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Background: Medulloblastoma (MB) is a common central nervous system tumor in children with extensive 
heterogeneity and different prognoses. This study aimed to classify the Ki-67 index in MB with radiomic 
characteristics based on multi-parametric magnetic resonance imaging to guide treatment and assess the 
prognosis of patients.
Methods: Three sequences of T1W, CE-T1W, and T2W were used as test data. Two experienced radiologists 
manually segmented the tumors according to T2W images from 90 patients. The patients were divided into 
training and test sets at a ratio of 7:3, and 833 dimensional image features were extracted for each patient. Five 
models were trained using the feature set selected in three ways. Finally, the area under the curve (AUC) and 
accuracy (ACC) were used on the test set to evaluate the performance of the different models.
Results: A random forest (RF) model combining three sequence features achieved the best performance 
(ACC: 0.771, 95% CI: 0.727 to 0.816; AUC: 0.697, 95% CI: 0.614 to 0.78). The voting model that 
combined a RF and a support vector machine (SVM) had higher performance than the other models (ACC: 
0.796, 95% CI: 0.76 to 0.833; AUC: 0.689, 95% CI: 0.615 to 0.763). The best prediction model that used 
only one sequence feature was voting in the T2W sequence (ACC: 0.736, 95% CI: 0.705 to 0.766; AUC: 
0.636, 95% CI: 0.585 to 0.688). The ensemble model was better than the single training model, and a multi-
sequence combination was better than a single sequence prediction. The multiple feature selection methods 
were better than a combination of the two methods.
Conclusions: A model obtained by machine learning could help doctors predict the Ki-67 values of 
patients more efficiently to make targeted judgments for subsequent treatments.
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Introduction

Medulloblastoma (MB), an embryonal tumor of the 
cerebellum, is the most common malignant brain tumor 
in childhood (WHO grade IV) (1). MB is suspected to 
originate from various discrete neuronal stem cells or 
progenitor cell populations in the early stages of life (1). 
Patients with MB will show symptoms and signs of high 
intracranial pressure and cerebellar dysfunction. Some 
patients have poor therapeutic effects and prognoses due to 
the tumor’s high heterogeneity and strong invasiveness.

The Ki-67 index is a clinically important proliferation 
marker used to classify various cancers (2,3). In general, 
overexpression of the Ki-67 index indicates rapid growth 
and the malignant transformation of cells, and a poor 
prognosis (4). The Ki-67 index can be regarded as a valuable 
independent prognostic biomarker for patients with 
MB. Patients with a Ki-67 index greater than 30% have 
worse overall survival (OS) and progression-free survival 
(PFS) than those with a Ki-67 index less than 30% (5).  
This finding suggests that the Ki-67 index should be 
incorporated into the prognostication of patients with 
MB. However, information on the Ki-67 index can only 
be obtained by invasive procedures, including surgery or 
biopsy, followed by immunohistochemical methods in the 
laboratory.

Magnetic resonance imaging (MRI) is formed by 
reconstructing the signal generated by the resonance of 
hydrogen nuclei in a magnetic field. It is a conventional 
non-invasive technique for evaluating MB. There are 
multiple parametric images in MRI, including T1 weighted 
image (T1WI), T2 weighted image (T2WI), diffusion 
weighted image (DWI), water suppression image (FLAIR) 
and so on. The signal performance of the same tissue on 
different weighted images is different, which results in a 
variety of different MRI images for the same patient. We 
analyze and integrate the patient’s multi-parameter images 
to obtain tumor information non-invasively. However, it is 
very difficult to judge the expression of Ki-67 index directly 
on the MRI images of MB patients, especially the result of 
diagnosis. 

