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GSK-3β activates NF-κB to aggravate caerulein-induced early 
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Background: Acute pancreatitis is a life-threatening disease which causes considerable morbidity and 
mortality. However, no specific and effective treatments are currently available for this critical condition, 
which is mainly due to the insufficient understanding of the early cellular events in the initial phase of acute 
pancreatitis. Previous researchers have reported that two independent events, intra-acinar trypsinogen 
and NF-κB activation, are of equal importance in the early development of acute pancreatitis. GSK-3β, an 
essential molecule in multiple physiopathological processes including inflammation, is associated with the 
expression of the NF-κB pathway. 
Methods: We investigated whether GSK-3β affected the expression of cytokines produced by intra-acinar 
cells and aimed to determine the probable regulatory mechanism by using single allele GSK-3β-deficient mice. 
Results: Our data showed that IL-6 and TNF-α mRNA expression in pancreatic tissue and serum IL-6 and 
TNF-α were significantly decreased. Meanwhile, pancreatic phospho-NF-κB p65 (ser536) protein expression 
in GSK-3β+/− mice was lower than that in wild type (WT) mice. 
Conclusions: GSK-3β may activate intra-acinar NF-κB signaling to promote the production of 
proinflammatory cytokines, which then induces the recruitment of inflammatory cells and activation of 
the cytokine cascade, further promoting local and systemic inflammation and ultimately aggravating acute 
pancreatitis. These findings strongly indicate that GSK-3β may be a potential treatment target for acute 
pancreatitis.
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Introduction

Acute pancreatitis, usually caused by gallstones and ethanol 
consumption (1), is an acute inflammatory disease of 
the exocrine pancreas, characterized by acute abdominal 
pain and a concomitant rise in serum amylase and lipase 
concentration (2). Although the majority of cases are 
mild and self-limited, the overall mortality of acute 
pancreatitis still remains at 4–8% (2), and can even reach 

15% when patients with pancreatitis develop pancreatic 
or extrapancreatic necrosis and systemic inflammatory 
response syndrome (SIRS) (3) .  While the rate of 
hospitalization for acute pancreatitis has been increasing in 
the past decades (4), this disease lacks specific and effective 
interventions because of the little understanding of the early 
cellular events in the pathophysiology of the initiation of 
acute pancreatitis, posing a significant challenge to health 
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providers worldwide.
Over the past century, it has been presumed that intra-

acinar trypsinogen activation is the key event for the onset of 
pancreatitis (5,6). However, some researchers found that the 
progression of local and systemic inflammation could not 
be relieved when pathological activation of trypsinogen was 
completely removed (7,8), indicating that there might be 
another parallel mechanism that mediates the inflammatory 
response in the early stage of acute pancreatitis. It was then 
found that intra-acinar NF-κB activation during the early 
development of acute pancreatitis was independent from 
trypsinogen activation. Thus, researchers proposed that NF-
κB activation might be responsible for local inflammation 
and the development of the systemic inflammatory 
response (7,9-12). Furthermore, Huang et al. proved that 
NF-κB, which was activated early in acinar cells during 
acute pancreatitis, provoked the expression of multiple 
proinflammatory genes, and ultimately increased the severity 
of acute pancreatitis when transgenes that encoded the NF-
κB p65 subunit or the inhibitor of κB kinase 2 (IKK2) were 
introduced to mice (13-18).

In contrast to the observations regarding NF-κB 
described above, some controversial results have also been 
reported in a mouse model with constitutive modifications 
of the NF-κB gene. A study reported that NF-κB signaling-
deficient mice developed more severe pancreatitis when 
induced by caerulein (19). In another study, in which IkBα 
was specifically deleted in mouse pancreatic tissue, NF-
κB was constitutively activated and acute pancreatitis 
was ameliorated when mice were administered caerulein 
and L-arginine (20). These conflicting outcomes highly 
suggest that there are signaling pathways or proteins that 
engage in NF-κB regulation and further interfere with the 
development of acute pancreatitis.

