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Background: The Breast Imaging Reporting and Data System (BI-RADS) category 4 breast lesions 
is categorized into 4A, 4B, and 4C, which reflect an increasing malignancy potential from low (2–10%) 
moderate (10–50%) and high (50–95%). Determining the benign and malignant of BI-RADS category 4 
breast lesions is very important for accurate diagnosis and follow-up treatment. This study aimed to explore 
the value of breast magnetic resonance imaging (MRI) omics features and clinical characteristics in the 
assessment of BI-RADS category 4 breast lesions.
Methods: This retrospective study analyzed 96 lesions (39 benign and 57 malignant) from 92 patients 
diagnosed with MRI BI-RADS category 4 lesions in the Second Affiliated Hospital of Dalian Medical 
University between May 2017 and December 2019. The lesions were sub-categorized as BI-RADS 4A, 4B, 
or 4C based on the MRI findings. An imaging omics analysis model was applied to extract the MRI features. 
The positive predictive value (PPV) of each subcategory was calculated, and the area under the curve (AUC) 
was used to describe the efficiency for different diagnoses. Moreover, we analyzed 17 clinical indicators to 
assess their diagnostic value for BI-RADS category 4 breast lesions.
Results: The PPVs of BI-RADS 4A, 4B, and 4C were 7.1% (2/28), 41.2% (7/17), and 94.1% (48/51), 
respectively. The AUC, sensitivity, and specificity were 0.919, 84.2%, and 92.3%, respectively. The 
combination of T1-weighted images (T1WI) with dynamic contrast-enhanced (DCE) MRI yielded the best 
diagnostic results among all dual sequences. Two clinical indicators [progesterone receptor (PR) and Ki-
67 expression] achieved an AUC almost equal to 1.0. The radiomics and redundancy reduction methods 
reduced the clinical data features from 1,233 to 14. 
Conclusions: High diagnostic performance can be achieved in distinguishing malignant breast BI-
RADS category 4 lesions using the combination of T1WI and DCE in MRI. Combining the PR and Ki-67 
expression variables can further improve MRI accuracy for breast BI-RADS category 4 lesions.
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Introduction

Breast cancer is one of the leading causes of cancer-related 
death among women, both in China and worldwide (1,2). 
Early diagnosis of breast cancer can significantly prolong 
the survival of patients and reduce the cost of treatment 
(3,4). The Breast Imaging Reporting and Data System (BI-
RADS) plays an essential role in diagnosing breast diseases. 
BI-RADS is a classification system proposed by the American 
College of Radiology (ACR) in 1986 with the original report 
released in 1993. The latest edition is BI-RADS 5 [2013] (5).  
According to mammography findings, breast lesions can 
be sorted into categories numbered 0 through 6 by the BI-
RADS (where a larger number reflects greater malignancy), 
with category 4 referring to suspicious abnormality (6). The 
BI-RADS category 4 is further categorized into 4A, 4B, and 
4C, which reflect an increasing malignancy potential from 
low (2–10%) to moderate (10–50%) and high (50–95%) (6,7). 
In practice, defining the malignancy of BI-RADS category 4 
breast lesions using the available information is essential for 
an accurate diagnosis and subsequent treatment. In addition 
to breast mammography, magnetic resonance imaging (MRI) 
is an essential technique for the diagnosis and subcategory 
classification of BI-RADS category 4 breast lesions (8,9). 
However, the accuracy of MRI assessment for this differential 
diagnosis can be limited by the radiologist’s experience.