Radiomics is a novel high-throughput method that can 
noninvasively retrieve comprehensive information within, 
between, and around tumors (6,7); this method has been 
the subject of extensive medical research in recent years. 
Use machine learning methods to explore information 
that is invisible to the naked eye and transform it into 
quantitative research to predict the classification and 

prognosis of clinical patients. Radiomics can partially 
predict the expression of the Ki-67 index in certain tumors, 
including breast cancer, liver cancer, and low-grade glioma 
(8-11). Using radiomics to predict Ki-67 has gradually 
increased, especially in central nervous system tumors, but 
has not been used in MB (12). In MB, there were several 
studies that predict molecular typing, but these were only a 
classification for diagnosis.

This study aimed to predict and classify the expression 
level of the Ki-67 index through multiparameter MRI-
based imaging omics research. The results will be helpful 
for clinicians, allowing them to noninvasively determine 
the expression of Ki-67 and effectively judge the prognosis 
of the disease. Intensive anti-tumor therapy should be 
given for patients with high prognosis risk, which has more 
important significance in clinical application. We present 
the following article in accordance with the STARD 
reporting checklist (available at https://dx.doi.org/10.21037/
atm-21-5348).

Methods

All procedures performed in this study involving human 
participants were in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved by 
the Medical Ethics Committee of Beijing Tiantan Hospital, 
Capital Medical University (No. YW2018-022-08). Since 
this study is a retrospective analysis and the patients have 
been anonymously processed, the patient's informed 
consent is not required.

Patient selection 

We retrospectively collected the clinical information and 
MRI data of all patients diagnosed with MB who underwent 
surgical treatment in Beijing Tiantan Hospital from January 
2016 to December 2019. The pathology complied with the 
pathological diagnosis of 2016 WHO “Central Nervous 
System Tumor Classification”.

The inclusion criteria were as follows: (I) patients 
with available pathology (after resection); (II) patients 
with preoperative MRI data (see Figures 1,2); (III) 
patients with proven expression of the Ki-67 index by 
immunohistochemistry; Ki-67 index greater than or equal 
to 30% is defined as high expression, and Ki-67 index less 
than 30% is defined as low expression (see Figures 3,4); (IV) 
patients aged less than 18 years. A total of 271 patients 
were screened, and 181 patients were excluded due to the 
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Figure 1 Preoperative MRI images with Ki-67 index greater than 30%. MRI, magnetic resonance imaging.

Figure 2 Preoperative MRI images with Ki-67 index less than 30%. MRI, magnetic resonance imaging.

Figure 3 Stained image with Ki-67 index greater than 30. Figure 4 Stained image with Ki-67 index less than 30.
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following reasons: (I) patients lacking Ki-67 expression 
by immunohistochemistry (n=96); (II) patients lacking at 
least one of the following MRI sequences: T1-weighted 
images (T1W), T2-weighted images (T2W), and contrast-
enhanced T1-weighted images (CE-T1W) (n=71); and (III) 
patients with MR images that had motion or other kinds 
of artifacts that may affect subsequent segmentation and 
analysis (n=14). Finally, 90 subjects met the requirements 
and were included in this study (22 cases of Ki-67 index 
≤30 and 68 cases of Ki-67 index >30). Clinical information 
(age and sex) and tumor characteristics (location, 
pathological type, and molecular type) are summarized in 
Table 1.

MR imaging acquisition

MR images were acquired on a 3T MR imaging system 
(Discovery 750; GE Healthcare, Milwaukee, Wisconsin) 
using a standard head coil. The imaging protocol for MB 
included the following sequences: (I) T2W [repetition time/
echo time (TR/TE) =4,245/105 ms, field of view (FOV) 
=24 cm × 24 cm, matrix =192×192, NEX =1.5]; (II) T1W 
[TR/TE/TI (inversion time) =1,725/25/780 ms, FOV  
=24 cm × 24 cm, matrix =320×320, NEX =1]; and (III) CE-
T1W acquired 2 min after intravenous administration of 
contrast agents (0.1 mmol/kg). The slice thickness was  
5 mm with a 1.5-mm intersection space.