Glycogen synthase kinase-3β (GSK-3β), an isoform of 
glycogen synthase kinase 3 (GSK-3), is a serine/threonine 
protein kinase which plays critical roles in multiple 
pathophysiological processes including cell differentiation, 
cell cycle control, cell motility, microtubule function, 
tumorigenesis, and apoptosis (21-24). Recently, it was also 
found to be involved in inflammation processes (25-28). 
More importantly, GSK-3β-deficient mice (29) showed a 
similar phenotype to those that lacked the p65 subunit of 
NF-κB or IKKβ (30,31). Further investigations revealed 
that the p65 subunit of NF-κB was a direct phosphorylation 
target of GSK-3β, which consequently affected NF-κB-
dependent gene expression in various cells and tissues  
(32-34). Moreover, other reports also demonstrated that 

GSK-3β targeted NF-κB signaling in different pathological 
processes (35-38). As NF-κB activation provoked the 
expression of multiple inflammatory mediators and 
cytokines in pancreatic acinar cells and promoted the 
development of acute pancreatitis, this research used 
heterozygous GSK-3β deficient mice(GSK-3β+/− mice) to 
prove the hypothesis that GSK-3β is involved in caerulein-
induced early acute pancreatitis through activating the NF-
κB signaling pathway.

We present the following article in accordance with the 
ARRIVE reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-5701).

Methods

Generation of transgenic mice 

Paired GSK-3β+/− mice, purchased from Jackson laboratory 
(strain name: B6.129P2-Gsk3βtm1Dgen/J), were housed in 
a 12-h light and dark cycle in a specific pathogen-free 
animal facility with a constant temperature (22±1 ℃) 
and free access to tap water and pelleted chow. Male and 
female GSK-3β+/− mice were mated to obtain single allele 
GSK-3β deficiency (GSK-3β+/−) offspring because GSK-
3β homozygous knockout (GSK-3β−/−) embryos would 
die at day E13.5 attributed to TNF-α-induced hepatocyte 
apoptosis. The genotypes of all descendants, which were 
consistently maintained in a C57BL/6 background, were 
determined by RT-PCR according to the protocol of the 
Jackson laboratory, and wild type (WT) littermates were 
assigned to the control group randomly. Mice allocation, 
experiment conduction, and data analysis were completed 
by 3 investigators independently.

A protocol was prepared before the study without 
registration. The study was approved by the Animal 
Ethics Committee of Sichuan University West China 
Medical School (No. 2021737A), and all procedures with 
animals were conducted according to the guidelines of the 
local Animal Use and Care Committees of Chengdu and 
executed according to the National Animal Welfare Law of 
China.

Caerulein pancreatitis induction

To induce pancreatitis with caerulein, WT and heterozygote 
GSK-3β (GSK-3β+/−) littermate mice (n=8), which were 8 to 
10 weeks old and weighed approximately 20 g, were fasted 
for 12 h with water ad libitum. The mice then received 
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an intraperitoneal injection of 50 µg/kg caerulein (Sigma-
Aldrich, St. Louis, MO, USA) in saline. WT and GSK-
3β+/− control mice (n=6) received an equal amount of saline. 
All mice were sacrificed by CO2 asphyxiation 30 min after 
caerulein injection, and blood serum and tissue samples 
were collected for further research.

Preparation of serum and tissue samples

Whole blood samples were placed at room temperature 
for 2 h and then centrifuged for 15 min at 3,000 rpm. The 
serum was collected and stored at −80 ℃ for measurement 
of amylase, lipase, and cytokines. Tissues from the pancreas 
were removed and placed on ice, immediately frozen in 
liquid nitrogen, and then stored at −80 ℃ for PCR and 
western blot analysis.

Measurement of serum amylase and lipase

Serum amylase and lipase were detected using commercially 
available amylase and lipase assay kits (Nanjing Jiancheng 
Bioengineering Institute, Nanjing, China) according to the 
manufacturer’s instructions.

LiquiChip multiple cytokine assay

Serum cytokines, IL-6 and TNF-α, were simultaneously 
measured on the LiquiChip 100 workstation (Luminex, 
Austin, TX, USA) using a commercially available luminex 
assay kit (R&D, USA) according to the manufacturer’s 
protocol.