Radiomics is a new method in medical imaging analysis 
that can extract and analyze more features from radiographic 
medical images than the naked eye (10). Existing studies have 
demonstrated that radiomics (the combination of imaging 
omics and machine learning methods to construct imaging 
omics models) can improve the accuracy of clinical diagnoses 
and provide guidance for clinical decision-making (11,12). 
T1WI and T2WI are the basic sequences of MR scanning. 
T1WI sequence can better display the anatomical structure, 
and T2WI sequence is easy to show the lesions. Diffusion-
weighted imaging (DWI) is an MRI sequence to reflect 
the micro movement of water molecules in living tissues, 
and dynamic contrast enhancement (DCE) can analyze 
the hemodynamic characteristics of the lesions. Some 
studies based on DWI and DCE sequences have explored 
the relationship between breast cancer imaging omics and 
histopathology (11,12). However, to our best knowledge, 
previous studies of breast MRI omics mostly focused on the 
identification of benign and malignant tumors, no report has 
studied the value of a radiomics-based diagnostic analysis of 
BI-RADS category 4 breast lesions. 

The objective of the present study was to explore the 

value of breast MRI omics features (e.g., T1WI sequence, 
T2WI sequence, DWI sequence, and DCE sequence), 
histopathology, and clinical manifestations in the assessment 
of BI-RADS category 4 breast lesions and construct and 
validate a predictive model.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-5441).

Methods

The present study was a retrospective cohort study. All 
procedures performed in this study involving human 
participants were in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved by 
the Research Ethics Board of the Second Affiliated Hospital 
of Dalian Medical University (No. 2020-051). Individual 
consent for this retrospective analysis was waived.

Patients

We retrospectively reviewed the medical records of patients 
treated from May 2017 to December 2019 at the Second 
Affiliated Hospital of Dalian Medical University. The 
inclusion criteria and exclusion criteria are shown in Figure 1. 
In the experiment, the training set and test set contained 71 
and 25 cases, respectively. 

Image acquisition 

We used 1.5T (GE HDxt) MRI equipment and 3.0T MR 
scanners (Discovery 750W; GE, USA), with dedicated 
breast-phased array coils to receive the signals. The 
patients were in the prone position, undressed, with breasts 
hanging naturally and placed in the special breast coil and 
with shoulders relaxed and close to the coil. The scanning 
sequence and parameters were T1WI, fat suppression T2WI, 
DWI, and volume-imaged breast assessment (VIBRANT) 
dynamic enhanced scans. Patients underwent a T1WI plain 
scan first, and then a contrast agent (gadodiamide, Gd-
DTPA-BMA, Omniscan, GE Healthcare) was injected 
through the cubital vein. The contrast agent flow rate was  
2 mL/s with a dose of 0.2 mmol/kg. The period scan time 
was 1 min and 7 s, and the total scan time was 7 min and 53 s. 
We selected the most obvious and solid part of the tumor on 
the DCE image and drew a region of interest (ROI) for the 
time-intense curve (TIC).

The 1.5T scan sequence parameters were as follows: (I) 
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conventional plain scan: T1WI, T2WI sequence; (II) DWI 
scan parameters: b value =800 s/mm2, repetition time (TR): 
5,600 ms, echo time (TE): 74 ms, matrix: 128×128, layer 
thickness: 4.0 mm, interval: 0.4 mm, field of view (FOV): 
36 cm ×36 cm, apparent diffusion coefficient (ADC) image 
acquisition; (III) VIBRANT scanning parameters: TR: 
5.0 ms, TE: 2.5 ms, flip angle: 15°, matrix: 288×288, layer 
thickness: 1.2 mm, FOV: 32 cm × 32 cm. The 3.0T scan 
parameters were as follows: (I) conventional plain scan: 
T1WI, T2WI sequence, (II) DWI scan parameters: b value 
=800 s/mm2, TR: 5075 ms, TE: 92 ms, matrix: 128×128, 
layer thickness: 4.0 mm, interval: 0.4 mm, FOV: 36 cm × 
36 cm, ADC image acquisition; (III) VIBRANT scanning 
parameters: TR: 7.6 ms, TE: 3.8 ms, flip angle: 15°, matrix: 
288×288, layer thickness: 1.2 mm, FOV: 32 cm × 32 cm.

