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Background: Evaluated plasma homocysteine (Hcy) is an independent risk factor for cardiac fibrosis which 
is a common feature of cardiovascular disease, although the mechanisms are still unclear. This study aims to 
explore the mechanism of Hcy-induced cardiac fibrosis. 
Methods: The mRNA and protein levels of Forkhead box O3 (FoxO3) and differentiation markers were 
detected in primary cardiac fibroblasts (CFs) after 300 μM Hcy treatment. Scratch and transwell migration 
assay were used to determine the effect of Hcy on proliferation and migration in CFs. The protein levels 
involved in the fibrotic processes in mice fed with high methionine diet (HMD) for 4 or 8 weeks were 
investigated by western blot. CFs were infected with FoxO3 recombinant adenovirus to explore the potential 
role of FoxO3 in Hcy-induced cardiac dysfunction. 
Results: Hcy treatment significantly promoted the differentiation, proliferation and migration of CFs, 
while FoxO3 activity were decreased in CFs. In HMD hearts, the protein levels of TIMP1, Fibronectin and 
α-SMA were increased after 4 or 8 weeks, but the FoxO3 activity was decreased. Moreover, the HMD hearts 
had a higher level of Bcl2 but lower of Bax and LC3II protein. In addition, FoxO3 overexpression attenuates 
Hcy-induced dysfunction in CFs. 
Conclusions: Hcy promotes myofibroblast activation and resistance to autophagy and apoptosis in CFs, 
and eventually results in cardiac fibrosis by regulating the Akt/FoxO3 pathway. Thus, FoxO3 is a promising 
therapeutic target to prevent cardiac remodeling. 
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Introduction

Cardiac fibrosis, a common pathological process involved in 
many forms of heart disease, is characterized by deposition 
of excessive extracellular matrix (ECM) proteins. Fibroblasts 
are the key effector cells in cardiac fibrosis. In response to 

injury or stress, cardiac fibroblasts (CFs) differentiate into 
myofibroblasts with increased expression of alpha-smooth 
muscle actin (α-SMA) and secretion of ECM proteins, 
especially collagen (1). Activated fibroblasts display 
hyperproliferative potential and abnormal active secretory 
activity (2). Although in the injured myocardium, expansion 
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and activation of fibroblasts is crucial for normal healing 
and repair, CFs may also contribute to cardiac fibrosis, 
remodeling, and dysfunction (3).

Homocysteine (Hcy) is a non-essential sulfur-containing 
amino acid, which is formed via the classical remethylation 
and transsulfuration pathways. Hyperhomocysteinemia 
(HHcy) is diagnosed when plasma Hcy level is greater than 
15 μmol/L (4). It has been established that evaluated plasma 
Hcy is an independent risk factor for many cardiovascular 
diseases (CVD), such as atherosclerosis (5), hypertension (6),  
and heart failure (7). Some studies have reported that high 
level of Hcy can enhance the transforming growth factor-β 
(TGF-β) level and promote myocardial ECM remodeling 
and fibrosis (8,9). The accumulation of cardiac collagen 
has been observed in models of HHcy (10,11). Besides, the 
balance of tissue inhibitor of metalloproteinases (TIMPs)/
matrix metalloproteinases (MMPs) plays a critical role in 
maintaining the homeostasis of myocardial ECM. It has 
been reported that imbalance in the MMP-9-TIMP-1 axis 
accelerates ECM remodeling and renal fibrosis during 
HHcy (12). In addition to ECM remodeling, increased 
oxidant stress and inflammation may play an important 
role in the mechanical effects of HHcy on cardiac fibrosis 
(13,14). In addition, Hcy has been shown to damage the 
endothelium and impair NO bioavailability (15), which 
may lead to left ventricular (LV) diastolic dysfunction. 
Recent study reported that downregulating lncRNA MEG3 
could alleviate HCY-induced CF inflammation and cardiac  
fibrosis (16). The protective effect of SIRT1 on Hcy‐
induced atrial fibrosis has been reported and their 
results showed that the high‐Hcy diet could promote 
the development of heart failure with preserved ejection 
fraction after transverse aortic constriction in mice (17). 
Despite large evidence for the involvement of Hcy in 
cardiovascular disease, our study aims to explore the 
precise molecular mechanisms responsible for Hcy-induced 
pathological changes in cardiac fibrosis, especially CFs. 