Quantitative real-time reverse transcription-polymerase 
chain reaction (real-time RT-PCR)

Snap frozen pancreatic tissue was pulverized in liquid 
nitrogen and total RNA was extracted by the Trizol method 
with RNAiso Plus (TaKaRa, DaLian, China). First-strand 
cDNA was synthesized from 5 µg total RNA using oligo-
dT primers (18mer) and M-MLV reverse transcriptase 
(TaKaRa, Dalian, China). For real-time PCR amplification, 
1-µL cDNA was used for each PCR amplification in a 
25-µL reaction system in triplicate with SYBR Green 
chemistry using the Icycler IQ Multicolor Real-Time 
Detection System (Bio-Rad, Hercules, CA, USA). Gene-
specific, intron-spanning primers were designed with 
primer premier 5.0 software and synthesized by TaKaRa 
Biotechnology Co., Ltd. (Dalian, China). The sequences 

of the primers are provided as follows: IL-6 (forward 5'-
AGT CAC AGA AGG AGT GGC TAA-3', reverse 5'-CAC 
TAG GTT TGC CGA GTA GA-3'), TNF-α (forward 5'-
ACG TCG TAG CAA ACC ACC AA-3', reverse 5'-CTG 
GGA GTA GAT AAG GTA CA-3'), and GAPDH (forward 
5'-CCT CAA GAT TGT CAG CAA T-3', reverse 5'-CCA 
TCC ACA GTC TTC TGA GT-3'). A standard program 
of real-time PCR was performed with the first denaturation 
step at 94 ℃ for 5 min, 40 cycles of denaturation at 94 ℃ for 
20 s, annealing at 55 ℃ for 30 s, and extension at 72 ℃ for 
30 s. Relative quantitation of the mRNA level of the target 
gene was calculated using the 2-ΔΔCt method as described 
previously (39) and was expressed as fold change compared 
with WT control.

Western blot assay

For the western blot assay, snap frozen mouse pancreatic 
tissue was rapidly pulverized in liquid nitrogen and the 
resulting tissue powder was resuspended in ice-cold RIPA 
buffer containing 1 mM phenylmethanesulfonyl fluoride 
(Beyotime, Shanghai, China). Samples were centrifuged at 
4 ℃ for 10 min at 12,000 rpm. Supernatants were collected 
and the concentration of each sample was determined using 
the Pierce(R) BCA Protein Assay Kit (Pierce, Rockford, 
Illinois, USA). Then, 30 µg samples of protein were 
subjected to 12% sodium dodecyl sulfate/polyacrylamide 
gel electrophoresis and transferred onto polyvinylidene 
difluoride membranes (Millipore, Billerica, MA, USA). 
Non-specific binding to the membrane was blocked by 5% 
(w/v) dry non-fat milk dissolved in Tris-buffer saline/0.05% 
Tween-20 (TBST) at room temperature for 1 h. Membranes 
were then incubated with rabbit monoclonal anti-phospho-
NF-κB p65 (ser536) antibody (1:500 dilution, Cell Signaling 
Technology, Beverly, MA, USA) and anti-β-actin antibody 
(1:1,000 dilution, Cell Signaling Technology, Beverly, MA, 
USA), which was used as the internal reference, overnight 
at 4 ℃. Membranes were washed for 10 min 3 times with 
TBST and then incubated with goat polyclonal anti-rabbit 
IgG (H+L) antibody conjugated to horseradish peroxidase 
(1:5,000 dilution, KPL, Maryland, USA) diluted in 5% (w/v)  
dry non-fat milk in TBST for 1 h at room temperature. 
Finally, after washing for 10 min 3 times with TBST, 
membranes were developed using the Alpha Innotech 
FluorChem imaging system (USA) to visualize the target 
bands with the enhanced chemiluminescence detection 
system (Millipore, Billerica, MA, USA), and the semi-
quantitative grayscale intensity was measured with Quantity 



Fu et al. GSK-3β aggravates acute pancreatitis through NF-κB pathway

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(22):1695 | https://dx.doi.org/10.21037/atm-21-5701 

Page 4 of 10

One software (Bio-Rad, Hercules, CA, USA).

Statistical analysis

Experimental data were presented as mean ± SD. Statistical 
analysis was performed using a non-paired Student’s t-test 
or one way analysis of variance (ANOVA) followed by 
Scheffe’s post-hoc test when a significant difference was 
found among groups (SPSS statistical software 16.0; SPSS 
Inc., Chicago, IL, USA). P values that were less than 
0.05 were considered to indicate a significant statistical 
difference.

Results

Effect of GSK-3β+/− on the level of serum amylase and 
lipase 

Commercially available amylase and lipase assay kits 
were used to determine the level of serum amylase and 
lipase. Although the levels of serum amylase and lipase 
were decreased in GSK-3β+/− mice compared to WT mice, 
statistical analysis indicated that there was no significant 
difference between GSK-3β+/− and WT mice at 30 min after 
caerulein challenge (P>0.05, Figure 1). 

