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Background: Esophageal adenocarcinoma (EAC) is an aggressive malignancy and accounts for the 
majority of cancer-related death worldwide. It is often diagnosed at an advanced stage and entails a poor 
prognosis for those afflicted. The mechanisms of its pathogenesis and progress remain unclear and require 
urgent elucidation. This study aimed to identify specific genes and potential pathways associated with the 
progression and prognosis of EAC using bioinformatics analyses. 
Methods: EAC microarray datasets from the Gene Expression Omnibus (GEO) and The Cancer 
Genome Atlas (TCGA) databases were analyzed to identify differentially expressed genes (DEGs) using 
bioinformatics analysis. The DEGs in TCGA were then analyzed to construct a co-expression network by 
weighted correlation network analysis (WGCNA), and module-clinical trait relationships were analyzed to 
explore the genes that associated with clinicopathological parameters of EAC. Gene ontology (GO) terms 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses were performed for the cancer-
related genes, and a DEG-based protein-protein interaction (PPI) network was used to extract hub genes 
through Cytoscape plugins. The consensus survival analysis for EAC (OSeac) was performed to identify 
the prognosis-related genes. The immune infiltration was evaluated by tumor immune estimation resource 
(TIMER) algorithms, and a risk score prognostic model was established using univariate, multivariate Cox 
proportional hazards regression, and lasso regression analysis.
Results: Ultimately, 190 cancer-related DEGs were identified, 6 of which were found to play vital 
roles in the progression of EAC, including ACTA2, BGN, CALD1, COL1A1, COL4A1, and DCN. The 
risk score prognostic model consisted of 6 other genes that had an important impact on the prognosis of 
EAC, including CLDN3, EPB41L4A, ESM1, MT1X, PAQR5, and PLAU. The area under the curve of the 
prognostic model for predicting the survival of patients at 1, 2, and 3 years was 0.707, 0.702, and 0.726, 
respectively. 
Conclusions: This study identified several genes with the potential to become useful targets for the 
diagnosis and treatment of EAC. The 6-gene-related risk score prognostic model and nomogram based on 
these genes may be a reliable tool for predicting the prognosis of patients with EAC.
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Introduction

Esophageal cancer (EC) is an aggressive malignancy 
and accounts  for  the  major i ty  of  cancer-re la ted 
deaths worldwide (1,2). The disease mainly includes 2 
epidemiological and pathologically different subtypes: 
esophageal squamous cell  carcinoma (ESCC) and 
esophageal adenocarcinoma (EAC) (3). ESCC is the most 
common and the dominant subtype in Asians, while EAC 
has a higher incidence in Western countries (4). Currently, 
the 5-year survival rate of EAC is less than 20% unless 
diagnosed and treated in the early stage (5). Additionally, 
surgical therapy, which can significantly improve 
prognosis, is not suitable for patients with advanced-
stage cancer (6). Therefore, novel key genes and possible 
molecular mechanisms associated with the initiation, 
progression, and prognosis of EAC may provide a more 
effective approach to the early diagnosis and subsequent 
clinical decision making for personalized treatment and 
then improved survival.

The occurrence and development of EAC are closely 
related to alcohol and tobacco addiction, obesity, and 
gastroesophageal reflux, but the specific carcinogenic 
mechanism remains unclear (3). Barrett’s esophagus (BE), 
which involves the specialized small intestinal metaplastic 
epithelium of the esophagus, is a precursor to EAC (7,8). 
Previous studies have identified a series of significantly 
mutated genes in the progress of BE and EAC, such as 
TP53, CDKN2A, SMAD4, ARID1A, and PIK3CA (9,10). 
DNA hypermethylation in the promoter regions of 
genes has also been observed in BE and EAC (8,11). A 
study conducted by Wu et al. in 2013 identified several 
progressively altered-expressed microRNAs (miRNAs) of 
malignant progression in BE and EAC (12), and a recent 
study using high-throughput sequencing analysis revealed 
that genes and pathways involved in EAC were associated 
with DNA replication, cell cycle, and fatty acid degradation 
signaling pathways (13).

Although the research on the genes and molecular 
mechanisms of EAC has increased in recent years, a 
comprehensive picture of its genes and regulation is still 
lacking. With the development of genomic microarrays and 
high-throughput sequencing technologies, bioinformatics 
analysis is gradually becoming a prevailing tool for the 
exploration of cancer-related biomarkers and molecular 
mechanisms (13,14). Weighted gene co-expression network 
analysis (WGCNA) is a novel, systematic, bioinformatics 
method for selecting co-expression modules of related 

genes and the critical module associated with clinical traits, 
and may provide a novel means to exploring the potential 
biomarkers that could be used in the early diagnose and 
individual treatment of cancer (15). In this study, EAC 
microarray datasets from The Cancer Genome Atlas 
(TCGA) and the Gene Expression Omnibus (GEO) 
databases were analyzed to identify differentially expressed 
genes (DEGs) of EAC. Protein-protein interaction (PPI) 
and WGCNA were then applied in the identification of 
the key genes closely associated with the development of 
EAC. Moreover, patients’ clinical information and RNA-
sequencing of DEGs from TCGA database were used for 
univariate cox regression analysis, lasso regression analysis, 
and multivariate cox regression analysis to establish a risk 
score prognostic model. We present the following article in 
accordance with the reporting recommendations for tumor 
MARKer (REMARK) reporting checklist (available at 
https://dx.doi.org/10.21037/atm-21-4015).