Data collection

Basic characteristics
The demographic and clinical indicators necessary for 
clinical decision-making were collected. They included the 
following 17 items: age, family history, Her-2 expression, 
pathological type, lymph node metastasis, estrogen receptor 
(ER) or progesterone receptor (PR) expression, Ki-67 
labeling index expression, birth history, lesion diameter  
>1 cm, lesion boundaries, location, lesion number >1, 
lesion calcification morphology and distribution, TIC 
types (inflow, platform, or outflow), menopausal status, and 
age of menarche. A total of 96 lesions in 92 patients were 
analyzed, of which 72 were 1.5T MR lesions, and 24 were 
3.0T lesions.

Subtype classification of breast MRI BI-RADS 4 lesions
The relevant MR images of the patients were analyzed 
by two diagnostic radiologists who have been engaged 
in breast imaging diagnosis for more than 6 years. They 
jointly subtyped the DCE-MRI images while blinded to 

the pathological results, classifying the breast MRI BI-
RADS 4 lesions as 4A, 4B, or 4C. The classification criteria 
were based on general recommendations delivered by the 
guidance chapter of the mammography section in the BI-
RADS (6) and the classification method for breast MRI 
category 4 lesion subtypes (13).

Image omics analysis model
A flowchart of the image omics algorithm is shown in 
Figure 2. First, the ROIs on the T1WI, T2WI, DWI, and 
DCE-MRI images were delineated. Because breast tumors 
are irregular and diverse in shape, it is difficult to delineate 
them accurately and automatically. In practice, it is easier 
for the reading radiologist to localize the tumor on the MR 
images. Two radiologists who had been engaged in breast 
imaging diagnosis for more than 6 years and who were 
blinded to the pathological results conducted the analyses. 
They delineated ROIs on all the tumor areas on the MR 
T1WI, T2WI, DWI, and DCE images and reached final 
agreements on the delineations. The DCE images were 
selected by the third-phase enhanced scan after the injection 
of the contrast agent when the lesion area had generally 
reached the enhancement peak or the enhancement was 
more evident, and when the contrast between the lesion and 
the surrounding normal breast parenchyma was optimal (14)  
(Figure 3). Then, the breast imaging examination data, 
including the conventional T1WI, T2WI sequence, DWI, 
and DCE MRI were collected and organized.

Second,  as  suggested by the Image Biomarker 
Standardization Initiative (IBSI), eight types of histological 
features were extracted from the ROI of each tumor 
lesion image, including first-order statistical features, 
two-dimensional shape features, three-dimensional shape 
features, gray-level co-occurrence matrix features (GLCM), 
gray-level run-length matrix (GLRLM), gray-level size zone 
matrix (GLSZM), gray-level dependence matrix features 
(GLDM), and Neighboring Gray Tone Difference Matrix 

Malignant cancer

Benign tumor

The lesions were confirmed 
pathological data by puncture 
biopsy or surgical pathology

The patients were diagnosed 
as BI-RADS 4 lesions by 

breast DCE-MRI. Breast MRI 
images were obtained within  

1 week before surgery

The exclusion criteria were as follows:
(I) Patients who had undergone local or 
systemic treatments such as puncture 
biopsy, chemotherapy, radiotherapy, or 
resection
(II) The image quality was poor and could 
not meet the analysis requirements

Figure 1 Flow chart of the patient selection process. BI-RADS, Breast Imaging Reporting and Data System; DCE, dynamic contrast 
enhancement; MRI, magnetic resonance imaging.
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(NGTDM) features. The above features can be divided into 
four categories: first-order features that consider only the 
intensity of gray values in a ROI, second-order features that 
consider the pixel-pixel relationship, higher-order features 
that consider the relationship among the pixels and the 
environment, and shape features that describe the contours 
of a ROI. The original image was filtered before feature 

extraction. The Laplacian of Gaussian, Wavelet, Square, 
Square root, Logarithm, and Exponential filters were used 
to perform the filtering. To splice the multi-sequence 
features, we set a multi-sequence annotation mode. The 
ROI of a lesion at an anatomical location on T1WI, T2WI, 
DWI, and DCE MRI sequences is shown in Figure 4.

