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predicting the overall survival of osteosarcoma based on the Gene 
Expression Omnibus (GEO) database
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Background: The purpose of this study is to explore the relationship between the ferroptosis-related gene 
zinc finger protein 36 (ZFP36) and the prognosis of osteosarcoma patients after surgery.
Methods: Differential expression genes (DEGs) between osteosarcoma and normal tissues were screened 
using osteosarcoma chip data in GEO database. Based on the median expression quantity, ferroptosis 
DEGs were divided into high and low expression groups. Combined with its corresponding clinical survival 
data, the survival analysis of ferroptosis DEGs was carried out using the Survival package, and ferroptosis-
related genes related to prognosis were identified. Next, the clinical data of 60 osteosarcoma patients 
treated in Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Zhongda Hospital 
and Nanjing Drum Tower Hospital from January 2011 to January 2016 were retrospectively analyzed. 
Immunohistochemistry and reverse transcription quantitative polymerase chain reaction (qRT-PCR) were 
used to detect gene expression in osteosarcoma. The Kaplan-Meier method and log rank test were used for 
univariate survival analysis, the Cox regression method was used for multivariate analysis, and the nomogram 
was constructed for internal verification on this basis.
Results: Immunohistochemical and reverse transcription quantitative PCR results showed that the 
expression of ZFP36 was mainly higher in cancer-adjacent tissues than in tumor tissues. There were 
significant differences in age, tumor location, Enneking stage, and tumor specific growth factor (TSGF) 
between the high and low expression groups of ZFP36 (P<0.05). The final study included 60 patients, of 
whom 23 patients died (mortality rate: 38.33%), and 37 patients survived (survival rate: 61.67%), with a 
median progression-free survival (PFS) of 32.5 months and a median overall survival (OS) of 77 months. 
The Cox multivariate analysis showed that distant metastasis and ZFP36 were independent risk factors 
affecting tumor progression (P=0.021 and P=0.006, respectively). Elevated ZFP36 can significantly prolong 
the OS and PFS of osteosarcoma patients. In internal verification, the Concordance index (C-index) of the 
nomogram was 0.7211 [95% confidence interval (CI): 0.6308–0.8115], and the prediction model had certain 
accuracy.
Conclusions: Elevated ZFP36 can significantly prolong the OS and PFS in osteosarcoma patients. At the 
same time, ZFP36 could be used as a new predictive biomarker and novel therapeutic target for osteosarcoma 
patients.
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Introduction

Osteosarcoma is a highly malignant primary tumor that 
originates from malignant mesenchymal cells (1), which 
has the characteristics of extensive tissue heterogeneity, 
high local invasiveness, rapid invasion and metastasis, and is 
more common in teenagers and children under 20 years old 
(2,3). The mortality rate of osteosarcoma is very high (4). 
The lesions are characterized by malignant spindle stromal 
cells producing bone-like tissues, which primarily occur in 
the metaphysis of long bones of limbs, most commonly in 
the distal femur region (5). Traditional treatment methods 
include surgical resection, radiotherapy, and chemotherapy, 
but the prognosis of patients has not improved significantly. 
At present, the 5-year survival rate of osteosarcoma 
patients in China is 37–77%. Although chemotherapy and 
surgical treatment can improve the 5-year survival rate of 
osteosarcoma patients by 60–70%, the 5-year survival rate 
of patients with tumor metastasis at the time of recurrence 
is less than 30% (6). For example, the average survival 
time of patients with lung metastasis is generally less than  
1 year, and the survival rate is often less than 20% (7). Thus, 
improving the prognosis of osteosarcoma using markers 
that can positively and effectively predict the prognosis of 
osteosarcoma is crucial.

Ferroptosis is a new form of regulating cell death 
known as cell oxidative death, which is characterized by 
the production and accumulation of iron-dependent lipid 
reactive oxygen species (8). It has been reported that the 
interaction between ferroptosis and lipid metabolism plays an 
important role in tumor development, invasion, metastasis, 
drug resistance, and tumor immunity (9). In addition, 
among the various types of cancer cells with drug resistance, 
cancer cells with mesenchymal and dedifferentiated 
characteristics are more susceptible to ferroptosis (10,11). 
Recent studies have shown that overexpression of HMOX1 
can increase the sensitivity of osteosarcoma cells to EF24. 
EF24, as a promoter of ferroptosis, can trigger ferroptosis 
of osteosarcoma cells by increasing the lipid peroxidation 
level, intracellular iron concentration, and reactive oxygen 
species (12). Lei et al. showed that the interaction between 
iron droop and immune system plays an important role in 

the occurrence and development of osteosarcoma, providing 
a new idea for the exploration of molecular mechanism 
and targeted therapy of osteosarcoma (13). Therefore, 
ferroptosis-related genes are expected to become new 
potential targets for osteosarcoma treatment.