Forkhead box O3 (FoxO3) is a member of the forkhead 
box transcription factors of the O class with a conserved 
helix-loop-helix DNA-binding domain; it is involved in 
a variety of vital cellular processes including oxidative 
stress, DNA repair, apoptosis, metabolism, and cell cycle  
arrest (18). Although the existing data are controversial, 
FoxO3 p l ay s  an  impor tan t  ro l e  in  ma in ta in ing 
cardiovascular homeostasis. In cardiomyocytes, FoxO3 
is able to inhibit cardiomyocyte hypertrophy (19) and 
promotes survival (20) through antioxidant activation. As a 
fibroblast regulator, FoxO3 is involved in renal, pulmonary, 

skin, liver, and cardiac fibrosis via regulation of fibroblast 
proliferation, differentiation, and apoptosis (21).

In this study, it was shown that FoxO3 plays a crucial role 
in Hcy-induced cardiac fibrosis. We found that FoxO3 was 
downregulated in CFs exposed to Hcy and also in HHcy 
model mice induced by high methionine diet (HMD). 
Furthermore, this study revealed that Hcy promotes the 
proliferation and differentiation and inhibits the autophagy 
and apoptosis of CFs through activation of the Akt/FoxO3 
pathway. We present the following article in accordance 
with the ARRIVE reporting checklist (available at https://
dx.doi.org/10.21037/atm-21-5602).

Methods

Primary CF culture and characterization

We isolated CFs from the hearts of six 2–3-day-old Wistar 
rats. Briefly, hearts were harvested and cut into 1 mm2 small 
pieces. The tissues were digested with 0.05% (w/v) tryptase 
(Gibco, Amarillo, TX, USA) and 0.05% (w/v) collagenase 
II (Worthington, Lakewood, NJ, USA) at 37 ℃ with 
gentle agitation. After 5 digestions, the supernatants were 
pooled and centrifuged for 5 min at 1,000 rpm. The cell 
suspensions were filtered through a 100 μm cell strainer and 
plated in 100 mm dishes (Eppendorf, Hamburg, Germany) 
with Dulbecco’s modified Eagle medium (Gibco, USA) 
supplemented with 10% fetal bovine serum (FBS; Gibco, 
USA) and 1% penicillin/streptomycin for 2 h, and then the 
medium was replaced. The attached cells were considered 
to be CFs, which were identified by discoidin domain 
receptor 2 (DDR2) immunostaining. Cells before passage 5 
were used for further study.

Animals

We fed 6-week-old male C57BL/6 mice with a control 
chow diet or HMD (2%) for 4 or 8 weeks. Fouty mice were 
randomly divided into four groups: control and HMD 
group respectively for 4 or 8 weeks. All animals were deeply 
anesthetized with isoflurane prior to removal of their hearts. 
The investigation conformed to the Guide for the Care and 
Use of Laboratory Animals by the US National Institutes 
of Health (NIH Publication No. 85-23, updated 2011). 
All experimental protocols were approved by Institutional 
Animal Care and Use Committee of Tianjin University 
(No. TJUE-2020-174). A protocol was prepared before 
the study without registration. The animal model was 
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kindly supported by Professor Liu Yao (Tianjin Medical 
University, Tianjin, China). 