The next step of the image omics analysis included 
removing redundant features and selecting the discriminative 
features using a LASSO algorithm. To facilitate the machine 
learning modeling, we first normalized all features to the 
interval [0, 1] according to Eq. [1] as follows:

' min( )
max( ) min( )

i
i

x xx
x x
−

=
−

  [1]

All extracted features were further screened to remove 
redundant features and obtain the most discriminating 
features, with the following screening method:

To measure within-group and between-group variance, 
we computed the sample variance F-value for each feature. 
If the between-group variance of a feature was significantly 
greater than the within-group variance, the feature was 
considered significant. The 200 features with the highest 
F-values were then selected.

The 200 selected features were used as the input to the 
LASSO algorithm for further feature filtering. The LASSO 
algorithm is shown in Eq. [2]:

1
( , ( ))L L y h wx wα α= +  [2]

where L is the loss of the logistic regression, w is the weight 
of the features, y is the predicted value (y =0 for benign and 
y =1 for malignant), and α is the penalty coefficient. The 
optimal value was obtained by the 5-fold cross-validation 
method.

Finally, a machine learning model was constructed to 
complete the classification. The omics classification model 
that we built was mainly based on the Darwin Intelligent 
Research Platform, as shown in Figure 5. The classification 
model contained artificial intelligence modeling components 
and clustering components. Moreover, the classification 
model laid with the support vector machine, which used 
a linear of the kernel and c=1 (where c = the penalty 
coefficient of the error term). We tuned the parameters 
to obtain the processes and combinations that performed 
optimally.

Primary outcome
The primary outcome was the pathological diagnosis of the 
MRI BI-RADS category 4 breast lesion, which was taken as 

T1WI, T2WI, DWI, DCE-MRI images

ROI segmentation 

Eight types of feature extraction such as first-level statistics, 
two-dimensional shape and three-dimensional shape

Based on F value, feature selection of LASSO algorithm, and 
selection of clinical indicators

Algorithm of machine learning classification

Classification result

Figure 2 Image omics analysis flow chart. T1WI, T1-weighted 
images; T2WI, T2-weighted images; DWI, diffusion-weighted 
imaging; DCE, dynamic contrast enhancement; MRI, magnetic 
resonance imaging; ROI, region of interest; LASSO, Least 
absolute shrinkage and selection operator.

Figure 3 Example of a manually delineated and labeled breast ROI 
in T2WI sequence (red circle). ROI, region of interest; T2WI, T2-
weighted images.
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the gold standard. Senior pathologists with at least 5 years 
of experience and blinded to the MRI results performed the 
final pathological diagnosis.

Statistical analysis

We calculated the positive predictive values (PPVs) for the 
different subtypes of the BI-RADS category 4 lesions and 
used receiver operating characteristic (ROC) curve analysis 
to evaluate the effectiveness of the subtype classification 
methods for distinguishing benign and malignant breast 
lesions. The PPV was calculated for each subcategory of BI-
RADS 4 lesions by dividing the true breast cancer diagnosis 
by the number of subcategories to check their accuracy.

To verify the effectiveness of the features and models 
selected in this study, we used the following indicators as 
evaluation criteria: (I) ROC curve of the training set and 
test set; (II) AUC; (III) P value, and the 95% confidence 
interval; (IV) calibration curve, K-fold cross-validation of k 
ROC curves, and the 95% confidence interval. We tested 
the operator sensitivity and specificity based on the ROC 
curve. If the ROC curve for the physician was located below 
the model ROC curve, this meant that the model performed 
better than the physician; otherwise, the physician’s 

T1WI

DWI

T2WI

DCE

Figure 4 ROI of a lesion at the same anatomical location on T1WI, T2WI, DWI, and DCE MRI sequences (red circle). ROI, region of 
interest; T1WI, T1-weighted images; T2WI, T2-weighted images; DWI, diffusion-weighted imaging; DCE, dynamic contrast-enhanced; 
MRI, magnetic resonance imaging.