Methods

Data acquisition and preprocessing

The gene expression profiles based on RNA-sequencing and 
relevant clinical data of EAC patients were downloaded from 
TCGA (https://www.cancer.gov/tcga) data repository (16).  
The level of gene expression was measured and standardized 
by R package “DEseq2” (The R Foundation for Statistical 
Computing) (17). 

To increase the robustness of our study, we searched 
for publicly available studies and samples in the GEO 
(https://www.ncbi.nlm.nih.gov/geo/) that met the following 
conditions for analysis: (I) the gene expression data series 
contained EAC and normal tissue samples; (II) the number 
of samples in every data series was more than 30; (III) the 
species was Homo sapiens. Finally, 2 gene expression profiles 
(GSE13898 and GSE26886) were identified for further 
analysis (18). The maximum value of expression of the 
genes was considered as the gene expression level if multiple 
probes corresponded to the same gene (19). The flow 
diagram of this study is shown in Figure 1. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Identification of DEGs

R package “DEseq2” was used to identify DEGs in TCGA 
database (17), while R package “limma” was used for GEO 

https://dx.doi.org/10.21037/atm-21-4015
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Figure 1 Flow chart of this study. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; DEGs, differentially expressed 
genes; WGCNA, weighted gene co-expression network analysis; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
PPI, protein-protein interaction. 

datasets (20). Thresholds of |log2FC| >1.0 and an adjusted 
P value of <0.05 were selected.

Construction of a gene co-expression network (WGCNA)

The “WGCNA” package in R was used to construct a 
gene co-expression network of DEGs identified from 
TCGA data, and the analysis was performed according to 
the package instructions (15). The scale independence and 
average connectivity analysis of modules was performed by 
gradient test, and an appropriate power value was selected 
when the scale independence value was equal to 0.9. A 
WGCNA algorithm was then used to construct the co-
expression network. A network with co-expression weight 
>2 was considered as candidate network, and genes with 
high absolute correlations were clustered into the same 
modules by cutting the clustering tree into branches. Only 
when the number of genes exceeded 30 was a module 

defined, and modules with higher correlation were merged 
(r<0.25). To visualize the results, different colors was 
assigned to each module.

Identification of cancer-related modules and genes

We used the module eigengene (ME) method to identify 
modules which were related with the clinical traits 
of EAC in TCGA data. The ME could represent the 
gene expression profiles of a module. The module-trait 
relationships (MTRs) were measured by linking the MEs 
to the clinical traits, and MTRs were then used to select 
significant clinical modules for in-depth analysis. Modules 
with an |MTRs| >0.5 were considered as cancer-related 
modules. Moreover, we took the intersection of the DEGs 
in the GSE13898 and GSE26886 datasets and those in the 
cancer-related modules and defined these as cancer-related 
genes.

GEO TCGA

RNA-seq data

DEGs

Uni CoxGO/KEGG

Lasso CoxPPI/hub gene

Multi CoxRisk score

Prognostic model

Test group

Clinical data

DEGs WGCNA Train groupDEGs

GSE13898 GSE26886
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Gene Ontology (GO) and pathway enrichment analysis

GO enrichment analysis identified which GO terms were 
over or underrepresented within a given set of genes, 
consisting of molecular function (MF), cellular components 
(CC), and biological processes (BP) (21); meanwhile, 
the KEGG database was used to identify functional and 
metabolic pathways (22). To explore the potential biological 
themes and pathways of cancer-related genes, we used the 
“clusterprofiler” package in R to annotate and visualize GO 
terms and KEGG pathways. 

PPI network construction and module analysis 

The Search Tool for The Retrieval of Interaction Genes 
(STRING, Zurich, Switzerland; https://string-db.org/) 
was used to construct the PPI network (23). Cancer-
related genes were mapped to STRING to evaluate the 
PPI information with a confidence score >0.4 as the cutoff 
standard, which was then visualized using Cytoscape 
software (24). The key genes in the PPI were selected 
using five methods in CytoHubba plug-in, including edge 
percolated component (EPC), maximal clique centrality 
(MCC), maximal neighborhood component (MNC), 
degree (node connect degree) and closeness (node connect 
closeness). The intersection of top 15 genes identified by 
five methods was then taken to acquire the key genes in 
PPI analysis. In addition, Molecular Complex Detection 
(MCODE) was used to identify the finest clusters of PPI (25).

Survival analysis

The consensus survival analysis for EAC (OSeac) online 
survival analysis tool (http://bioinfo.henu.edu.cn/EAC/
EACList.jsp) was applied to calculate Kaplan-Meier (K-M) 
survival curves with hazard ratio (HR) and log-rank tests of 
key genes in the PPI analysis (26). 

Immune infiltration analysis

The Tumor Immune Estimation Resource (TIMER; http://
timer.cistrome.org/) algorithm is a comprehensive online 
resource for the systematic analysis of immune infiltrates 
across various cancer types (27). In this study, we performed 
TIMER to determine the relationship between key gene 
expression in EAC and 6 immune infiltrates (B cells, CD4+ 
T cells, CD8+ T cells, neutrophils, macrophages, and 
dendritic cells).