Table 1 Clinical and tumor characteristics of the whole cohort

Clinical characteristics Total cases (%) Ki-67 <30 (%) Ki-67 >30 (%) P

Case numbers 90 22 (24.4) 68 (75.6) –

Sex 0.6697

Male 48 (53.3) 11 (50.0) 37 (54.4)

Female 42 (46.7) 11 (50.0) 30 (45.6)

Age 0.2036

≤3 13 (14.4) 5 (22.7) 8 (11.8)

>3 77 (85.6) 17 (77.3) 60 (88.2)

Mean [SD] 9.72 [7.47] 8.95 [6.39] 9.97 [7.81] 0.581

Molecular type 0.5759

G3 3 (6.5) 0 (0.0) 3 (9.1)

G4 21 (45.7) 5 (41.7) 15 (45.5)

SHH 13 (14.0) 3 (25.0) 10 (30.3)

WNT 9 (9.8) 4 (33.3) 5 (15.1)

Tumor location 0.8947

The fourth ventricle 49 (53.3) 11 (50.0) 37 (54.4)

Cerebellar hemisphere 5 (5.4) 1 (4.6) 4 (5.9)

Cerebellar vermis 17 (18.5) 5 (22.7) 11 (16.2)

Others 21 (22.8) 5 (22.7) 16 (23.5)

Pathological type 0.213

DN 17 (19.8) 5 (23.8) 12 (19.0)

LC/A 9 (10.5) 0 (0.0) 9 (14.3)

MBEN 3 (3.5) 0 (0.0) 3 (4.8)

CMB 57 (66.2) 16 (76.9) 39 (61.9)
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Image preprocessing and standardization

In our experiment, three sequences of T1W, CE-T1W, and 
T2W were used as test data. Two experienced radiologists 
(Dr. L and Dr. P, with more than 10 years of experience) 
manually delineated the volume of interest (VOI) on the 
T2W images. To save time, we used SPM12 to register 
T1W and T1WC to T2W. The MRI scanning system 
automatically calculated the co-registration among the 
different sequences (Figure 5).

PyRadiomics (13), an open-source toolkit for feature 
extraction of medical images, standardized image intensity 
values. Each image was standardized as follows: the average 
and variance of the image pixels were first calculated, and 
the average was subtracted from each pixel value of the 
image and divided by the variance:
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Feature extraction

We used PyRadiomics to perform feature extraction in 
the region of interest (VOI) of each image. We extracted 
14 shape features. From nine types of images, 18 first-
order statistical features and 73 texture features were 
extracted (an original image and eight images generated 
after wavelet change). The first-order statistical features 
described the changes in the gray level of the image (for 
example, moment, central moment, absolute moment, etc.). 
Compared with the first-order features, the second-order 
statistical texture features could provide the relative position 
among different gray levels in the image (all the low gray 
levels are together or cross into the high level). They mainly 
included 22 gray-level co-occurrence matrix (GLCM) 
features, 16 grayscale run-length matrices (GLRLM) 
features, 16 grayscale size area matrix (GLSZM) features, 
five adjacent grayscale tone difference matrix (GTDM) 
features, and 14 grayscale dependent matrix (GLDM) 
features (14,15). A total of 833 [14+(18+73)×9] dimensional 
features were extracted.

Feature selection

Before the training started, a set of best features was 
selected for each MR sequence according to the training 
queue. We used three methods to select the features: 

(I) hypothesis testing idea using the Mann-Whitney U 
test, which retained the characteristics that were different 
between the two categories (P<0.05); (II) information theory 
using random forest (RF) plots to select features as potential 
predictors according to the Gini gain of the variable (16); and 
(III) class separability using LASSO (least absolute shrinkage 
and selection operator) (17) and adjusting the regular term 
according to the average AUC in cross-validation. The value of 
the coefficient lambda and the features with nonzero weights 
were selected as the best feature group.