Our research screened out differentially expressed 
genes (DEGs) related to osteosarcoma prognosis 
from the intersection of osteosarcoma chip data and 
ferroptosis-related gene datasets in the Gene Expression 
Omnibus (GEO) database. We then further discussed the 
effectiveness of the genes combined with the clinical data 
of osteosarcoma patients in our hospital, so as to provide 
more practical clinical reference significance for the timely 
screening patients with poor prognosis characteristics.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-5086).

Methods

GEO data analysis

Two RNA expression datasets,  GEO series 16088 
(GSE16088) and GSE36001 (including tumor tissue and 
normal tissue), were downloaded from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi) using 
the GEOquery package, and the probes corresponding 
to multiple molecules were removed. When the probes 
corresponding to the same molecule were encountered, 
only probes with the largest signal values were kept.

Ferroptosis data analysis

The related ferroptosis dataset was downloaded from the 
ferroptosis database (http://www.zhounan.org/ferrdb), 
which contains 259 genes. The annotation of these genes 
revealed 108 driving genes, 69 suppressor genes, and  
111 gene markers (14).

Selection of DEGs

DEGs between osteosarcoma and cancer-adjacent tissues 
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were screened using limma package (3.42.2 version) in the 
GSE16088 and GSE36001 datasets. DEGs and ferroptosis-
related genes were intersected to obtain DEGs related to 
ferroptosis. Next, based on the median expression quantity, 
ferroptosis-related DEGs were divided into high and low 
expression groups. Combined with their corresponding 
clinical survival data, survival analysis of ferroptosis-related 
DEGs was carried out in the TARGET database (https://ocg.
cancer.gov/programs/target) using the Survival package, and 
ferroptosis-related genes related to prognosis were identified.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses

Metascape (https://metascape.org/gp/index.html#/main/
step1) was used for online functional analysis. Ferroptosis-
related genes were added to Metascape for functional 
analysis and a  protein-protein interaction (PPI) network 
diagram was constructed.

Clinical data

The clinical data of 60 osteosarcoma patients treated 
in Jiangyin Hospital Affiliated to Nanjing University 
of Chinese Medicine, Zhongda Hospital and Nanjing 
Drum Tower Hospital from January 2011 to January 
2016 were selected. The inclusion criteria were as follows: 
(I) all patients were diagnosed as osteosarcoma for the 
first time and underwent surgery; (II) osteosarcoma was 
confirmed by histopathology after surgery; (III) patients 
with complete clinical and follow-up data; (IV) patients 
who had not undergone any other anti-tumor surgery 
before admission; and (V) patients with better compliance. 
The exclusion criteria were as follows: (I) patients with 
positive pathological resection margins after surgery; (II) 
patients complicated with other serious diseases, such as 
chronic obstructive pulmonary disease, heart failure, and 
severe diabetes; (III) patients who experienced serious 
complications during the perioperative period; and (IV) 
those who refused to follow up. In this study, 60 patients, 
aged 19–51 years, with an average age of (30.2±5.8) years, 
were included.

All procedures performed in this study involving human 
participants were in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved 
by Jiangyin Hospital Affiliated to Nanjing University of 
Chinese Medicine (No. 2016010). Individual consent for 
this retrospective analysis was waived.

Tissue microarray construction and immunohistochemistry

The tissue specimens of 60 patients with osteosarcoma who 
were admitted into Jiangyin Hospital Affiliated to Nanjing 
University of Chinese Medicine, Zhongda Hospital and 
Nanjing Drum Tower Hospital from January 2011 to 
January 2016 were selected. The tissue microarray was 
constructed by the pathology department of these three 
hospitals. Sixty cases with osteosarcoma were stained 
with hematoxylin-eosin, and the most typical features 
were labeled at the fixed points under microscope. Each 
point array contained less than 160 points. Three μm-
thick sections were cut from the receptor block and 
transferred to a glass slide using a tape transfer system 
for ultraviolet crosslinking. The ZFP36 antibody was 
purchased from Abgent (dilution, 1:100; Shanghai, China). 
Immunohistochemical results were scored based on 
the proportion of positive cells and the intensity of cell 
staining as follows: 0 points (negative), 1 point (≤25%),  
2 points (25–50%), 3 points (51–75%), and 4 points (>75%), 
and the staining intensity was 0 (negative or no staining),  
1 (weakly positive), 2 (moderately positive), and 3 (strongly 
positive). The value obtained by multiplying the two scores 
was the final score corresponding to each specimen. After 
calculating the arithmetic average of these scores, specimens 
with a score lower than 6 were finally defined as low ZFP36 
expression.