Recombinant adenovirus infection

The FoxO3 expression plasmid was purchased from 
Sinobiological company (Beijing, China) and subsequently 
constructed into pAdEasy-1 vector. The recombinant 
adenovirus vector was linearized by Pac I enzyme, 
packaged into the 293T cells and then purified by Adeno-X 
Adenovirus purification kit (Clontech, BD Biosciences). 
For adenovirus infection, the CFs at 80% confluence were 
infected with adenovirus-FoxO3 or control adenovirus-
GFP at a multiplicity of infection (MOI) of 50 for 48 or  
24 h under drug treatment conditions.

Real time and quantitative polymerase chain reaction 

Total RNA was extracted with TRIzol Reagent (Invitrogen, 
Carlsbad, CA, USA) according to the manufacturer’s 
instructions. Complementary DNAs (cDNA) were 
synthesized using the Takara reverse transcription system 
(Takara, Shiga, Japan). Real time quantitative-polymerase 
chain reaction (RT-qPCR) was conducted using the Takara 
SYBR Green SuperMix on 7500 real-time PCR system 
(Applied Biosystems; ABI, Waltham, MA, USA). The 
relative expression levels of specific genes were normalized 
to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
levels, calculated with the 2–ΔΔCT method.

Western blot

Cells were lysed with radioimmunoprecipitation assay 
(RIPA) buffer added with protease and phosphatase 
inhibitor cocktails on ice for 30 min and centrifuged at 
12,000 rpm for 30 min at 4 ℃. Protein concentration in the 
supernatants was quantified using a bicinchoninic (BCA) 
kit (Solarbio, Beijing, China). We separated 30–50 μg 
proteins by 10% gels and electroblotted to polyvinylidene 
fluoride (PVDF) membranes (Millipore, Burlington, MA, 
USA). Proteins were detected using specific antibodies of 
GAPDH, α-SMA (Proteintech, Wuhan, China), FoxO3, 
phospho-FoxO3, Akt and phospho-Akt (Cell Signaling 
Technology, CST, Danvers, MA, USA) overnight at 4 ℃. 
The membranes were then incubated with horseradish 
peroxidase (HRP)-conjugated secondary antibody 
(Proteintech, Wuhan, China). The signal was visualized 
using the Pierce ECL Western Blotting Substrate (Thermo 

Fisher Scientific, Waltham, MA, USA).

Immunofluorescence staining

The CFs for immunostaining were grown on 4 well 
chamber slides until 70–80% confluence was reached. 
Slides were fixed in 4% paraformaldehyde for 15 min 
and permeabilized in 0.1% Triton-X100 (Sigma Aldrich, 
St. Louis, MO, USA) for 5 min at room temperature. 
Non-specific proteins were blocked with 3% bovine 
serum albumin (BSA) for 30 min at room temperature. 
Primary antibodies for α-SMA, collagen I (Abcam, USA), 
FoxO3, and DDR2 (Santa Cruz Biotechnology, Santa 
Cruz, CA, USA) were incubated overnight at 4 ℃. After 
washing unbound primary antibodies with PBS, secondary 
antibodies were incubated at 1:200 in blocking buffer at 
room temperature for 1 h. Fluorescein isothiocyanate 
(FITC)-conjugated goat anti-mouse or rabbit antibody 
(Abcam, USA) were applied as secondary antibodies. Nuclei 
were stained by 4’,6-diamidino-2-phenylindole (DAPI; 
Zhongshan, Beijing, China). Images were acquired using a 
fluorescence microscope (Nikon, Tokyo, Japan).

Scratch assay

In brief, confluent monolayera of CFs were scratched with 
micropipette tip after overnight serum starvation. The cells 
were then washed twice with PBS to remove cell debris and 
incubated for 24 h. The closed wound areas were measured 
to quantitatively evaluate cell migration using ImageJ 
software (https://imagej.nih.gov/ij/download.html).