Construction of a prognostic risk score model

A total of 154 patients with overall survival (OS) data were 
selected for further survival analysis. The clinical data of 
the GSE13898 dataset was provided by Professor Wang 
in Henan University. To give the established prognostic 
model better generalization ability, we identified the data 
from TCGA database as a training group (79 samples) 
and GSE13898 as a test group (75 samples). The training 
dataset was used to build the prognostic risk score model 
and validate it using the test dataset. To do this, we first 
took the intersection of the DEGs in the GSE13898 dataset 
and the genes in the cancer-related modules of TCGA 
analysis as candidate genes. Univariate Cox proportional 
hazards regression analysis was then used to identify key 
genes significantly associated with prognosis (P<0.05) (28).  
The collinearity between genes was eliminated through 
lasso regression analysis (29), and multivariate Cox 
proportional hazards regression analysis was performed to 
establish prognostic risk score model (30). The model used 
risk scores as predictors of prognostic status, with patients 
categorized into high- or low-risk groups according to 
the threshold of risk score. K-M survival curves were then 
plotted to evaluate the prediction effect of the model with 
log-rank test (P<0.05). The predictive performance of this 
model at different endpoints (1, 2, or 3 years) was assessed 
using a time-dependent receiver operating characteristic 
(ROC) curve (31), and the R packages “survival”, “glmnet”, 
“survminer”, and “survivalROC” were used in the 
construction of a prognostic risk score model.

Statistical analysis

R v4.1.1 was used to conduct data preprocessing, DEG 
screening, WGCNA analysis and functional annotation 
analys is .  CytoHubba and MCODE in Cytoscape 
v3.7.0 was selected to mine key genes. The details of 
these bioinformatic analyses have been described in 
corresponding subsections. The potential diagnostic value 
of the prognostic risk score model was shown by ROC 
analysis using R v4.1.1. A P value <0.05 was considered 
statistically significant. 

Results

Characteristics of selected datasets

The gene expression profiles based on RNA-sequencing 
were obtained from TCGA until April 2021. Studies from 

https://string-db.org/
http://bioinfo.henu.edu.cn/EAC/EACList.jsp
http://bioinfo.henu.edu.cn/EAC/EACList.jsp
http://timer.cistrome.org/
http://timer.cistrome.org/
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the GEO database up to April 2021 were also examined 
to increase the robustness of the study. Through layers of 
screening, we identified two datasets (GSE13898 and GSE 
26886) in the GEO database that met the inclusion criteria, 
and the detailed characteristics of the selected datasets are 
summarized in Table 1. The data from TCGA were used 
to perform WGCNA analysis, and a risk score prognostic 
model was established using TCGA data and clinical 
information which was validated with the GSE13898 
dataset.

Identification of DEGs 

After the quality of samples in each group was measured, 
there were 75 EAC samples and 28 normal samples in 
GSE13898, and 21 EAC samples and 19 normal samples in 
GSE26886. We then identified 807 and 3,128 significantly 

upregulated DEGs and 811 and 2,595 downregulated 
DEGs in GSE13898 and GSE26886, respectively. In 
TCGA dataset, which contained 79 EAC samples and 
9 normal samples, 2,038 upregulated genes and 2,855 
downregulated genes were identified. The volcano plots of 
GEO and TCGA samples are presented in Figure 2.

WGCNA of DEGs in TCGA

Clinical and RNA-sequencing data for 79 EAC and 9 normal 
samples were downloaded from TCGA database, and for 
module detection, a total of 4,893 DEGs were selected using 
R package “DEseq2” for further analysis. We first used the 
average linkage method and Pearson’s correlation coefficient 
to cluster a dendrogram of samples with clinical traits  
(Figure 3A), and co-expression analysis was then applied 
to construct the co-expression network. The connectivity 

Table 1 Basic information of three datasets

Datasets Number (tumor) Number (normal) Total Database

TCGA 79 9 88 TCGA

GSE13898* 75 28 103 GEO

GSE26886 21 19 40 GEO

*, clinical information of this dataset was provided by Qiang Wang, a professor from Henan university. TCGA, The Cancer Genome Atlas; 
GEO, Gene Expression Omnibus.

Figure 2 Volcano plots of differentially expressed genes from three datasets. The x-axis represents the fold change of gene expression, and 
the y-axis represents the adjusted P value. The red dots in the plot represent statistically significant up-regulated genes, while the blue dots 
represent significant down-regulated genes. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; FDR, false discovery 
rate; FC, fold change.
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Figure 3 Weighted gene co-expression network analysis of selected genes. (A) Clustering sample dendrogram and a trait heatmap. (B) 
Analysis of network topology for various soft-thresholding powers and the soft-threshold β was set to 8. (C) Hierarchical clustering 
dendrograms of identified co-expressed genes in modules in EAC. Each colored row represents a color-coded module which contains a 
group of highly connected genes. A total of 12 modules was identified by merging modules with a higher correlation. EAC, esophageal 
adenocarcinoma.

between genes met a scale-free network distribution (scale-
free R2=0.9) when the value of soft thresholding power β 
was set to 8 (Figure 3B). For cluster splitting, the minimum 
module size was set to 30, and the modules with a higher 
correlation were merged (r<0.25). Finally, 12 modules were 
identified through hierarchical clustering (Figure 3C), and 
a unique color was assigned to each module as an identifier 
(pink, blue, salmon, green-yellow, black, purple, green, 
brown, red, magenta, tan, and grey). The number of genes 
in modules ranged from 34 to 1,864. 