Detection of mRNA encoding ZFP36 by reverse 
transcription quantitative polymerase chain reaction  
(qRT-PCR)

Intraoperatively, the tumor tissues and para-carcinoma 
tissues of patients were taken and frozen in liquid nitrogen 
tanks. One hundred mg of tumor tissues and normal 
tissues adjacent to the cancer were collected, which were 
milled into powder using the liquid nitrogen milling 
method, and then 1 mL Trizol lysis buffer (Shanghai 
Xitang Biotechnology Co., LTD) was added. Total RNA 
was extracted according to the manufacturer’s instructions. 
The following primers were used: 5'-AGT GAC AAA 
GTG ACT GCC CG-3' (285 bp, Tm 58 ℃), 5'-GGG 
AGA GGG TTC ATT GCC TC-3' (19 bp, Tm 58 ℃); 
and GAPDH was 5'-CAT GGG TGT GAA CCA TGA 
GAA GTA-3' (20 bp, Tm 60 ℃), 5'-CAG TAG AGG CAG 
GGA TGA TGT TCT-3' (239 bp, Tm 60 ℃) (15).  The 
cDNA was obtained by reverse transcription of RNA using 
a reverse transcription kit (Shanghai Xitang Biotechnology 
Co., Ltd.), and real-time fluorescence quantitative PCR was 
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performed on a fluorescence quantitative PCR instrument 
(Nanjing Ruiyuan Biotechnology Co., Ltd.). Finally, the 
relative mRNA expression of the target molecule was 
calculated using the 2−ΔΔCt method, and its expression 
situation in tumor tissues and para-carcinoma tissues was 
confirmed.

Follow-up

Follow-up was conducted every 3 months in the first  
2 years, and every 6 months thereafter. Telephone follow-
up was the main method, and outpatient appointments were 
conducted when necessary. The deadline for follow-up 
was January 2021. The observational index was as follows: 
overall survival (OS) was defined as the time from diagnosis 
of the disease to death from any cause or the end of follow-
up; and progression-free survival (PFS) was defined as the 
progression of disease from the beginning of treatment to 
any follow-up project. At the end of follow-up, the survival 
data and loss of follow-up were entered into the statistical 
analysis as the final deadline.

Statistical methods

The software R (version 3.6.3) was used for statistical 
analysis and visualization. The GEOquery package (version 
2.54.1) (16) was used for data download; the Limma package 
(version 3.42.2) (17) was used for variance analysis; the 

UMAP package (version 0.2.7.0) for was used for UMAP 
analysis; and the Ggplot 2 package (version 3.3.3) and 
ComplexHeatmap package (version 2.2.0) (18) were used to 
visualize the heat map. 

The Chi-square test was used to compare and analyze 
the clinicopathological conditions in the two groups, and 
the t-test and multiple hypothesis test were used to analyze 
the quantitative data. The Kaplan-Meier method was 
used to evaluate the survival of patients, and the log rank 
statistical method was used to test the significance. The Cox 
proportional risk regression model was then used to identify 
the prognostic significance of the independent prognostic 
factors for osteosarcoma patients, and on this basis, a 
prediction model was subsequently constructed using R 
language to draw the line diagram. P<0.05 signified that the 
difference was statistically significant.