Effect of GSK-3β+/− on the level of serum IL-6 and TNF-α

To determine the level of serum cytokines, IL-6 and TNF-α 

were simultaneously detected by the LiqiChip multiple 
cytokine assay system. Compared to the WT control, the 
levels of serum IL-6 and TNF-α were significantly increased 
at 30 min after caerulein challenge in WT mice (P<0.01). 
Moreover, the levels of serum IL-6 and TNF-α in GSK-3β+/− 
mice were markedly reduced compared with WT mice at  
30 min after caerulein challenge (P<0.01). While serum 
IL-6 and TNF-α were modestly elevated in GSK-3β+/− 
mice at 30 min after caerulein challenge, only TNF-α was 
significantly increased compared to the GSK-3β+/− control 
group (P<0.05, Figure 2A,2B).

Effect of GSK-3β+/− on the expression of IL-6 and TNF-α 
mRNA in pancreatic tissue

The expression levels of IL-6 and TNF-α mRNA in 
pancreatic tissue were detected by real-time RT-PCR. 
Consistent with the expression trend of serum IL-6 and 
TNF-α protein, IL-6 and TNF-α mRNA were markedly 
increased in WT mice at 30 min after caerulein challenge 
compared to GSK-3β+/− mice and the WT control group 
(P<0.01). The expression levels of IL-6 and TNF-α mRNA 
in GSK-3β+/− mice were also moderately increased at 30 min 
after caerulein challenge compared to the GSK-3β+/− control 
group, but only the expression of TNF-α mRNA showed a 
statistically significant difference (P<0.05). Both IL-6 and 
TNF-α mRNA were significantly decreased compared with 
WT when challenged by caerulein (P<0.01, Figure 3A,3B).

Effect of GSK-3β+/− on the expression of phospho-NF-κB 
p65 protein

As NF-κB modulates multiple inflammatory mediators 
and cytokine expression, and the p65 subunit has a 
phosphorylation site of GSK-3β, we detected phospho-NF-
κB p65 (ser536) protein expression in pancreatic tissue by 
western blot analysis. Phospho-NF-κB p65 (ser536) protein 
was significantly elevated in WT mice at 30 min after 
caerulein challenge compared to the WT control group. 
However, it was slightly elevated in GSK-3β+/− mice, which 
was striking decreased compared with WT mice, at 30 min 
after caerulein challenge (Figure 4).

Discussion

As a common clinical emergency, acute pancreatitis 
has considerable morbidity and mortality. However, 
specific and effective treatments to ameliorate acute 
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Figure 1 The levels of serum amylase and lipase. The levels of 
serum amylase and lipase in GSK-3β+/− mice were lower than in 
WT mice, but there was no significant difference between GSK-
3β+/− mice and WT mice 30 min after caerulein challenge, or 
compared to respective controls, P>0.05.
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pancreatitis are lacking, which can be attributed to the 
insufficient understanding of the etiopathogenesis and 
pathophysiological progression of pancreatitis. Recent 
research has indicated that intra-acinar trypsinogen and 
NF-κB activation during the early development of acute 
pancreatitis might be two key independent factors that 
result in acinar insult and the progression of local and 
systemic inflammatory responses (7-12), respectively. 
However, paradoxical results have been demonstrated from 
different reports (19,20), implying that the underlying 

mechanisms of the development of acute pancreatitis, 
remains to be further investigated. 

GSK-3β, a multifunctional phosphorylase kinase, was 
discovered to be involved in multiple pathophysiological 
processes (21-24). Recent research revealed that GSK-3β 
played various but critical roles in inflammatory reactions 
(25-28). Our former research about the expression of 
GSK-3β in the acute edematous pancreatitis shows that 
both GSK-3βmRNA and protein expression level were 
associated with the severity of the disease (40). Also, Jin 

Figure 3 The expression of IL-6 and TNF-α mRNA in pancreatic tissue. Pancreatic tissue IL-6 (A) and TNF-α mRNA (B) levels in WT 
mice were significantly increased at 30 min after caerulein challenge compared to GSK-3β+/− mice and the WT control. Tissue mRNA 
expression levels of IL-6 and TNF-α were found to be modestly increased, but only TNF-α mRNA showed a significant difference compared 
to GSK-3β+/− control. **, P<0.01; *, P<0.05.