Upload feature

MaxMin

Select K beat

Select from model

Select percentile

Not run Start Success Error

SVM SVM

Figure 5 The interface of the Darwin Intelligent Research 
Platform. The experiment desktop can be used to build rich 
topological diagrams. SVM, support vector machine.
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assessment was superior. Moreover, to illustrate the 
significance of the results, we used k-fold cross-validation 
to draw the 95% confidence interval of the ROC curve. If 
the interval fell outside the ROC curve, the difference was 
significant; otherwise, the difference was non-significant.

In addition, we analyzed 17 identified clinical indicators. 
After normalization and analysis with the Chi-square test, 
we ranked the indicators by importance and judged the 
value of each indicator for the differential diagnosis of 
malignant and benign lesions.

Results 

BI-RADS 4 subtype classification

Data were collected for 96 MRI BI-RADS category 4 lesions 
in 92 patients, of which 72 were 1.5T MR lesions, and  
24 were 3.0T lesions. The age of the patients ranged 
from 30–83 years old, with a median age of 51 years. 
Postoperative lesion pathology was benign in 39 cases, 
including 5 cases of benign phyllodes tumors, 10 cases 
of fibroadenoma, 14 cases of breast disease, 5 cases of 
intraductal papilloma, 1 case of ductal endothelial normal 
hyperplasia, 1 case of ductal endothelial atypical hyperplasia, 
1 case of nodular fasciitis, 1 case of granulomatous lobulitis, 
and 1 case of lymphocytic mastitis. Postoperative lesion 
pathology was malignant in 57 cases, including 49 cases 
of non-specific invasive breast cancer, 1 case of infiltrating 
lobular carcinoma, 3 cases of ductal carcinoma in situ, 
1 case of invasive breast cancer with neuroendocrine 
differentiation, and 3 cases of mucinous adenocarcinoma. 

Among the 96 breast lesions, the numbers categorized 
as 4A, 4B, and 4C lesions were 28 (29.2%), 17 (17.7%), and 
51 (53.1%), respectively. According to the final pathological 
diagnosis, the PPVs of the BI-RADS 4A, 4B, and 4C 
subtypes were 7.1% (2/28), 41.2% (7/17), and 94.1% (48/51), 
respectively. The AUC value for the differential diagnosis of 
benign and malignant breast lesions by BI-RAD 4 subtype 
classification was 0.919, the diagnostic sensitivity was 84.2%, 

and the diagnostic specificity was 92.3% (Table 1).

Results of image omics feature filtering

The results of the LASSO-based feature filtering are 
presented in Figure 6. It can be seen that a larger penalty 
coefficient corresponded to a smaller feature coefficient 
(Figure 6A). Based on the nature of the first-order norm, 
the unimportant features were removed. Also, the optimal 
coefficient α was located at the lowest point of L (Figure 6B). 
Figure 6C shows the dimensionality reduction process (based 
on the penalty factor α=0.368), compresses the insignificant 
feature coefficients to 0, selects the above features, and sorts 
them according to the size of the coefficients to establish the 
model.

The absolute value of the Pearson correlation coefficient 
among the 14 features selected by the LASSO algorithm 
is shown in Figure 7A, and the correlation coefficients 
among the seven features chosen by the LASSO joint 
iteration features are shown in Figure 7B. Among them, 
black represents no correlation, and a light color represents 
a greater correlation. The correlation between these seven 
features was small, which validated that we minimized the 
redundancy of the features. Moreover, due to the absolute 
value, both positive and negative correlations were observed.