Identification of cancer-related modules and genes

To explain the gene expression variation, an ME was 
calculated that represented each module. We used the tissue 
type (EAC or normal) as the clinical phenotype to select the 
cancer-related modules for further analysis (Figure 4). Based 
on the criteria of |MTR| >0.5, we selected 5 modules 
as cancer-related modules for in-depth analysis: the blue 
module (606 genes), purple module (84 genes), brown 

module (524 genes), red module (178 genes), and magenta 
module (1,864 genes). In addition, we plotted a scatterplot 
of gene significance vs. module membership in each of the 5 
modules (Figure S1). 

To identify the cancer-related genes, we took the 
intersection of the DEGs in the GSE13898 and GSE26886 
datasets from the GEO database and the genes in 5 cancer-
related modules from TCGA database. Finally, 190 cancer-
related genes were identified (Figure 5). 

Enrichment analysis of cancer-related genes

GO and KEGG enrichment analysis were performed on 
the cancer-related genes identified in the above analysis. As 
illustrated in Figure 6, genes in the GO analysis were most 
relevant with the BP of extracellular matrix organization, the 
CC of complex of collagen-containing extracellular matrix, 
and the MF of extracellular matrix structural constituent. 
As shown in KEGG analysis, 15 pathways were significantly 
associated with cancer-related genes, including regulation 

https://cdn.amegroups.cn/static/public/ATM-21-4015-supplementary.pdf
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Figure 4 Heatmaps of the correlation between module eigengene and clinical traits of EAC. Each row corresponds to a module 
eigengene, and each column corresponds to a clinical characteristic. Each cell contains the corresponding correlation. EAC, esophageal 
adenocarcinoma.
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Figure 5 Venn diagrams of DEGs in the 2 GEO datasets and the 
genes in 5 cancer-related modules from TCGA database. DEGs, 
differentially expressed genes; TCGA, The Cancer Genome Atlas; 
GEO, Gene Expression Omnibus.

of actin cytoskeleton, tight junction, protein digestion, 
and absorption, nuclear factor-kappa B (NF-κB) signaling 
pathway, and human papillomavirus infection (Figure 6). 

PPI network analysis of cancer-related genes

The PPI network was established by Cytoscape based on 
the STRING database and consisted of 152 nodes and 366 
edges (Figure 7A), with MCODE in Cytoscape being used 
to perform module analysis. One module was found to be 
significant (MCODE =7.375) and consisted of 17 nodes and 
59 edges (Figure 7B).

Identification of hub genes associated with EAC

The genes with a score in the top 15 according to all five 
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Figure 6 Gene ontology (GO) and pathway enrichment analysis. (A) Biological process analysis. (B) Cellular component analysis. (C) 
Molecular function analysis. (D) KEGG pathway analysis. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, 
biological processes; CC, cellular components; MF, molecular function.

methods in CytoHubba were identified as hub genes of 
EAC. Six genes that may play an important role in EAC 
progression were identified: actin alpha 2 (ACTA2), biglycan 
(BGN), caldesmon 1 (CALD1), collagen type I alpha 1 chain 
(COL1A1), collagen type IV alpha 1 chain (COL4A1), and 
decorin (DCN) (Table 2). 

Survival analysis and immune infiltration analysis of hub 
genes

K-M plots made using OSeac demonstrated the prognostic 
impact of the 6 hub genes identified from PPI analysis, and 
the results demonstrated that high expression of ACTA2, 
CALD1, COLA1A, and COL4A1 was associated with poor 
OS in patients with EAC (P<0.05), as shown in Figure 8. 

The  TIMER database  was  used  to  a s se s s  the 

correlation between the expression of hub genes and 
immune infiltration (Figure 9), and a positive correlation 
between ACTA2 expression and the infiltration of B cells 
(Cor =0.179; P=1.63e-02), CD4+ T cells (Cor =0.293; 
P=6.74e-05), macrophage cells (Cor =0.582; P=1.05e-17), 
and dendritic cells (Cor =0.187; P=1.18e-02) was seen. The 
expression of BGN was positively related to the infiltration 
of CD4+ T cells (Cor =0.198; P=7.77e-03), macrophage cells 
(Cor =0.514; P=1.68e-13), and dendritic cells (Cor =0.238; 
P=1.27e-03), while CALD1 expression was positively 
associated with the infiltration of macrophage cells (Cor 
=0.605; P=2.44e-19) and dendritic cells (Cor =0.228; 
P=2.08e-03). COL1A1 expression was positively associated 
with the infiltration of macrophage cells (Cor =0.463, 
P=5.88e-11) and dendritic cells (Cor =0.152; P=4.23e-02), 
and COL4A1 expression was positively associated with the 

GO-BP analysis

GO-MF analysis

GO-CC analysis

KEGG pathway analysis

A B

C D
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BA

Figure 7 The protein-protein interaction (PPI) network analysis and the most significant module. (A) The PPI network of the selected 
genes. The genes with yellow color belong to the fairly significant modules. (B) The most significant module of the PPI network.