Transwell migration assay

A modified Boyden chamber was used for transwell 
migration assay. The CFs (2×105) were resuspended in 
200 μL serum-free medium, and transferred to the upper 
chamber (8 μm pore size, Millipore, USA). The lower 
chambers were filled with 600 μL complete medium. After 
6 h, cells were removed from the top of the membrane with 
a cotton swab and the membrane was mounted with DAPI 
mounting medium. The migratory cell images were taken 
with inverted microscope (Nikon, Japan) and analyzed using 
ImageJ software.

Cell Counting Kit-8 (CCK-8) assay

After cells were cultured and treated, CCK-8 (Bioss, 
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Figure 1 Hcy induces fibroblasts differentiation into myofibroblasts. Neonatal rat cardiac fibroblasts (NRCFs) were treated with 
Homocysteine (Hcy) (300 μM) for 24 h. (A) The mRNA levels of smooth muscle actin (SMA) and CTGF (connective tissue growth factor) 
were detected by qRT-PCR (quantitative polymerase chain reaction), n=3–5. (B) Western blotting (up) and quantification (down) for SMA 
protein, n=3. (C) Representative immunostaining of SMA protein, Scale bar, 100 μm. All data are shown as means ± SEM, unpaired t-test 
was used for comparisons. *, P<0.05; **, P<0.01.

Wuhan, China) was added and incubated for 2 h. The 
optical density (OD) at 450 nm was detected. Cell viability 
was calculated as cell viability = OD (treatments)/OD 
(controls) 100%.

Statistical analysis

All data were expressed as mean ± standard error of the 
mean (SEM). One-Way analysis of variance (ANOVA) 
was used for multigroup comparison. Student’s t-test was 
used for two group comparison. Values of P<0.05 were 
considered statistically significant. Statistical analyses and 
graphics were carried out with GraphPad Prism 8 software 
(GraphPad Software, San Diego, CA, USA).

Results

Hcy induced fibroblasts differentiation into myofibroblasts

To study the role of Hcy, we isolated primary CFs from 
newborn rat hearts as described previously (22) and 
identified them by flat-spindle shape and expressing 
DDR2 (Figure S1). The differentiation of fibroblasts into 
myofibrolasts is the important process during cardiac 
fibrosis. Thus, we detected the levels of differentiation 
markers, such as α-SMA and connective tissue growth factor 
(CTGF). Results showed that CFs displayed a significantly 
increased messenger RNA (mRNA) expression after 
exposure to 300 μM Hcy (Figure 1A). Similarly, the protein 
level of α-SMA was significantly upregulated by high level 

https://cdn.amegroups.cn/static/public/ATM-21-5602-supplementary.pdf
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Figure 2 Hcy induces collagen synthesis in cardiac fibroblasts. (A) qPCR analysis of col1a1, col1a2, col3 (collagen), n=3–5. (B) Western blot 
analysis (up) and quantification (down) of the expression of COL1A1 protein, n=3. (C) Representative immunostaining of COL1A1, Scale 
bar, 50 μm. All data are shown as means ± SEM, unpaired t test was used for comparisons, *, P<0.05; **, P<0.01. 

of Hcy (Figure 1B,1C).

Hcy promotes the remodeling of ECM

Next, we assessed the effect of Hcy on myocardial ECM. 
Type I collagen, the most important and main component of 
fibrosis, is synthesized and secreted mostly by CFs (23). We 
observed a significant increase of Collagen 1a1 (COL1A1) 
and Collagen 3 (COL3) mRNA levels in Hcy treated CFs 
(Figure 2A), however, there were no significant differences 
of Col1a2 between Ctrl and Hcy group. Consistent with the 
RNA analysis, high level of Hcy caused a significant increase 
in COL1A1 protein level (Figure 2B,2C). Moreover, the 
ED-A domain of fibronectin is involved in the activation of 
myofibroblast (24). Our data also showed that Hcy treatment 
significantly enhanced the mRNA and protein levels of 
fibronectin (Figure 3A-3D). In a similar way, we found that 
the protein levels of TIMP1 were increased in Hcy treated 
CFs with no change in RNA levels (Figure 3E-3H). It has 
been reported that TIMP1 directly promotes myocardial 

fibrosis and induced collagen synthesis in CFs (25). Together, 
our data indicate that Hcy promotes myocardial fibrosis 
through fibroblast activation and ECM expansion.