To demonstrate the model’s performance, we plotted 
ROC curves for the training and testing sets of the two 
methods (Figure 8). The performance of the model processed 
by LASSO and the wrapped iterative feature selection 
algorithm was not significantly worse than the performance 
of the model that took the 14 features as input. However, 
the other seven features cannot be excluded from reflecting 
independent predictability in the case of larger data volume, 
and thus, we mainly used the LASSO algorithm to filter out 
the 14 features in the subsequent studies.

Among these 14 features (Figure 9), the DWI sequence 
had only one feature. When we deleted this feature, the 
performance of the model remained unchanged. The 
training set yielded an AUC =0.92 (95% CI: 0.84–1), 

Table 1 Classification and PPV of MRI BI-RADS category 4 subtypes among 96 breast lesions

BI-RADS 4 subtype Total, n Benign, n Malignant, n PPV, % (cases)

BI-RADS 4A 28 26 2 7.1 (2/28)

BI-RADS 4B 17 10 7 41.2 (7/17)

BI-RADS 4C 51 3 48 94.1 (48/51)

PPV, positive predictive value; MRI, magnetic resonance imaging; BI-RADS, Breast Imaging Reporting and Data System.
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Figure 6 Process of LASSO algorithm-based feature filtering. (A) Plot of the feature coefficient w with increasing penalty factor α; (B) 
selection process that obtains the optimal α by 5-fold cross-validation, with the optimal coefficient   locating at the lowest point of L; (C) 
the ranking of the selected omics features coefficient w at the optimal coefficient α=0.368. DWI, diffusion-weighted imaging; T1WI, T1-
weighted images; T2WI, T2-weighted images; DCE, dynamic contrast-enhanced; LASSO, Least absolute shrinkage and selection operator.
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and the test set yielded an AUC =0.91 (95% CI: 0.71–1). 
Therefore, we could save at least one sequence in clinical 
applications. In addition, we tried the combination of 
conventional T1WI and T2WI sequences. The training set 
yielded an AUC =0.86 (95% CI: 0.74–0.98), and the test 
set yielded an AUC =0.90 (95% CI: 0.72–1). The model 
still maintained a very high level with the two sequences. 
In practice, as T1WI and DCE sequences are commonly 
combined for increased diagnostic accuracy, we carried out 
experiments on this combination, which performed best 
among all the dual-sequence combinations (AUC =0.92, 
95% CI, 0.84–1.0 in the training set and AUC =0.91, 
95% CI, 0.71–1.0 in the test set). The detailed results 
are described in Table 2. Although the T1WI sequence 
performed well for the test set, it performed poorly for the 
training set, and the confidence interval was relatively wide. 
Therefore, it can be concluded that a certain amount of the 
deviation was caused by insufficient data.

After the LASSO feature screening process for the  
17 identified clinical indicators (Figures 10-12), we found 
only two indicators, PR and Ki-67 expression, that 
achieved an AUC almost equal to 1.0. Figure 13 shows the 
pathological picture of PR and Ki-67 expression in a case of 
non-specific invasive breast cancer.