Table 2 Hub genes for highly expressed genes ranked by different CytoHubba methods

Category
Rank methods in CytoHubba

MNC Closeness Degree MCC EPC

1 COL1A1* COL1A1* COL1A1* ACTA2* COL1A1*

2 TIMP1 PTGS2 TIMP1 CALD1* TIMP1

3 ACTA2* TIMP1 PTGS2 MYL9 BGN*

4 BGN* ACTA2* ACTA2* MYH11 DCN*

5 THBS1 THBS1 DCN* TPM2 COL4A1*

6 MMP1 DCN* BGN* MYLK ACTA2*

7 PTGS2 BGN* THBS1 TPM1 THBS1

8 DCN* MMP1 MMP1 COL1A1* MMP1

9 COL4A1* CALD1* CALD1* BGN* COL5A2

10 CALD1* COL4A1* COL4A1* DCN* COL12A1

11 COL5A2 GJA1 COL5A2 COL4A1* CALD1*

12 COL12A1 MET MYLK SERPINH1 COL6A3

13 MYL9 MYH11 COL12A1 COL12A1 FMOD

14 FMOD FMOD MET COL6A3 SERPINH1

15 MYH11 MYL9 MYL9 TAGLN PTGS2

*, the overlap genes in top 15 by five ranked methods. EPC, edge percolated component; MCC, maximal clique centrality; MNC, maximal 
neighborhood component; Degree, node connect degree; Closeness, node connect closeness.
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Figure 8 Kaplan-Meier curves of 6 hub genes in EAC patients. (A) ACTA2; (B) BGN; (C) CALD1; (D) COL1A1; (E) COL4A1; (F) DCN. 
HR, hazard ratio; CI, confidence interval; OSeac, the consensus survival analysis for EAC; EAC, esophageal adenocarcinoma; ACTA2, actin 
alpha 2; BGN, biglycan; CALD1, caldesmon 1; COL1A1, collagen type I alpha 1 chain; COL4A1, collagen type IV alpha 1 chain; DCN, 
decorin.

infiltration of macrophage cells (Cor =0.366; P=4.45e-07). 
The expression of DCN was positively associated with the 
infiltration of B cells (Cor =0.154; P=3.97e-02), CD4+ T 
cells (Cor =0.225; P=2.48e-03), macrophage cells (Cor 
=0.647; P=1.03e-22), and dendritic cells (Cor =0.159; 
P=3.31e-02). 

Construction of a prognostic risk score model

To establish an effective prognostic model for predicting the 
prognosis of EAC, univariate, multivariate Cox proportional 
hazards regression analysis and lasso regression analysis 
were employed to screen the genes. First, we identified 
163 genes as candidate genes for this model by taking the 
intersection of the DEGs in the GSE13898 dataset and 
the genes in the cancer-related modules of the WGCNA 

(Figure S2). In the univariate Cox regression analysis, 14 
genes significantly associated with prognosis were identified 
(P<0.05) (Table S1), while in lasso regression, when partial 
likelihood deviance was the smallest, 11 of the 14 genes had 
coefficients that were not 0 (Figure S3). Finally, a total of 
6 genes were then obtained in multivariate Cox regression 
analysis to establish a prognostic risk score model: claudin-3 
(CLDN3), erythrocyte membrane protein band 4.1 like 4A 
(EPB41L4A), endothelial cell specific molecule-1 (ESM1), 
metallothionein 1X (MT1X), progestin and adipoQ 
receptor family member 5 (PAQR5), and plasminogen 
activator urokinase (PLAU) (Figure 10A, Table S2). The risk 
score was calculated using the following formula: risk score 
= (0.5864 × CLDN3) + (0.5773 × ESM1) + (0.3891 × PLAU) 
+ (−0.4981 × MT1X) + (−0.3769 × EPB41L4A) + (–0.2727 × 
PAQR5).

https://cdn.amegroups.cn/static/public/ATM-21-4015-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-4015-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-4015-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-4015-supplementary.pdf
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Figure 9 Correlation between 6 hub genes and immune cell infiltration (TIMER). The correlation between the abundance of immune 
cell and the expression of ACTA2 (A), BGN (B), CALD1 (C), COL1A1 (D), COL4A1 (E), and DCN (F) in EAC. EAC, esophageal 
adenocarcinoma; ACTA2, actin alpha 2; BGN, biglycan; CALD1, caldesmon 1; COL1A1, collagen type I alpha 1 chain; COL4A1, collagen 
type IV alpha 1 chain; DCN, decorin.

The K-M curves were grouped by defined risk scores 
(Figure S4), which indicated that the prognosis of the high-
risk group was significantly poorer than that of the low-risk 
group in the training data (Figure 10B), as well as test data 
(Figure 10C). By predicting the survival of patients at 1, 2, 

and 3 years, the areas under the ROC curve (AUCs) obtained 
from the risk-based prediction model in the training data 
were 0.79, 0.888, and 0.889 (Figure S5), while in the test 
data, they were 0.707, 0.702, and 0.726 (Figure 10D-10F).