To select the most critical features,  reduce the 
redundancy between features and the complexity of the 
calculations, and increase the stability of the model, we used 
a combination of three methods to overcome the limitations 
of a single method and achieved better results.

Feature extraction scheme Plan A: I + II; Plan B: I + III; 
Plan C: I + II + III.

Classifier modeling

Given that the hypothesis space is unknown, we could 
not predict which algorithm’s mapping rules were more 
in line with the corresponding relationship between the 
input space and the output space in advance. To improve 
the accuracy of the prediction, we chose four classification 
models: logistic regression (logistic), RF, K nearest neighbor 
(KNN), support vector machine (SVM), and a soft voting 
ensemble model (RF, SVM). A total of five classic models 
were used for prediction.

We used adaptive oversampling method 16 to generate 
a small number of samples on the training set to eliminate 
sample imbalance and overfitting effects. A fivefold cross-
validation method combined with a random grid search 
to select the parameter with the highest average AUC was 
used as the model parameter. We evaluated the effectiveness 
of the five models in the test set (ACC, AUC). The averages 
of 10 random segments and their 95% confidence intervals 
were used to evaluate the model’s final performance and 
reduce the random influence of single segmentation.

In addition, we combined the best features of each 
sequence into a set of multiparameter MRI features to 
train the classifier and conducted experiments on all 
possible combinations of the three sequences. The entire 
experimental process is shown in Figure 5.

Statistical analysis

The chi-square test was performed using SAS (v.9.4) to 
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analyze whether there were statistically significant differences 
in clinical and tumor information between Ki-67 index 
high and low groups. Fisher’s exact test were used in the 
analysis of contingency tables where sample sizes were small. 

The Mann-Whitney U-test and LASSO were performed 
using SciPy and Sklearn for feature selection. The level of 
confidence for all the statistical analyses mentioned above 
was kept at 95% and results with P<0.05 were significant.
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Figure 5 Flowchart of the entire experiment. KNN, K nearest neighbor; SVM, support vector machine; LR, logistic regression; RF, random 
forest.
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Results

Data description

MRI images of patients with MB were collected from 
Tiantan Hospital during the past 4 years. MRI images of 
90 patients were used in this experiment. The images were 
divided into two categories by a threshold of 30 for the Ki-
67 value. Patients whose Ki-67 value was higher than 30% 
belonged to the same class, while the remaining patients 
were in the other class. Sixty-eight images had Ki-67 values 
greater than 30%, and 22 images had Ki-67 values less than 
30%. This experiment randomly selected 30 processed 
images as training samples and 60 processed images as 
testing samples.

Clinical characteristics of the study cohort

No significant differences were found in sex, age, tumor 
location, pathological type, or molecular type between 
patients with Ki-67 greater than 30% and those with Ki-67 
less than 30% (Table 1).

Classification results and analysis

Based on the different combinations of the three feature 
selection methods, namely, I, Mann-Whitney U-test, II, RF, 
and III, LASSO, we designed three schemes: 
	 Plan A (I + II): (see Table 2, Figure 6)
RF showed the best performance, reaching the highest 

average accuracy rate of 0.777 (0.738, 0.815) and AUC of 

0.808 (0.769, 0.848) on the T2W + T1W sequence. The 
performance of the classification model and SVM after the 
integration of the two strong classifiers was slightly lower 
than that of the RF, and both reached the highest average 
accuracy on the T2W + T1W + T1WC sequence: ACC: 
0.775 (0.755, 0.795), AUC: 0.752 (0.7, 0.803) and ACC: 
0.775 (0.745, 0.805) AUC: 0.754 (0.687, 0.83). Compared to 
the other sequences, the T2W sequence had better effects 
on different classifications.
	 Plan B (I + III): (see Table 3, Figure 7)
The classification model integrated by two strong 