Discussion 

The T1WI, T2WI, DWI, and DCE sequences on MRI have 

been widely used to diagnose and analyze breast cancer. It 
has been suggested that the T2WI signal may reflect the 
aggressive biological behavior of the tumor (15). DWI is 
a noninvasive method that can provide information about 
the diffusion of water molecules in tissues, and the ADC 
value is a commonly used quantitative parameter of DWI, 
reflecting the Brownian motion of water molecules in the 
tissue (15). DCE-MRI can provide information about 
diseased blood vessels, high-resolution morphological 
details, and their enhancement characteristics (16). The 
DCE-MRI sequence has multiple time-phase images after 
the contrast agent is injected. Different research reports 
have employed different time phases when performing 
lesion segmentation and feature extraction, and there is no 
unified standard. In the present study, we selected the third-
phase enhanced images after the injection of the contrast 
agent, which can reflect the enhancement characteristics in 
all seven phases after the injection of the contrast agent (17). 
Li et al. found that the DCE-MRI value of malignant breast 
tumors was higher than that of benign breast tumors (18). 
Moreover, in another study, it was reported that DCE-
MRI was able to distinguish high-grade breast cancer from 
low-grade breast cancer (19). Other studies have shown 
that when DCE-MRI is combined with the ADC values, 
the specificity for BI-RADS category 3 and 4 breast lesions 
diagnosis can be improved (20). In the present study, we 
obtained a very high diagnostic efficiency by using T1WI + 
DCE. Therefore, in practice, we can shorten the patient’s 
examination time and improve the diagnostic accuracy by 
using T1WI + DCE MRI.

The MRI BI-RADS has not yet refined the classification 
of the 4A, 4B, and 4C subtypes. It has been reported that, 
according to the guidance chapter of the mammography 
section in the BI-RADS (13), using the breast DCE-MRI 
features to refine the classification of BI-RADS category 
4 subtypes can improve the diagnosis and differential 
diagnosis of breast lesions (13,21). We referred to the 
classification method in the literature (13) and tried to 
classify the 96 BI-RADS category 4 lesions into subtypes. 
The results showed that the PPV increased with the 
increasing subtypes of breast BI-RADS category 4 lesions. 
This is consistent with the conclusions of other scholars (13).

The imaging representations of different types of 
breast cancer identified by mammography, ultrasound, 
and MRI and their relationships with the molecular 
markers of breast tumors (e.g., ER, PR, and Ki-67) 
have recently become a global focus of research (22,23). 
According to the receptor status, breast cancer can be 
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Figure 8 AUC for the model under the two feature-filtering 
methods. The table in the figure lists the performance of the two 
sets under the two filtering algorithms. AUC, area under the curve.
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Figure 9 Univariate AUC values of the 14 features chosen by the LASSO algorithm. Blue is the training set, and orange is the test set. 
T1WI, T1-weighted images; T2WI, T2-weighted images; DWI, diffusion-weighted imaging; DCE, dynamic contrast-enhanced; LLH, low 
low high; HLL, high low low; LLL, low low low; HHH, high high high; AUC, area under the curve.

Figure 10 The 17 selected indicators and the gold standard diagnosis of benign and malignant lesions were tested by χ2 test. A larger  
χ2 value indicates a higher diagnostic value. PR, progesterone receptor; ER, estrogen receptor; TIC, the time-intense curve.
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Table 2 Model performance of three commonly used image scanning sequences

T1WI T2WI T1WI + T2WI T1WI + DCE T1WI + T2WI + DCE

Training set, AUC (95% CI) 0.74 (0.6, 0.89) 0.85 (0.72, 0.97) 0.8 (0.76, 0.98) 0.89 (0.78, 1) 0.92 (0.84, 1.0)

Test set, AUC (95% CI) 0.96 (0.81, 1.0) 0.78 (0.51, 1.0) 0.9 (0.75, 1.0) 0.94 (0.78, 1.0) 0.91 (0.71, 1.0)

T1WI, T1-weighted images; T2WI, T2-weighted images; DCE, dynamic contrast enhancement; AUC, area under the curve.
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divided into different molecular subtypes with different 
biological behaviors and significantly different responses to 
treatment and prognosis (24). Ki-67 expression provided 
a guiding role in evaluating the efficacy of neoadjuvant 
chemotherapy for breast cancer and was closely related 
to the patients’ prognosis (25). Kang et al. conducted a 
study on 105 patients with invasive breast cancer (26).  
They showed that PR high-expressing breast cancer had 
a lower enhancement on MRI, and certain radiological 
characteristics of DCE-MRI were closely related to the 
classification of breast cancer. In this study, we found that 
only two indicators, PR and Ki-67 expression, could achieve 
an AUC of almost 1.0. The results suggest that the detection 
of PR and Ki-67 expression plays a significant role in the 
differential diagnosis of malignant and benign breast lesions 
when combined with MRI examination.