We also plotted scatter plots to illustrate the relationship 

https://cdn.amegroups.cn/static/public/ATM-21-4015-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-4015-supplementary.pdf
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Figure 10 Forest plot and survival analysis for the prognostic risk score model based on 6 genes. (A) Forest plot for multivariate Cox 
regression. 95% confidence interval for the HR value over the box plot with associated P values were presented. (B,C) Survival curve for 
patients with different risk scores in the training data and test data, respectively. P<0.01. (D-F) ROC curves for the prognostic risk score 
model representing 1-, 2-, and 3-year predictions in the test data; the values of the areas under the curve are 0.707, 0.702, and 0.726, 
respectively. HR, hazard ratio; ROC, receiver operator characteristic; AUC, area under the curve.

between survival time and risk scores. As the risk scores 
increased, the duration of survival gradually decreased and 
the number of patient deaths gradually increased in the both 
training (Figure 11A) and test group (Figure 11B), which 
demonstrated the definition of “risk score” was effective. 
In the training data, the expression of CLDN3, ESM1, and 

PLAU genes were significantly higher in the high-risk group 
(P<0.05), while the EPB41L4A, MT1X, and PAQR5 genes 
were significantly highly expressed in the low-risk group 
(P<0.05), which were consistent with their coefficients in 
the risk score formula (Figure 11C). The nomogram of this 
risk score prognostic model is presented in Figure 11D.
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Figure 11 Distribution of duration of survival and the nomogram for the risk score model, and the expression of 6 genes in the model. (A,B) 
Distribution of duration of survival in the training data and test data. The x-axis is arranged in order of patient risk score, and the y-axis 
represents patient survival time. (C) The expression of 6 prognostic genes, where red represents the high-risk group, and blue represents 
the low-risk group. All P<0.01. (D) A nomogram for the prognostic risk score model. “Points” is a scoring scale for the 6 genes, respectively, 
and “total points” is a scale for total score. OS, overall survival; CLDN3, claudin-3; ESM1, endothelial cell specific molecule-1; PLAU, 
plasminogen activator urokinase; EPB41L4A, erythrocyte membrane protein band 4.1 like 4A; PAQR5, progestin and adipoQ receptor 
family member 5; MT1X, metallothionein 1X.

Discussion

EAC is a refractory type of cancer with high mortality due 
to its high metastasis rate, treatment resistance, and poor 
prognosis (3). Although many studies have been performed 
in recent years, the early diagnosis, effective treatment, and 
prognosis for EAC have not been well resolved, and it is 
essential to develop a better understanding of the molecular 
mechanisms involved in the occurrence and progression of 
the disease to explore potential targets for its diagnosis and 
treatment. 

In this study, we identified 6 genes as hub genes 
which may play an important role in the initiation and 
development of EAC by integrating TCGA and GEO data 
and combining the WGCNA and PPI network analysis. 
WGCNA provides module construction and correlation 
analysis within gene expression data to determine the 
associations between genes (15), and the PPI network was 
based on protein networks reported in the known literature 
and used to explore the keys genes of specific diseases (23). 
This study has provided strong evidence for a novel method 

combining WGCNA and PPI for the identification of 
key genes. Abnormal expression levels of key genes have 
been found in various human malignant tumors and might 
become potential targets for the diagnosis and treatment of 
malignancy (32-35). 

ACTA2 is a protein-coding gene generally expressed 
in smooth muscle cells and activated cancer-related 
fibroblasts; tumor cells may break away from a primary 
site and invade the surrounding tissue with the help of 
actin bundles (36). A study by Masszi et al. demonstrated 
that tumor growth factor beta (TGF-β)-elicited epithelial-
mesenchymal transition (EMT) induced the expression 
of ACTA2, which then increased tumor invasion and 
worsened the prognosis of patients (37,38). It has recently 
been reported that the level of ACTA2 is considerably 
increased in ESCC tumors (39). BGN is a member of the 
family of small leucine-rich proteoglycans (SLRPs) which 
is strongly expressed in inflammatory and fibrotic tissue 
(40-42) and may act as an angiogenic factor by stimulating 
tumor endothelial cell migration in an autocrine manner 
through TLR2 and TLR4 (43). Caldesmon (CALD) is 
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an actin- and myosin-binding protein family which is an 
essential component of the cytoskeleton in smooth muscle 
and non-muscle cells (44). As a member of this family, 
CALD1 is involved in the regulation of the endothelial 
cytoskeleton as well as migration, and p38 MAPK-mediated 
CALD phosphorylation may be involved in endothelial 
cytoskeletal remodeling (45). In humans, there are at least 
28 different types of collagen proteins encoded by 44 
collagen genes. The COL1A1 and COL4A1 are 2 of these 
genes and are essential in the extra cellular matrix (ECM), 
which is closely related to the biological behavior of tumor 
cells (46,47). A recent study has demonstrated that COL1A1 
and COL4A1 are associated with several clinical parameters, 
including TNM staging, lymph node metastasis, and tumor 
invasion depth in gastric cancer patients (48). COL1A1 
has been reported to be highly expressed in EC cells, and 
upregulation of COL1A1 has been associated with cell 
proliferation, invasion, and apoptosis (49). DCN, a small 
stromal proteoglycan, is a member of the SLRP gene 
family (50), and Bozoky et al. found that its expression is 
consistently decreased in the tumor microenvironment 
of various cancers (51). It has also been reported that 
the expression level of DCN is significantly decreased in 
EC tumor, suggesting it may serve as a key gene in the 
progression of EC (52). This information clarifies why the 
predicted genes, especially ACTA2, BGN, CALD1, and 
COL4A1 (not previously reported) are highly associated 
with the development of EAC, and these genes may act as 
potential biomarkers for its diagnosis and prognosis.