Figure 2 The levels of IL-6 and TNF-α in serum. The levels of serum IL-6 (A) and TNF-α (B) in WT mice were significantly elevated at  
30 min after caerulein challenge. Moreover, in GSK-3β+/− mice, the levels of serum IL-6 and TNF-α were observed to be moderately elevated 
at 30 min after caerulein challenge, though were significantly reduced compared with WT mice. **, P<0.01; *, P<0.05.
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also found that the expression of GSK-3β is elevated in 
acute necrotizing pancreatitis) (41). It could be assumed 
that GSK-3β was activated in acute pancreatitis and was 
associated with the severity of the pancreatitis. The latest 
data showed that GSK-3β could directly phosphorylate 
the NF-κB p65 subunit and consequently regulate the 
transcription of NF-κB-dependent gene transcription 
(32-34). Moreover, GSK-3β-deficient mice presented a 
phenotype similar to that of p65 subunit or IKKβ knock-
out mice (29-31). As GSK-3β knockout homozygous mice 
will die mid gestation or as newborns due to severe liver 
degeneration (29), in this research, we utilized single allele 
GSK-3β-deficient (GSK-3β+/−) mice to investigate whether 
GSK-3β interferes with the early development of acute 
pancreatitis in vivo through the NF-κB signaling pathway. In 
the western blot assay, pancreatic GSK-3β protein in GSK-
3β+/− mice decreased more than 60% compared to WT mice 
(data not shown), so this research based on heterozygous 
transgenic mice is reliable. Although serum amylase and 
lipase levels slightly declined in GSK-3β+/− mice compared 

to the respective control, we did not detect a significant 
difference between GSK-3β+/− and WT mice challenged 
by caerulein. We propose that GSK-3β may not induce 
intra-acinar trypsinogen activation, which is responsible 
for acinar injury and consequently increases serum amylase 
and lipase during early acute pancreatitis (7-9). Meanwhile, 
we did not observe obvious morphological changes in the 
pancreatic tissues of all groups by hematoxylin and eosin 
(HE) staining (data not shown), such as pancreatic acinar 
necrosis and inflammatory cell infiltration, which to some 
extent supports the results that came from the amylase and 
lipase data.

Several lines of evidence revealed that acute pancreatitis 
was initiated in acinar cells and that SIRS and multiple 
organ failure were consequences of the synthesis and release 
of proinflammatory cytokines and chemokines in injured 
acinar cells (42-45). Therefore, we detected the expression 
of IL-6 and TNF-α mRNA in pancreatic tissue and 
measured the levels of serum IL-6 and TNF-α. Consistent 
with previous research, when using small interfering RNA-
mediated knockdown of GSK-3β or a panel of different 
GSK-3-selective pharmacological inhibitors (46), our data 
showed that expression levels of IL-6 and TNF-α mRNA 
in pancreatic tissue were significantly elevated in WT 
mice at 30 min after caerulein challenge compared with 
GSK-3β+/− mice and the WT control, which was consistent 
with the trend of the serum level of IL-6 and TNF-α. 
The expression levels of IL-6 and TNF-α mRNA in WT 
mice were increased 2.8 and 3.4 folds, respectively, after 
caerulein challenge, but in GSK-3β+/− mice the expression 
of IL-6 and TNF-α mRNA both declined approximately 
40% compared with the WT mice. However, serum IL-6 
and TNF-α were increased 4.2 and 4.6 folds, respectively, 
after caerulein challenge, while IL-6 was decreased by 
approximately 60% and TNF-α was decreased by 50% 
in GSK-3β+/− mice compared with the WT mice. Despite 
overwhelming evidence suggesting that the recruitment of 
inflammatory cells into the pancreas is the predominant 
source of cytokines (10,47,48), the synthesis and release 
of cytokines in pancreatic acinar cells often occur within 
30 min after caerulein challenge and prior to recognizable 
pathohistological changes (14,47,49). According to our 
observation, when increasing cytokines were detected 
the inflammatory cells have not been recruited. Our 
pathomorphological results found that no infiltrating 
inflammatory cells and histological injury were observed 
by HE staining after 30 min challenge by caerulein. Thus, 
we proposed that the marked increase of serum IL-6 and 
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Figure 4 The expression of phospho-NF-κB p65 (ser536) protein 
in pancreatic tissue. (A) The protein expression of phospho-NF-
κB p65 was measured by western blot analysis; (B) the grayscale 
intensity of NF-κB was presented as a percentage compared to 
WT control, which showed that the phospho-NF-κB p65 protein 
was significantly elevated in WT mice at 30 min after caerulein 
challenge compared to GSK-3β+/− mice and WT control, while a 
moderate change was detected in GSK-3β+/− mice. **, P<0.01; *, 
P<0.05.
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TNF-α at the specific time point might not be related to 
the activation of inflammatory cells but was associated with 
other pathways. Besides proinflammatory cytokines, it is 
known that IL-10, an anti-inflammatory cytokine, plays 
a pivotal role in controlling excessive inflammation and 
maintaining immune homeostasis. In contrast to previous 
results which demonstrated that GSK-3β modulated the 
Toll like receptor (TLR)-induced inflammatory response 
of blood monocytes and promoted the production of 
proinflammatory cytokines such as IL-1β, IL-6, TNF, IL-12, 
and IFN-γ while concurrently suppressing IL-10 secretion 
(46,50-52), we did not detect the promotion of serum IL-10  
in GSK-3β+/− mice after caerulein challenge (data not 
shown). Moreover, contrary to Jhun et al.’s results (53), 
we did not find that serum IL-2 was elevated in WT mice 
challenged by caerulein (data not shown). It is possible that 
the contrasting results of the serum levels of IL-2 and IL-10 
may be caused by virulence factors, the experimental model, 
and the stage of acute pancreatitis.