Results

Heat map of osteosarcoma-related genes in the GSE16088 
and GSE36001 datasets

Through differential gene analysis, 5,005 maladjusted genes 
were obtained from the GEO: GSE16088 dataset, of which 
2,719 genes were up-regulated and 2,286 genes were down-
regulated, and 754 maladjusted genes were obtained from 
the GEO: GSE36001 dataset, of which 252 genes showed 
up-regulation and 502 genes showed down-regulation 
(Figure 1).
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Figure 1 Heat map of the top 20 osteosarcoma-related genes in the GSE16088 and GSE36001 datasets.
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Selection of DEGs

The GSE16088 and GSE36001 datasets, and ferroptosis 
datasets were used to construct a Venn diagram for 
intersection, and DEGs were screened out. By showing 
the distribution of gene expression differences between 
normal tissues and tumor tissues by Volcano plot (Figure 2),  
it was found that ZFP36 is a down-regulated gene in 
the GSE16088 and GSE36001 datasets (Figure 3). Next, 
ferroptosis DEGs were divided into high and low expression 
groups. Combined with their corresponding clinical survival 
data, the survival analysis of ferroptosis DEGs was carried 
out in the TARGET database (https://ocg.cancer.gov/
programs/target), and the Kaplan-Meier survival curve was 
drawn. We observed that only the different expressions of 
ATF4 and ZFP36 in TF, ASNS, PCK2, ATF4, and ZFP36 
were related to the prognosis of osteosarcoma (Figure 4). 
Based on previous studies, it was then determined that 
ZFP36 has not been studied in osteosarcoma patients, and 
thus, we selected ZFP36 as the molecule to be studied.

GO and KEGG enrichment analyses

Metascape was used for online functional analysis. The 
ferroptosis-related genes were added to Metascape for 
functional analysis, and a PPI network diagram was 
constructed. The first 20 most likely related signal 
pathways and the corresponding PPI network diagram were 
constructed (Figure 5).

Expression of ZFP36 in immunohistochemistry

Immunohistochemical results indicated that ZFP36 was 
expressed in both tumor and para-carcinoma tissues of 
osteosarcoma, and the expression of ZFP36 in para-
carcinoma tissues was higher than that in tumor tissues 
(Figure 6).

mRNA expression of ZFP36 in osteosarcoma

Taking tumor tissues and para-carcinoma tissues of patients 
as controls, the mRNA encoding ZFP36 was detected by 
reverse transcription quantitative PCR. It was also found 
that ZFP36 was expressed in both tumor tissues and para-
carcinoma tissues of osteosarcoma, and the expression in 
para-carcinoma tissues was higher than that in tumor tissues 
(Figure 7).

Comparison of OS and PFS in high and low expression 
groups of ZFP36

In the final study, 60 patients were included, among which 
23 patients died (mortality rate: 38.33%), and 37 patients 
survived (survival rate: 61.67%). The median PFS was  
32.5 months, and the median OS was 77 months. The 
OS and PFS of the high ZFP36 expression group were 
significantly better than those of the low ZFP36 expression 
group (P<0.05) (Figure 8).

Relationship between high and low expression of ZFP36 
and clinicopathological data

There were significant differences in age, tumor location, 
Enneking stage, and TSGF between the high and low 
ZFP36 expression groups (P<0.05) (Table 1).

Single-factor analysis results

Univariate analysis showed that tumor location, pathological 
fracture, distant metastasis, alkaline phosphatase, and 
ZFP36 expression were the factors affecting OS (P<0.05) 
(Table 2).

Multi-factor analysis results

Cox multivariate analysis showed that distant metastasis and 
ZFP36 were independent risk factors for tumor progression 
(P=0.021 and P=0.006, respectively) (Table 3).

FerrDB

159

12

5

225
4690512

GSE36001 GSE16088

83

Venn diagram

Figure 2 Venn diagram results for the GSE16088 and GSE36001 
datasets, as well as the ferroptosis dataset.
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Figure 4 Kaplan-Meier survival curves of TF, ASNS, PCK2, ATF4, and ZFP36.
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Using R language to draw nomogram and build prediction 
model

In internal validation, the C-index of the nomogram was 
0.7211 (95% CI: 0.6308–0.8115), and the prediction model 
had certain accuracy (Figure 9).

Discussion

Owing to the easy metastasis and high invasiveness of 
osteosarcoma, metastasis is detected at the first clinical 
visit in 10–20% of osteosarcoma patients (19). The most 
common metastatic site of osteosarcoma is the lung, and 
the recurrence rate of osteosarcoma patients with lung 
metastasis is as high as 80% (20,21), which seriously 
threatens their survival and prognosis (22). Therefore, 
for patients with osteosarcoma, especially after surgery, 

timely screening of those patients with adverse prognostic 
characteristics or development of targeted drugs with 
therapeutic significance is crucial.