It is widely recognized that cyclooxygenase-2 (COX-2)  
and SRY-box transcription factor 2 (SOX2) are reliable 
biomarkers for EAC. COX-2 plays important roles in the 
induction of inflammation and tumorigenesis (53), and 
neoplastic progression of BE towards EAC is highly related 
to increased expression of COX-2 (54). Selective COX-2 
inhibition downregulates COX-2 and MET proto-oncogene 
(MET) expression, which are both important molecules 
involved in EAC progression and dissemination (55). SOX2 is 
a transcription factor associated with cancer stem cells (CSCs) 
and embryonic stem cells, and is involved in the formation 
and differentiation of esophageal epithelium (56). SOX2 
expression is lost during transition from BE to EAC, which is 
related to an increased risk of neoplastic progression (57). In 
addition, the pattern of p53 and particularly SOX2 protein 
expression in EAC predicts the response to neoadjuvant 
chemoradiotherapy (nCRT) (58). Compared with the above 
2 biomarkers, those identified through our bioinformatic 
analysis seem less credible due to the lack of functional 

experiments. Therefore, further experimental studies 
to elucidate the expression, molecular mechanism, and 
prognostic role of the potential biomarkers are required. 

A risk score prognostic model was established to predict 
the survival rate of patients with EAC and contained 6 key 
genes: CLDN3, EPB41L4A, ESM1, MT1X, PAQR5, and 
PLAU. While CLDN3, ESM1, and PLAU were found to be 
negative prognostic genes, EPB41L4A, MT1X, and PAQR5 
was found to be positive. 

CLDN3, as a member of the claudin (CLDN) gene 
family, is generally expressed on the epithelia of multiple 
tissue and is involved in the formation of intercellular tight 
junctions (59). Tight junctions, the most apical intercellular 
junctions, play vital roles in intercellular cell adhesion and 
the maintenance of tissue osmotic homeostasis. CLDN3 
has additionally been revealed to serve as a receptor of 
Clostridium perfringens enterotoxin (CPE) (60). Moreover, 
the binding of CPE to CLDN3 has been shown to cause the 
proximal portion part of the CPE to interact with the cell 
membrane and form small cell membrane pores, resulting in 
increased cell membrane permeability, loss of cell osmotic 
balance, and ultimately cell death (61,62). It has also been 
reported that the expression level of CLDN3 is significantly 
increased in EAC tumor tissue, which is consistent with our 
results, and might be associated with the progression and 
poor prognosis of EAC (63). In addition, the CLDN3 gene 
had the largest coefficient (0.5864) in the risk score formula, 
indicating that it may serve as a very important prognostic 
biomarker in EAC.

ESM1, also called endocan, is an endothelial cell-
related proteoglycan (64). Accumulated evidence has 
demonstrated that tESM1 plays an important role in 
the regulation of major process, such as cell adhesion, 
endothelial dysfunction, inflammatory disorders, and 
tumor progression (65). In addition, ESM1 is preferentially 
expressed in tumor endothel ium, is  dramatical ly 
overexpressed in many cancers, and has been shown to 
be directly involved in tumor progression (65,66). Cui 
et al. recently reported that ESM1 plays a tumor-driving 
role in EC and has the potential to become a biomarker 
for diagnosis and prognosis (67). However, the specific 
role and molecular mechanism of ESM1 in EAC requires 
further investigation.

PLAU is a member of plasminogen activator system and 
participates in various physiological and pathophysiological 
processes, such as cell proliferation, adhesion, migration, and 
other functions through the proteolytic system, intracellular 
signal transduction, and chemokine activation (68).  
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Remarkably, a recent study performed by Fang et al. has 
revealed that PLAU could promote progression of ESCC 
tumor cell and that tumor cell-secreted PLAU could 
expedite the conversion of fibroblasts to inflammatory 
cancer-associated fibroblasts, accelerating the proliferation 
and migration of ESCC cells (69). Our study demonstrated 
that PLAU may serve as a prognostic biomarker of EAC, 
which warrants further exploration in future studies.

MT1X belongs to the metallothionein gene family 
(MTs), which encode a series of cysteine-rich proteins (70).  
MTs are involved in various BP, including metal 
homeostasis, DNA damage, oxidative stress, angiogenesis, 
apoptosis, cell differentiation, and carcinogenesis (71). It 
has been reported that abnormal overexpression of MT1X 
delayed the G1/S progression of cell cycle and promoted 
apoptosis by inactivating NF-κB signaling in hepatocellular 
carcinoma cells in vitro and suppressed tumor growth and 
lung metastasis in nude mice in vivo (72). We also found 
that MT1X had a relatively higher coefficient in the risk 
score formula. Taken together, this suggests MT1X may 
serve as a potential prognostic biomarker and may inhibit 
the progression and metastasis of EAC.

EPB41L4A belongs to the FERM band (four-point-
one, ezrin, radixin, moesin) superfamily, members of which 
mainly form a group of membrane-associated proteins 
whose major biological functions are the regulation of 
cytoskeletal rearrangements, intracellular trafficking, and 
Wnt/β-catenin signaling (73,74). It has been revealed 
that the Wnt/β-catenin signaling pathway is prominently 
involved in intercellular adhesion and carcinogenesis (75). 
Recent cancer research suggests that a high expression of 
EPB41L4A is associated with better prognosis in multiple 
myeloma (MM), which has been hypothesized to result 
from the expression changes of genes involved in DNA 
replication (76). It is worth noting that EPB41L4A has not 
been reported in EAC at present, and further investigation 
is required to explore its important roles in the progression 
of this cancer.