Hcy promotes the proliferation and migration of CFs

In determining the influence of Hcy on the growth of 
fibroblasts, the result of CCK-8 assay showed that Hcy 
significantly promoted the CFs proliferation (Figure S2). The 
cytokine TGF-β is the most well-characterized profibrotic 
cytokine that triggers fibroblast activation both in vitro and  
in vivo. As a positive control, TGF-β treatment strongly 
increased the migratory capacity and proliferation as 
compared to untreated cells in the scratch and transwell assay. 
Importantly, Hcy treatment also promoted the proliferation 
and migration of CFs similarly to TGF-β (Figure 4A-4D).

FoxO3 participates in Hcy-mediated effects in CFs

We next investigated the possible mechanism that Hcy 

https://cdn.amegroups.cn/static/public/ATM-21-5602-supplementary.pdf


Shi et al. FoxO3 in Hcy-induced cardiac fibrosis

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(23):1732 | https://dx.doi.org/10.21037/atm-21-5602

Page 6 of 12

Fi
br

on
ec

tin

Fibronectin

GAPDH

Ctrl                             Hcy

Ctrl             Hcy

Ctrl        Hcy Ctrl        Hcy

* **

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

(fo
ld

 o
f c

on
tr

ol
)

1.5

1.0

0.5

0.0

Fi
br

on
ec

tin
 m

R
N

A
 le

ve
l

(fo
ld

 o
f c

on
tr

ol
)

1.5

1.0

0.5

0.0

100 μm 100 μm

A

B

C

D

TIMP1

GAPDH

Ctrl             Hcy

Ctrl        Hcy Ctrl        Hcy

Ctrl                               Hcy

*

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

(fo
ld

 o
f c

on
tr

ol
)

3

2

1

0

TI
M

P
1 

m
R

N
A

 le
ve

l
(fo

ld
 o

f c
on

tr
ol

)

1.5

1.0

0.5

0.0

TI
M

P
1

50 μm 50 μm

E

F

G

H

Figure 3 Hcy promotes the remodeling of extracellular matrix in cardiac fibroblasts. (A) Western blot analysis and quantification (B) 
of the expression of Fibronectin protein, n=3. (C) Representative immunofluorescence micrographs of fibronectin (FN), scale bar, 100 
μm. (D) qPCR analysis of fibronectin, n=3–5. (E) Western blot analysis and quantification (F) of the expression of tissue inhibitor of 
metalloproteinase 1 (TIMP1) protein, n=3. (G) Representative immunofluorescence micrographs of TIMP1, Scale bar, 50 μm. (H) qPCR 
analysis of TIMP1, n=3–5. All data are shown as means ± SEM, unpaired t test was used for comparisons. *, P<0.05; **, P<0.01. 

promotes the activation of CFs. Having shown that 
FoxO3 regulates cardiac fibrosis (26), we found that the 
mRNA expression of FoxO3 was greatly downregulated in 
fibroblasts exposed to Hcy (Figure 5A). It has been shown 
that FoxO3 can be phosphorylated at T32, S253, and 
S315 residues through the phosphatidylinositol3-kinase 
(PI3K)/Akt signaling pathway (27). We demonstrated 
that the relative phosphorylation of FoxO3 at Ser253 
was significantly increased accompanied by remarkably 
increased Akt phosphorylation (Figure 5B-5D). These data 
suggest that FoxO3 activity is suppressed by Hcy exposure 
in CFs. Phosphorylation of FoxO3 usually causes its 

exclusion from the nucleus and suppresses its transcriptional 
activity (24). As shown in Figure 5E, Hcy-treated CFs 
exhibited decreased levels of nuclear and total FoxO3. 
Overall, these results confirm the idea that Hcy drives 
FoxO3 downregulation in CFs.