Iron death is a newly discovered form of cell death, 
which mainly depends on iron-mediated oxidative damage 
and subsequent cell membrane damage, and is closely 
related to a variety of diseases, tumors, and injuries (23-25). 
In contrast to classical apoptosis, there is no cell shrinkage 
and chromatin agglutination in the process of iron death, 
but there will be mitochondrial shrinkage and increased 
lipid peroxidation. Traditional apoptosis, autophagy, and 
apoptosis inhibitors cannot inhibit the process of iron death, 
but iron ion chelators can inhibit this process, indicating 
that iron death is an iron ion-dependent process (26). In 
the process of tumorigenesis, iron death plays a dual role in 
promoting and inhibiting tumor progression. This depends 
on the release of damage-associated molecular patterns 

Figure 5 Twenty most likely correlated signal pathways and corresponding PPI network diagrams. PPI, protein-protein interaction.
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(DAMPS) in the tumor microenvironment and activation 
of the immune response induced by iron death injury. 
Therefore, iron death-related genes are expected to become 
a new potential target for the treatment of osteosarcoma.

Our study primarily selected two RNA expression 
datasets, GSE16088 and GSE36001, which contained 
osteosarcoma tumor tissues and normal tissues from the 
GEO database. We then took the intersection of these  
two datasets with the current iron death-related gene dataset 
to construct Wayne diagram in order to screen five iron 

death-related genes (TF, ASNs, pck2, ATF4, and ZFP36) in 
osteosarcoma genes. The survival package was subsequently 
used to analyze the survival of iron death DEGs in the target 
database. It was found that only the different expressions 
of ATF4 and ZFP36 were related to the prognosis of 
osteosarcoma. There have been numerous related studies 
on ATF4 in osteosarcoma, such as chemosensitivity (27), 
ubiquitination induced cell death (28), participating in 
endoplasmic reticulum stress to inhibit the growth of 
osteosarcoma (29), etc. However, there is no relevant study 
on ZFP36 in osteosarcoma. Therefore, we selected the 
ZFP36 molecule for further research. At the same time, 
we also found that ZFP36 is a down-regulated gene in the 
GSE16088 and GSE36001 datasets, so it may also be related 
to the inhibition of iron death. 

We then used Metascape for GO and KEGG enrichment 
analyses, and obtained the top 20 most likely related signal 
pathways, including oxidative metabolism, apoptosis, iron 
death, organic anion transport, lipid metabolism, vascular 
endothelial growth factor A (VEGFRA)-VEGFR2, and 
organic homeostasis. Some studies have found that the 
presence of the RNA binding protein ZFP36 impairs 
epithelial mesenchymal transformation (EMT) and induces 
higher susceptibility of colon cancer to anoikis (30).  

A

B

Figure 6 Expression of ZFP36 in immunohistochemistry. (A) ZFP36 was highly expressed in tumor tissues (the magnification under the 
objective lens is from left to right: 10×; 20×; 40×); (B) ZFP36 was lowly expressed in tumor tissues (the magnification under the objective 
lens is from left to right: 10×; 20×; 40×; hematoxylin-eosin stain).
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Figure 7 mRNA expression of ZFP36 in osteosarcoma. **, P<0.05.
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Figure 8 OS and PFS comparison of ZFP36 high and low expression groups. OS, overall survival; PFS, progression-free survival.

Table 1 Relationship between high and low expression of ZFP36 and clinical data

Variable Total (n=60) Low ZFP36 expression (n=27) High ZFP36 expression (n=33) P

Age (years old)

≤30 39 13 26 0.013*

>30 21 14 7

Gender

Male 32 16 16 0.405

Female 28 11 17

Tumor size (cm)

≤8 29 10 19 0.113

>8 31 17 14

Tumor site

Femur/tibia 48 18 30 0.020*

Other regions 12 9 3

Pathological fracture

No 50 19 31 0.639

Yes 10 8 2

Distant metastasis

No 56 24 32 0.212

Yes 4 3 1

ALP (IU/L)

Elevated 17 11 6 0.054

Normal 43 16 27

Table 1 (continued)
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Table 2 Univariate analysis of clinical factors on OS

Variable HR 95% CI P

Age (years)

≤30 0.508 0.223–1.156 0.106

>30 1

Gender

Male 1.453 0.636–3.318 0.376

Female 1

Tumor size (cm)

≤8 0.581 0.246–1.374 0.216

>8 1

Tumor site

Femur/tibia 0.381 0.166–0.873 0.022*

Other regions 1

Pathological fracture

No 0.183 0.076–0.438 0.000*

Yes 1

Distant metastasis

No 0.235 0.077–0.718 0.011*

Yes 1

ALP (IU/L)