PAQR5 is a member of the progestin and adipoQ 
receptor (PAQR) family, which encode functional receptors 
with a broad range of apparent ligand specificities (77).  
Until now, the role of in malignancy has not been 
extensively studied; one article in this area reported that 
high PAQR5 expression in endometrial cancer may be 
associated with good prognosis. The results of our study 
suggest that PAQR5 might have the potential to serve as a 
tumor suppressor gene of EAC (78).

Interestingly, we found that “points” can often show 

significant improvement as risk scores increase, as shown in 
the nomogram (Figure 11D), indicating that risk scores may 
have a greater impact on prognosis compared with clinical 
information. To the best of our knowledge, the 6-gene 
signature-related prognostic model and nomogram in our 
study have not been reported previously, and we believe this 
model has the potential to be a practical clinical tool for 
predicting the prognosis of patients with EAC.

However, this study has several limitations that should be 
noted. First, our study was mainly based on the data from 
the GEO and TCGA databases, in which most patients are 
White, African, or Latino, and caution must be taken when 
extending the findings to other ethnic groups. Second, due 
to the lack of basic experimental verification, the expression, 
molecular mechanism, and prognostic role of the genes 
at the protein level warrant further experimental studies. 
In addition, the mechanical analyses in our study were 
exclusively descriptive, and further functional experiments 
are needed to clarify the underlying mechanism of the 
genes. Finally, the amount of data included in our study is 
relatively small because of the low incidence of EAC, which 
may decrease the credibility and generalizability of the 
results.

Conclusions

This study identified 6 genes with the potential to become 
useful targets for the diagnosis and treatment of EAC, 
namely ACTA2, BGN, CALD1, COL1A1, COL4A1, and 
DCN. A risk score prognostic model based on the CLDN3, 
EPB41L4A, ESM1, MT1X, PAQR5, and PLAU genes was 
established to predict the survival rate of patients with 
EAC. The 6-gene-related risk score prognostic model and 
the nomogram based on it might be a reliable tool for 
predicting the prognosis of patients with EAC.
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Figure S1 Blue, brown, magenta, purple, and red module gene correlation scatter plots. (A) Blue module; (B) brown module; (C) magenta 
module; (D) purple module; (E) red module.

Figure S2 Venn diagrams of DEGs of the GSE13898 dataset and the genes in 5 cancer-related modules from TCGA database. TCGA, The 
Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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Table S1 Genes with significant effects on prognosis of EAC identified after univariate Cox proportional hazards regression analysis

Gene HR HR.95L HR.95H p value

EPB41L4A 0.6157530047 0.4410112281 0.8597326749 0.0044072838

CLDN3 1.6627728118 1.1509193760 2.4022650773 0.0067538764

ALAD 0.6027127531 0.4141172342 0.8771976453 0.0081876380

RGS16 1.5909430862 1.1129415615 2.2742433126 0.0108680392

ESM1 1.4246396425 1.0697435866 1.8972753251 0.0154701518

SERPINH1 1.3998831566 1.0402640785 1.8838224762 0.0263821135

PINK1 0.7192522011 0.5366197615 0.9640415167 0.0274542939

PLAU 1.4582772199 1.0400323117 2.0447176747 0.0287008654

PAQR5 0.6918505279 0.4962175613 0.9646114735 0.0298225598

MT1X 0.7008389268 0.5068875992 0.9690022051 0.0315194474

ANGPT2 1.3320308066 1.0207404864 1.7382538397 0.0347617953

CDC25B 1.5273743103 1.0285739030 2.2680648195 0.0357618666

CRTAC1 0.6821840045 0.4683125435 0.9937274210 0.0462888743

IL1B 1.4107458375 1.0035642387 1.9831354497 0.0476540975

EAC, esophageal adenocarcinoma; HR, hazard ratio; HR.95L, hazard ratio 95% lower; HR.95H, hazard ratio 95% higher.
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Figure S3 Lasso regression analysis of selected genes. (A) Results of lasso regression. λ was determined when the partial likelihood deviance 
was smallest. (B) Coefficient curve. The different colored lines represent coefficient sizes of individual genes in different cases. The abscissa 
represents log (λ) and the number of coefficients (top) that are not 0 under this penalty factor.

Table S2 Six genes obtained to establish a prognostic risk score model through multivariate Cox proportional hazards regression analysis

Gene cOef HR HR.95L HR.95H p value

CLDN3 0.5864 1.7975 1.2061 2.6789 0.003965

ESM1 0.5773 1.7813 1.2395 2.5598 0.001802

PLAU 0.3891 1.4757 1.0283 2.1175 0.034699

EPB41L4A −0.3769 0.6859 0.4818 0.9764 0.036411

PAQR5 −0.2727 0.7612 0.5504 1.0529 0.099345

MT1X −0.4981 0.6076 0.4281 0.8625 0.005315

COEF, coefficients; HR, hazard ratio; HR.95L, hazard ratio 95% lower; HR.95H, hazard ratio 95% higher.
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Figure S4 Risk score distribution in the training data (A) and test data (B). The x-axis represents the number of patients, and the y-axis 
represents the risk score. The red and green dots in the plot represent patients with high and low risk, respectively.

Figure S5 ROC curves for the prognostic model representing 1-, 2- and 3-year predictions in the training data, respectively. The values of 
the AUC are 0.790, 0.889, and 0.888, respectively. ROC, receiver operator characteristic; AUC, area under the curve.
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