classifiers showed the best performance, reaching the 
highest average accuracy rate of 0.789 (0.763, 0.816) and 
AUC of 0.659 (0.583, 0.735) on the T2W + T1W + T1WC 
sequence. Performance was relatively stable, and the 
accuracy rate was higher than 70% in the seven sequence 
combinations. Following a RF, the average accuracy rate 
reached 0.782 (0.741, 0.823), and the AUC reached 0.733 
(0.667, 0.799) in the T2W + T1W sequence. The results of 
the nearest neighbor and logistic regression models are not 
ideal, especially the nearest neighbor algorithm.
	 Plan C (I + II + III): (see Table 4, Figure 8)
After combining the key features of the different 

sequences, the performance of the three sequences was 
greatly improved in the integrated classification model 
[ACC: 0.796 (0.76, 0.833), AUC: 0.689 (0.615, 0.763)]. The 
average accuracy rate was close to 80%, and the average 
AUC exceeded 70%. Furthermore, the performance was 
stable, and the accuracy rate was higher than 70% in 
multiple sequence combinations.

Table 2 The prediction performances of all models in plan A (95% confidence interval)

Model Performance T2W T2W + T1C T1W + T1C T2W + T1W T2W + T1W + T1C

Logistic ACC 0.586 (0.536, 0.636) 0.691 (0.648, 0.734) 0.646 (0.615, 0.678) 0.764 (0.72, 0.809) 0.725 (0.693, 0.757)

AUC 0.61 (0.538, 0.681) 0.682 (0.639, 0.726) 0.657 (0.585, 0.73) 0.784 (0.735, 0.834) 0.752 (0.703, 0.8)

KNN ACC 0.554 (0.476, 0.631) 0.588 (0.532, 0.644 0.593 (0.569, 0.616) 0.718 (0.663, 0.773) 0.693 (0.644, 0.742)

AUC 0.569 (0.48, 0.658) 0.646 (0.595, 0.698) 0.552 (0.506, 0.599) 0.683 (0.613, 0.752) 0.662 (0.604, 0.72)

SVM ACC 0.729 (0.674, 0.784) 0.606 (0.519, 0.693) 0.768 (0.723, 0.812) 0.743 (0.713, 0.773) 0.775 (0.745, 0.805)

AUC 0.606 (0.506, 0.706) 0.739 (0.7, 0.779) 0.652 (0.594, 0.71) 0.757 (0.697, 0.818) 0.754 (0.678, 0.83)

RF ACC 0.714 (0.669, 0.76) 0.716 (0.668, 0.765) 0.736 (0.687, 0.784) 0.777 (0.738, 0.815) 0.761 (0.735, 0.786)

AUC 0.654 (0.586, 0.722) 0.77 (0.738, 0.801) 0.722 (0.665, 0.78) 0.808 (0.769, 0.848) 0.74 (0.687, 0.793)

Vote ACC 0.743 (0.705, 0.78) 0.697 (0.632, 0.761) 0.771 (0.727, 0.816) 0.768 (0.742, 0.794) 0.775 (0.755, 0.795)

AUC 0.66 (0.586, 0.734) 0.761 (0.724, 0.797) 0.712 (0.65, 0.775) 0.804 (0.773, 0.836) 0.752 (0.7, 0.803)

ACC, accuracy; AUC, area under curve.
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Figure 6 The average accuracy of all models in different sequences in plan A. ACC, accuracy; KNN, K nearest neighbor; SVM, support 
vector machine; RF, random forest.