FoxO3 ameliorates the Hcy-induced dysfunction of CFs

To assess whether the effects of Hcy are mediated via 
FoxO3, we infected the CFs with recombinant adenovirus to 
overexpress FoxO3. Previous studies have shown that FoxO3 
promotes the cellular apoptosis (28) and autophagy (29)  
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Figure 4 Hcy promotes the proliferation and migration of cardiac fibroblasts. (A) Scratch assay in cardiac fibroblasts followed by 
transforming growth factor-β (TGF-β) (10 ng/mL) or 300 μM Hcy; images were photoed at 0 and 24 h after scratch. Black lines illustrate the 
wound borders. Scale bar, 200 μm; (B) quantification of the closed wound area, n=4; (C) transwell assay of migrating cells and quantification; 
(D) cell numbers from 7–8 random fields were counted in each well. Scale bar, 100 μm, n=3–5. Data are shown as means ± SEM, unpaired t 
test was used for comparisons. *, P<0.05; **, P<0.01.

but inhibits proliferation (30). Consistent with these 
notions, western blot results (Figure 5F) showed that 
overexpression of FoxO3 decreased Hcy-induced expression 
of Bcl2 protein, but increased the expression of Bax  
(Figure 5G,5H). In addition, overexpressing FoxO3 increased 
Hcy-induced inhibition of LC3II expression (Figure 5I). 
Furthermore, FoxO3 overexpression significantly decreased 
α-SMA protein level which was enhanced by Hcy treatment 
(Figure 5J); however, the COL1A1 expression was not 
significantly changed (result not shown). In contrast, we 
treated CFs with small interfering RNA (siRNA) to silence 
FoxO3 and the FoxO3-silenced CFs showed greatly 
increased mRNA levels of α-SMA and col1a1 (Figure S3). 
These findings suggest that the Hcy-induced dysfunction of 
CFs is partly mediated via decreased FoxO3 activity.

Hcy promotes cardiac remodeling through the Akt/FoxO3 
pathway in mice

To ascertain the role of Hcy on fibrotic processes in vivo, 
mice were fed an HMD for 4 or 8 weeks (31). In HMD 
hearts, the protein levels of TIMP1, fibronectin, and α-SMA 

were increased after 4 and 8 weeks (Figure 6A-6D), indicating 
that HHcy promoted myocardial remodeling and fibrosis. 
In addition, to determine whether the profibrotic effect of 
Hcy is accompanied by decreased FoxO3 activity, we assessed 
the status of FoxO3 phosphorylation in HMD hearts. A 
significant increase of FoxO3 phosphorylation at Ser253 
was observed in HMD-fed mice compared with chow-fed 
mice. Further, we examined the role of PI3K/Akt pathway 
in this process. Similarly, HMD-induced HHcy significantly 
enhanced the levels of phosphorylated Akt (Figure 6A-6D).

We next evaluated the expression of apoptosis and 
autophagy related protein, and western blot results showed 
that HMD hearts had a higher level of Bcl2 but lower level 
of Bax and LC3II protein (Figure 6E-6J), indicating that 
Hcy resulted in resistance to apoptosis and autophagy, in 
agreement with previous findings. Collectively, these data 
suggest that Hcy promotes cardiac remodeling through the 
Akt/FoxO3 axis.

Discussion

Fibroblasts are the major resource of cardiac remodeling. 

https://cdn.amegroups.cn/static/public/ATM-21-5602-supplementary.pdf
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Figure 5 FoxO3 ameliorates the Hcy-induced dysfunction of cardiac fibroblasts. Cardiac fibroblasts (CFs) were treated with Homocysteine 
(Hcy) for 24 h. (A) qPCR analysis of FoxO3 mRNA levels, n=5; (B) western blot analysis and quantification (C and D) of Akt and FoxO3 
phosphorylation levels in CFs after Hcy treatment, n=3; (E) Representative immunostaining of FoxO3 protein, Scale bar, 50 μm. Then CFs 
were infected with ad-GFP or ad-FoxO3 for 24 h followed by Hcy for another 24 h. (F) Western blot analysis and quantification (G-J) of 
SMA, LC3II, Bax, Bcl2 and FoxO3 protein, n=3; Data are shown as means ± SEM, 1-way ANOVA was used for comparisons. *, P<0.05; **, 
P<0.01.