Imaging examination is an essential part of diagnosing 
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Figure 11 ROC curves for the training set and the test set. ROC, 
receiver operating characteristic.
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breast cancer and determining prognosis. However, 
traditional image analysis often relies on the subjective 
experience of physicians, which can limit diagnostic efficacy. 
Moreover, much of the deep-level imaging information is 
not exploited, resulting in a high rate of misdiagnosis (27).  
Intelligent imaging is based on the medical image and 
incorporates artificial intelligence, which helps physicians 
diagnose and treat diseases by segmenting, classifying, 
quantifying, and characterizing images through machine 
learning algorithms. Computer-aided diagnosis (CAD) 
was the initial model that combined medical imaging and 
artificial intelligence. CAD is currently used in clinical 
practice for mammography screening, such as detecting 
micro-calcified lesions (28). In recent years, the field of 
medical image analysis has grown exponentially with 
increases in the number of image recognition tools and 
the size of datasets. These advances have facilitated the 
development of high-throughput quantitative feature 
extraction methods and the conversion of images into 
mineable data, which are subsequently analyzed to provide 
clinical decision support (29).

Image-omics was proposed by Lambin et al. in 2012 (10)  
and provides a new approach to image analysis that 
enables a deep analysis and prediction of image data to aid  
diagnosis (30) .  Essentially, this technique extracts 
quantitative features from medical images at high 
throughput to characterize tumors and improve diagnostic 
accuracy. It has been demonstrated that the combination 
of image-omics and machine learning methods with a 
lock-constructed imaging omics model can improve the 
accuracy of diagnosis and guide clinical decision-making 
(11,12,31). The present study constructed feature and 

processing, feature screening, and machine learning 
classification models based on the Darwin Intelligent 
Research Platform to classify breast BI-RADS category  
4 lesions more accurately and reliably. The novelty of this 
approach lies with the use of the LASSO algorithm to 
select the most discriminative features and further adopt 
the iterative feature selection process. Our experimental 
results demonstrated that representative features could be 
extracted from a large number of features by the LASSO 
and wrapped iterative feature selection algorithm without 
compromising the diagnostic accuracy of the model. 
Meanwhile, for clinical examination, only PR and Ki-67 
detection were needed to achieve an AUC of almost 1.0.

The traditional image analysis of BI-RADS category 4 
breast lesions is based on doctors’ subjective experience 
judgment, the diagnostic efficiency is limited, and 
more valuable image information have not been mined 
and utilized. Radiomics can extract and analyze more 
information from radiographic medical images than 
radiologists, and performs better in disease prognosis. 
This study has some limitations, as the present study was 
a retrospective study, confounding variables are difficult 
to control, and research bias is inevitable. Additionally, 
the sample size was less than 100 patients, which may have 
decreased the study power. Prospective studies are needed 
to control confounding variables, to further evaluate the 
value of MRI omics features and clinical characteristics in 
the assessment of BI-RADS category 4 breast lesions. In 
the future, we intend to collect more data to confirm the 
findings of this study and attempt to extend the proposed 
model to other disease classification and diagnostic 
processes.

Figure 13 The pathological picture of PR and Ki-67 expression in a case of non-specific invasive breast cancer (PR 95%, ×200; Ki67 10%, 
×200). Immunochemistry staining. PR, progesterone receptor.
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Conclusions

High diagnostic performance can be achieved for 
distinguishing malignant BI-RADS type 4 breast lesions 
using a combination of T1WI and DCE MRI sequences. 
The addition of PR and Ki-67 detection can improve the 
diagnostic accuracy of this MRI approach for BI-RADS 
category 4 breast lesions to near perfect. These findings 
have important clinical implications for breast cancer 
diagnosis.
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