Figure 7 The average accuracy of all models in different sequences in plan B. ACC, accuracy; KNN, K nearest neighbor; SVM, support 
vector machine; RF, random forest.
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Table 3 The prediction performances of all models in plan B (95% confidence interval)

Model Performance T2W T2W + T1C T1W + T1C T2W + T1W T2W + T1W + T1C

Logistic ACC 0.571 (0.509, 0.634) 0.654 (0.608, 0.699) 0.668 (0.619, 0.716) 0.707 (0.658, 0.757) 0.711 (0.672, 0.749)

AUC 0.576 (0.501, 0.65) 0.671 (0.596, 0.747) 0.684 (0.629, 0.738) 0.756 (0.709, 0.804) 0.713 (0.648, 0.778)

KNN ACC 0.6 (0.538, 0.662) 0.557 (0.506, 0.608) 0.65 (0.591, 0.709) 0.607 (0.561, 0.653) 0.582 (0.518, 0.646)

AUC 0.58 (0.515, 0.644) 0.543 (0.479, 0.606) 0.581 (0.509, 0.652) 0.605 (0.552, 0.657) 0.574 (0.496, 0.652)

RF ACC 0.732 (0.699, 0.765) 0.705 (0.659, 0.752) 0.748 (0.721, 0.776) 0.782 (0.741, 0.823) 0.773 (0.718, 0.828)

AUC 0.642 (0.583, 0.702) 0.62 (0.567, 0.672) 0.654 (0.577, 0.731) 0.733 (0.667, 0.799) 0.668 (0.59, 0.746)

Vote ACC 0.732 (0.709, 0.756) 0.757 (0.721, 0.793) 0.786 (0.766, 0.806) 0.786 (0.758, 0.814) 0.789 (0.763, 0.816)

AUC 0.639 (0.585, 0.692) 0.61 (0.554, 0.665) 0.649 (0.57, 0.728) 0.717 (0.657, 0.777) 0.659 (0.583, 0.735)

ACC, accuracy; AUC, area under curve.
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Figure 8 The average accuracy of all models in different sequences in plan C. ACC, accuracy; KNN, K nearest neighbor; SVM, support 
vector machine; RF, random forest.
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Table 4 The prediction performances of all models in plan C (95% confidence interval)

Model Performance T2W T2W + T1C T1W + T1C T2W + T1W T2W + T1W + T1C

Logistic ACC 0.593 (0.528, 0.658) 0.646 (0.602, 0.691) 0.696 (0.633, 0.76) 0.707 (0.666, 0.748) 0.7 (0.664, 0.736)

AUC 0.576 (0.512, 0.641) 0.671 (0.607, 0.735) 0.681 (0.636, 0.726) 0.737 (0.677, 0.798) 0.731 (0.661, 0.801)

KNN ACC 0.589 (0.529, 0.65) 0.532 (0.477, 0.587) 0.664 (0.618, 0.71) 0.632 (0.594, 0.67) 0.596 (0.538, 0.655)

AUC 0.56 (0.499, 0.62) 0.544 (0.501, 0.587) 0.624 (0.557, 0.69) 0.612 (0.56, 0.664) 0.579 (0.508, 0.65)

RF ACC 0.725 (0.686, 0.764) 0.709 (0.676, 0.742) 0.725 (0.693, 0.757) 0.77 (0.732, 0.807) 0.771 (0.727, 0.816)

AUC 0.648 (0.594, 0.703) 0.63 (0.565, 0.695) 0.658 (0.576, 0.74) 0.71 (0.638, 0.782) 0.697 (0.614, 0.78)

Vote ACC 0.736 (0.705, 0.766) 0.754 (0.72, 0.787) 0.782 (0.761, 0.803) 0.786 (0.753, 0.818) 0.796 (0.76, 0.833)

AUC 0.636 (0.585, 0.688) 0.622 (0.559, 0.686) 0.661 (0.571, 0.75) 0.704 (0.632, 0.777) 0.689 (0.615, 0.763)

ACC, accuracy; AUC, area under curve.

After the combination of features, the performance of 
the other models improved to varying degrees. The average 
accuracy of the RF was 0.771 (0.727, 0.816), and the AUC 
was 0.697 (0.614, 0.78).