Previous research has indicated that GSK-3β participates 
in the regulation of the eukaryotic transcription factor 
NF-κB, which modulates many diverse cellular processes, 
including promoting proinflammatory cytokine synthesis 
and release (29,32,54-56). Several researches used GSK-3β 
inhibitors to investigate the role of it in acute pancreatitis 
to explore the relationship between GSK-3β and NF-κB  
pathway. It was found that 4-benzyl-2-methyl-1,2,4-
thiadiazolidine-3,5-dione (TDZD-8), an inhibitor of GSK-
3β, could ameliorate the severity of sodium taurocholate-
induced severe acute pancreatitis (SAP) pancreatitis in the 
rat model and reduced the expression level of NF-κB (57). 
Similar results also have been found in cerulein-induced 
acute pancreatitis mice model (58). And different inhibitors 
showed consistent result that GSK-3β inhibition could 
alleviate acute pancreatitis through NF-κB pathway (41). 
It is well known that the NF-κB/HIF-1α pathway involves 
in intestinal barrier dysfunction. Further research showed 
that NF-κB could be activated to induce the intestinal 
mucosal barrier injury in mice with acute pancreatitis (59).  
So it could be critical to further investigate the role of 
NF-κB since it is not only function in the progression 
of acute pancreatitis but also involves in the systematic 
complications of acute pancreatitis. In this research, we 
utilized a phosphor-NF-κB p65 (ser536) monoclonal 
antibody to investigate whether GSK-3β modulated the 
NF-κB signal pathway by western blot assay. Our data 
showed that phospho-NF-κB p65 protein expression was 
significantly increased in WT mice, but in GSK-3β+/− mice 

the protein expression was decreased approximately 60% 
compared to WT mice at 30 min after caerulein challenge, 
which was consistent with previous reports (52,60-62).

This study also shows some limitations. Although 
the animal model was highly effective for investigating 
the mechanisms of acute pancreatitis, it would be more 
convincing to establish a GSK-3β full deletion model. This 
may be achieved by using the technique of temporal and 
spatial control of gene expression in the mouse model, 
which has been established in congenital lung diseases (63).

Conclusions

In summary, our research, for the first time, proved that 
GSK-3β might activate NF-κB in pancreatic acinar cells 
and consequently promote the synthesis and release of 
proinflammatory cytokines by acinar cells at the early 
stage of the development of acute pancreatitis after 
caerulein challenge in vivo using GSK-3β heterozygote 
transgenic mice. Consequently, proinflammatory cytokines 
secreted by acinar cells might recruit inflammatory cells 
into pancreatic tissue and then promote and aggravate 
acute pancreatitis. Thus, we conclude that GSK-3β may 
be an ideal therapeutic target in the early stage of acute 
pancreatitis, and a GSK-3β inhibitor may provide beneficial 
effects in prophylaxis, surgical intervention, and endoscopic 
retrograde cholangiopancreatography (ERCP)-induced 
acute pancreatitis.
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