They are quiescent in normal healthy hearts and become 
activated and converted into myofibroblasts after injury. 
Increasing evidence has demonstrated that increased level 
of plasma Hcy is associated with cardiac fibrosis (14).  
However, the precise mechanisms by which Hcy contributes 
to fibroblast dysfunction during cardiac fibrosis remain 

elusive. Here, we have reported the findings that Hcy 
promotes cardiac remodeling and dysfunction through 
the PI3K/Akt/FoxO3 pathway and FoxO3 alleviates Hcy-
induced myofibroblast activation partly by inhibiting 
cellular apoptosis and autophagy.

Methionine, the only source of Hcy, can be metabolized 
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Figure 6 Hcy promotes cardiac remodeling through Akt/FoxO3 pathway in mice. The C57BL6 mice were fed with high methionine diet 
(HMD) for 4 or 8 weeks. The heart was separated and extracted proteins. (A-D) Western blot for TIMP1, Fibronectin, SMA, total and 
phosphorylated FoxO3 and total and phosphorylated Akt in hearts from mice after 4 weeks (A and B) or 8 weeks (C and D) HMD feeding 
and quantification, n=5. (E-J) Western blot analysis and quantification of LC3II, Bax and Bcl2 protein after 4 weeks (E-G) or 8 weeks (H-J) 
HMD feeding, n=5. Data are shown as means ± SEM, unpaired t test was used for comparisons. *, P<0.05; **, P<0.01.

through three pathways: the methionine cycle, the 
transsulfuration pathway, and the salvage cycle. Under 
the metabolism of a series of enzymes, methionine can be 
converted to Hcy. Dysregulation of methionine metabolism 

has been reported in multiple diseases, such as heart, liver 
and kidneys. High methionine diet induced oxidative stress, 
inflammation, and vascular remodeling, finally resulted in 
decreased cardiac function in mice (32). Increasing evidence 
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suggests methionine restriction (MR) can prolong life (33),  
improve cardiac dysfunction (34) and other beneficial 
effects. In our study, Hcy promoted the conversion of 
fibroblasts to myofibroblasts expressing α-SMA and induced 
proliferation and migration. The highly proliferative 
myofibroblasts secrete large amounts of ECM proteins. 
The deposition and expansion of ECM plays a crucial role 
in cardiac dysfunction (35). In this study, Hcy induced an 
enhancement in the expression of the pro-fibrotic markers 
such as Collagen1, fibronectin, and TIMP1 in vitro and 
in vivo. It is worth noting that fibronectin can not only 
form a matrix network but also facilitate myofibroblast 
differentiation (36). In addition, upregulated TIMP1 
may act as a matrix-preserving factor, promoting ECM 
deposition and increasing myocardial stiffness (36). These 
data indicate that Hcy accelerates fibrotic progress. In 
general, a better understanding of the underlying molecular 
mechanisms of fibroblast dysfunction is important for the 
development of novel anti-fibrotic therapies.