Rise 0.341 0.149–0.780 0.011*

Normal 1

Enneking by stages

I–IIa 0.479 0.209–1.098 0.082

IIb–III 1

Table 2 (continued)

Table 1 (continued)

Variable Total (n=60) Low ZFP36 expression (n=27) High ZFP36 expression (n=33) P

Enneking staging

I–IIa 37 12 25 0.013*

IIb–III 23 15 8

TSGF (IU/mL)

Elevated 25 16 9 0.012*

Normal 35 11 24

*, P<0.05, statistically significant difference. ALP, alkaline phosphatase; TSGF, tumor specific growth factor.
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Table 2 (continued)

Variable HR 95% CI P

TSGF (IU/mL)

Rise 0.451 0.194–1.046 0.064

Normal 1

ZFP36 expression

Low expression 6.197 2.286–16.798 0.000*

High expression 1

*, P<0.05, statistically significant difference. OS, overall survival; ALP, alkaline phosphatase; TSGF, tumor specific growth factor.

Table 3 Multivariate analysis of clinical factors on OS

Variable HR 95% CI P

Distant metastasis

No 2.968 1.182–7.453 0.021*

Yes 1

ZFP 36 expression

Low expression 0.226 0.078–0.655 0.006*

High expression 1

*, P<0.05, statistically significant difference. OS, overall survival.
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Figure 9 Nomogram prediction model.

Kröhler et al. (31) also found that the expression of ZFP36 
was down-regulated in liver cancer tissues, which played 
an inhibitory role in the tumor by affecting liver lipid 
deposition and inflammation. Dong et al. (32) reported 
that ZFP36 can inhibit cell proliferation and increase cell 
death via an autophagy pathway in lung cancer cells. ZFP36 
can also induce senescence of human papillomavirus-
transformed cervical cancer cells by targeting E6-AP 
ubiquitin ligase (33). Therefore, through the enrichment 

analysis the results of GO and KEGG, combined with 
the existing research of ZFP36 in other tumors, we could 
further explore the specific mechanism. 

Next, we detected the selected molecule ZFP36 
by immunohistochemistry and PCR in osteosarcoma 
tissue samples. We found that ZFP36 was expressed in 
osteosarcoma tumor tissues and adjacent tissues, and the 
expression in adjacent tissues was higher than that in tumor 
tissues. Combined with the clinical data of 60 patients with 
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osteosarcoma, the expression of ZFP36 was correlated 
with age, tumor site, Enneking stage and TSGF. Low 
expression of ZFP36 was more common in patients with 
age >30 years, lesions other than femur or tibia, Enneking 
stage IIb–III, and elevated TSGF. These results suggest that 
ZFP36 may be involved in the occurrence and development 
of osteosarcoma. On the other hand, it was found that 
OS and PFS in the high ZFP36 expression group were 
significantly better than those in the low ZFP36 expression 
group. This is consistent with the previous result that 
ZFP36 is down-regulated in the GSE16088 and GSE36001 
datasets. In total, 23 of the 60 patients with osteosarcoma 
died, with a mortality rate of 38.33%. Also, a total of  
37 patients survived, with a survival rate of 61.67%, a 
median PFS of 32.5 months, and a median OS of 77 months, 
which is consistent with the data of the current National 
Comprehensive Cancer Network (NCCN) treatment 
guidelines for osteosarcoma (34). Further Cox multivariate 
analysis showed that distant metastasis and ZFP36 were 
independent risk factors for tumor progression (P=0.021 
and P=0.006, respectively). In the internal validation, the 
C-index of the nomogram was 0.7211 (95% CI: 0.6308–
0.8115), and the prediction model we constructed has 
certain accuracy. Therefore, ZFP36 plays a certain role in 
predicting the prognosis of patients with osteosarcoma, 
providing a reference for clinical identification of ideal 
prognostic markers, and it is speculated that ZFP36 can be 
used as a new therapeutic target.

Conclusions

Although this study is a retrospective study of small 
samples, we screened the iron death-related gene ZFP36 of 
osteosarcoma by means of biological information analysis. 
At the same time, combined with the analysis of clinical 
data, such as immunohistochemistry, it was shown that 
ZFP36 could be used as a new predictive biomarker and 
a novel therapeutic target for osteosarcoma patients. In 
future, it is also necessary to conduct further multicenter, 
large sample prospective studies to clarify the exact 
mechanism of ZFP36 in osteosarcoma.
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