendrogram of 50 samples; (C,D) soft-threshold power for WGCNA; (E,F) dendrogram of DEGs clustered based on a 
dissimilarity measure (1-TOM); (G) Heatmap of correlation between the ME and gene modules; (H) A scatterplot of gene significance 
vs. MM in the pink module. DEGs, differentially expressed genes; WGCNA, weighted gene co-expression network analysis; ME, module 
eigengenes; MM, module membership.

0 5 10 15

5 10 15 20 5 10 15 20

−Log10 (P value)

Soft threshold (power)

Dynamic tree cut

Merged dynamicDynamic tree cut

Scale independence Mean connectivity

Soft threshold (power)

Volcano

Lo
gF

C

4

2

0

−2

−4

120

100

80

60

40

20

0.8

0.6

0.4

0.2

0.0

−0.2

1200

800

600

400

200

0

120

100

80

60

40

20

1.0

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.0

1.0

0.5

0.0

−0.5

−1.0

1.0

0.8

0.6

0.4

0.2

H
ei

gh
t

S
ca

le
 fr

ee
 to

po
lo

gy
 m

od
el

 
fit

, s
ig

ne
d 

R
2

M
ea

n 
co

nn
ec

tiv
ity

H
ei

gh
t

H
ei

gh
t

H
ei

gh
t

Sample clustering to detect outliers

Sample dendrogram and trait heatmap

Gene dendrogram and module colors Cluster dendrogram

Group

−0.11
(0.5)

−0.32
(0.03)

−0.69
(4e−08)

0.69
(2e−08)

0.23
(0.1)
0.23
(0.1)

0.019
(0.9)
0.27
(0.05)

−0.35
(0.01)

−0.1
(0.5)

0.013
(0.9)
0.52

(1e−04)

MElightyellow
MEturquoise

MEmidnightblue
MEpurple

MEmagenta
MEred

MEpink
MEblue

MElightcyan
MEcyan

MElightgreen
MEgrey

Group

Module-trait relationships Module membership vs. gene significance 
cor=0.44, P=1.8e−25

Module membership in pink module

G
en

e 
si

gn
ifi

ca
nc

e 
fo

r 
gr

ou
p

0.4 0.5 0.6 0.7 0.8 0.9

A B

C D

E F

G H



Annals of Translational Medicine, Vol 9, No 20 October 2021 Page 5 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(20):1525 | https://dx.doi.org/10.21037/atm-21-4566

Figure 2 Identification of DEGs in the GSE55235 dataset and construction of the WGCNA. (A) Volcano plot of DEGs in GSE55235; 
(B) clustering dendrogram of 20 samples; (C,D) soft-threshold power for WGCNA; (E,F) dendrogram of DEGs clustered based on a 
dissimilarity measure (1-TOM); (G) Heatmap of correlation between the ME and gene modules; (H) a scatterplot of gene significance 
vs. MM in the red module. DEGs, differentially expressed genes; WGCNA, weighted gene co-expression network analysis; ME, module 
eigengenes; MM, module membership.
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Identification of hub genes and diagnostic efficacy verification

A Venn diagram was used to detect the core genes in both 
datasets. Three hub DEGs were identified, including nuclear 
factor interleukin-3 (NFIL3), adrenomedullin (ADM), 
and osteoglycin (OGN) (Figure 3A). Receiver operating 
characteristic (ROC) curve assessment and the area under 
curve (AUC) value were utilized to verify the diagnostic 
efficacy. The results showed that the AUC values of the three 
core genes were greater than 0.8 (NFIL3: AUC =0.957; 
ADM: AUC =0.900; OGN: AUC =0.815), indicating that 
these three hub genes could be effective indicators for clear 
diagnosis (Figure 3B-3D).

GSVA of core genes and key pathways

Next, we explored the potential molecular mechanism and 

investigated the specific signaling pathways enriched in 
the three core genes by GSVA. The GSVA results showed 
that highly-expressed NFIL3 was related to tumor necrosis 
factor alpha (TNF-α) signaling via nuclear factor kappa-B 
(NF-κB), the reactive oxygen species (ROS) pathway, and 
myelocytomatosis (MYC) targets v2 (Figure 4A). Highly-
expressed ADM pathways included TNF-α signaling via 
NF-κB, the ROS pathway, and ultraviolet (UV) response 
up (Figure 4B). OGN-enriched pathways included epithelial 
mesenchymal transition, coagulation, and peroxisome 
(Figure 4C).