Defective autophagy results in development of heart 
failure (37), however the role of autophagy in CFs is 
less known. Recent evidence indicated that autophagic 
f lux  was  impaired  in  act ivated  CFs  and f ibrot ic  
hearts (38). Another study found that autophagy enhanced 
the activation of CFs and exerted a profibrotic role (39). 
The present study showed that Hcy caused a significant 
decrease in LC3II protein levels compared with normal 
controls in CFs and in mice. It confirmed that Hcy could 
accelerate the development of fibrosis through inhibition 
of autophagy. Interestingly, we found that Hcy results in 
downregulation of Bax but upregulation of Bcl2 in CFs. 
Our findings are completely opposite from results in H9c2  
cardiomyocytes (40). Others have demonstrated that HHcy 
could induce hypertrophy and apoptosis of cardiomyocytes, 
leading to cardiac fibrosis in mice fed with HMD for 
12 weeks (41). In our study, however, the roles of Hcy-
inhibition of autophagy and apoptosis were observed in 
mice fed with HMD. We attribute this to the diverse 
functions of Hcy depending on different tissues and 
conditions. Apoptosis and autophagy are both evolutionarily 
conserved pathways that tightly regulate and interact with 
each other; anti-apoptotic Bcl-2 can inhibit autophagy via 
an interaction with Beclin1 (42). Our findings suggest that 
Hcy-induced Bcl2 might impede autophagy and result in 
myofibroblast prolonged persistence.

It is known that FoxO3 regulates several cellular 
functions such as apoptosis, cell cycle arrest, autophagy, 
oxidative stress resistance, and longevity (27). We propose 

that FoxO3 is involved in Hcy-induced cardiac remodeling. 
Our results showed that Hcy inhibits FoxO3 expression 
and nucleus location in fibroblasts. Furthermore, the PI3K/
Akt/FoxO3 pathway was activated in HMD-hearts. Most 
importantly, FoxO3 overexpression could reverse the 
effects of Hcy in CFs, evidenced by SMA downregulation 
and decreased Bcl2 expression but increased Bax. It is well 
known that activated fibroblasts are resistant to apoptosis (1).  
Thus, therapies that induce apoptosis of activated 
fibroblasts might be beneficial in progressive fibrotic 
diseases. On the other hand, autophagy may function as a 
defensive mechanism in CFs by autophagic degradation of 
intracellular collagen (43). We found that the Hcy-inhibited 
LC3II was upregulated by overexpressing FoxO3. These 
findings revealed that FoxO3 promotes the apoptosis and 
autophagy of CFs to protect against Hcy-induced cardiac 
fibrosis. Thus, future studies are warranted to determine the 
potential therapeutic benefit of FoxO3 upregulation in CFs 
for the prevention of cardiac remodeling.

In conclusion, we demonstrated that Hcy may reduce 
the autophagy and apoptosis of CFs and promote fibroblast 
activation, eventually resulting in cardiac fibrosis via 
activation of the PI3K/Akt/FoxO3 pathway. Therefore, 
FoxO3 agonists should be carefully evaluated as antifibrotic 
agents for treating cardiac remodeling in the future. 
However, there are some limitations in this study. We only 
investigated the role of FoxO3 in neonatal rat CFs, thus 
further study should be considered using knockout mice 
or adenoviral gene delivery to investigate the pathological 
changes and potential mechanism.
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Supplementary

Figure S1 Characterization of cardiac fibroblasts. Brigt-field image of cultured cardiac fibroblasts (left) and representative immunostaining 
of discoidin domain receptor 2 (DDR2), a marker of cardiac fibroblasts. Scale bar, 200 μm (left),100 μm (right).

Figure S2 Hcy induced the proliferation of cardiac fibroblasts. 
Cardiac fibroblasts (CFs) were treated with homocysteine (Hcy) 
(300 μM) for 24 h, then added cck8 and detected the OD value 
at 450 nm after 2 h incubation. Data are shown as means ± SEM, 
unpaired t test was used for comparisons. **, P<0.01.

Figure S3 Knockdown FoxO3 promotes the differentiation of 
cardiac fibroblasts. Cardiac fibroblasts (CFs) were transfected with 
FoxO3 siRNA for 48 h, then detected the mRNA levels. Data are 
shown as means ± SEM, unpaired t-test was used for comparisons. *, 
P<0.05.
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