Differences in immune infiltration and PPI analysis

The inflammatory microenvironment of OA is mainly 
composed of immune cells, extracellular matrix, various 
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growth factors, inflammatory factors, and special physical 
and chemical characteristics, which significantly affect 
the sensitivity of disease diagnosis and treatment. By 
analyzing the relationship between core genes and immune 
infiltration, we investigated the potential mechanism of core 
genes affecting disease progression. The results showed 
that there were strong correlations between the three hub 
genes and immune cells (Figure 5A), which was in line with 
expectations. The PPI network involved in the three core 
genes is shown in Figure 5B.

Discussion

OA is a common chronic joint disease in the elderly, which 
is characterized by the degeneration of articular cartilage, 
thickening of synovial lining, subchondral sclerosis, and 
formation of osteophyte at the edges of joints (27). There is 
no effective clinical treatment for OA and the pathological 
mechanism remains unclear. Therefore, understanding the 
molecular mechanism and pathological process of OA is 
critical. A comprehensive investigation of OA, including 
the pathological process, early clinical diagnosis, clinical 
manifestations, clinical prevention, and drug treatment, 
requires systematic analysis. Since normal cartilage samples, 

as a control group, are limited, microarray data in the GEO 
database is sparse and the samples are often insufficient. In 
this study, we obtained microarray data from GSE51588 
and GSE55235 to expand sample size and focused on 
identifying biological markers related to early diagnosis, for 
the first time.

Compared with other bioinformatics analyses, the 
advantage of WGCNA lies in the comprehensive study of 
the relationship between co-expression modules and clinical 
features, which provides highly reliable and biologically 
significant results (28). We screened out three hub genes 
based on the WGCNA and DEGs in this study, including 
NFIL3, ADM, and OGN. Meanwhile, based on functional 
enrichment via GSVA in this study, it was suggested that 
TNF-α signaling via NF-κB and the ROS pathway play 
important roles in the progression of OA, which has been 
confirmed in other studies. Chen et al. found that spermine 
can reduce the progression of OA by inhibiting the TNF-α/
NF-κB pathway (29). It has also been reported that TNF-α 
plays a major pathological role in rheumatoid arthritis (RA) 
via NF-κB and the Janus kinase (JAK)/signal transducer and 
activator of transcription (STAT) pathway (30). Numerous 
studies have shown that ROS or oxidative stress regulates the 
intracellular signal transduction process, chondrocyte aging 
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Figure 4 GSVA of core genes and key pathways. (A) NFIL3-enriched pathways; (B) ADM-enriched pathways; (C) OGN-enriched pathways. 
The blue band represents a positive correlation and the green band represents a negative correlation. GSVA, gene set variation analysis; 
ADM, adrenomedullin; OGN, osteoglycin.
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and apoptosis, synthesis and degradation of extracellular 
matrix, synovitis, and subchondral bone dysfunction (31-33).

Macrophages have been reported playing a crucial role 
in the progression of OA (34). Especially, M1 macrophages, 
known as pro-inflammatory phenotype, have an adverse 
effect on chondrocyte apoptosis which leading to cartilage 
degeneration (10). Besides, T cell, B cell and NK cell, which 
belong to innate immune system, are also defined as integral 
cells involved in the process of OA (35-37). Mesenchymal 
s t em ce l l s  (MSCs )  have  p lu r ipo ten t  mesoderm 
differentiation potential and can differentiate into a variety 

of cell types, including bone cells, chondrocytes, muscle 
cells, and adipocytes (38). Studies have shown that MSCs 
can exert their ability to promote tissue repair by releasing 
paracrine factors, mainly a variety of growth factors, 
immunoregulatory cytokines and other nutrient mediators 
(39,40). It has been reported that MSCs could reduce 
chondrocyte apoptosis, inhibit the inflammatory response 
and provide a suitable microenvironment for cartilage 
repair (41,42). Besides, extracellular vesicles derived from 
MSCs also show the crucial effect on attenuating cartilage 
degeneration (43,44).
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As for the three DEGs, only one study reported the 
correlation between NFIL3 and OA, which may be helpful 
to reveal the similarities and differences in the pathogenesis 
of femoral head necrosis and cartilage injury in hip OA (45). 
A series of studies revealed the role of OGN in OA, which 
suggested that highly-expressed OGN could promote the 
ossification and reconstruction of articular cartilage (46-48). 
Other studies suggested that ADM was regulated by TNF-α, 
and ADM down-regulation could inhibit adipogenesis and 
synthesis of osteocytes, which may provide new treatment 
strategies for RA and OA (49-51).

Taken together, these three identified hub genes provide 
important insights into the potential molecular mechanisms 
of OA, which may reveal new biomarkers for early 
diagnosis.
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