After combining the key characteristics of the different 
sequences, the combined effect of the three sequences was 
greatly enhanced in the ensemble model [ACC: 0.796 (0.76, 
0.833), AUC: 0.689 (0.615, 0.763)]. The average accuracy 
rate was close to 80%, and the average AUC exceeded 70% 
(Figures 9,10).

Discussion

Ki-67 index is a nuclear antigen related to proliferating 
cells. Its function is closely related to mitosis and is 

indispensable in cell proliferation. At present, clinical 
immunohistochemistry techniques are used to detect 
the expression of Ki-67 protein, and its positive staining 
indicates that cancer cells are proliferating actively. It can 
be used to evaluate the differentiation status of MB cells 
at the molecular biology level. Compared with traditional 
pathological classification, this indicator is more objective 
and easier to implement.

Several studies have confirmed that high expression 
of the Ki-67 index in tumors suggests a poor prognosis 
(18,19). At present, mature studies have confirmed that 
the expression level of Ki-67 can objectively reflect the 
proliferation speed and malignant degree of brain tumors. 
Current studies have proven that Ki-67 has a clear guiding 
significance for the prognosis of MB (20). However, among 
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tumors of the central nervous system, most studies (6,21) 
that predicted Ki-67 by radiomics studied gliomas; few 
scholars have attempted to predict Ki-67 expression in MB. 
In addition, few studies on MB (22,23) have implemented 
predictions of molecular typing. Our research aimed 
to predict the expression level of Ki-67 in MB through 
machine learning methods to provide a noninvasive way to 
predict the outcomes of patients.

No differences in clinical characteristics were found 
between the different expression groups of the Ki-67 index, 
indicating that the clinical characteristics of the patients 
could not completely distinguish the expression level of the 
Ki-67 index. Distinguishing between two types of patients 
with different expression levels through images is also a 
huge challenge for radiologists. The Ki-67 index is a marker 

that reflects the activity of cell proliferation. Analyzing and 
judging the growth, differentiation, and prognosis of MB is 
of great importance for clinical decision-making (24).

After analyzing the commonly used classifiers for brain 
tumors (25,26), we chose five models for classification: 
logistic regression (logistic), RF, KNN, SVM, and a soft 
voting integrated model (RF, SVM). The integrated 
classification model based on RF and SVM had the 
best predictive performance, which could be due to the 
combination of the advantages of the two models. In our 
research, T2W had the highest performance in predicting 
the expression level of Ki-67 in all sequences, and the 
acquired image features had a unique degree. The accuracy 
of the T1W sequence was slightly worse than that of the 
T2W sequence. In addition, we did not just identify a single 
sequence to predict the patient’s Ki-67, but also performed 
seven combinations of three sets of sequences.

We used selected combinations of the most valuable 
features selected from the different sequences to screen out 
the more meaningful features to predict Ki-67 expression 
levels. After the sequences were combined, the prediction 
performance of the five models was improved to varying 
degrees. The performance improvement in the logistic 
regression was particularly obvious. The image features of 
the different sequences could reflect the expression level 
of Ki-67, and we could superimpose the features of the 
different sequences to increase the level of discrimination.

Texture features are important in recognizing and 
classifying various brain tumor images (27-29). The key 
features we extracted and finally screened included many 
texture features, illustrating the importance of texture 
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Figure 9 Comparison of the best accuracy of all sequences in the different plans. ACC, accuracy.
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features in image prediction. If we can associate the 
different texture characteristics of the tumor with the 
patient’s internal pathways and prognosis, it will be helpful 
for the diagnosis and treatment of the patient in the future. 
In our research, a small part of the shape features appeared 
in a higher proportion of the final extracted features, 
including the original shape flatness and elongation. They 
describe the extent of image shape elongation, which applies 
to many shape classification tasks (30).

Our research extracted a large number of features from 
different sequences. Although they can completely describe 
the characteristics of tumors, there is a lot of redundant 
information. To reduce the influence of too much invalid 
information on the accuracy and stability of the model, we 
designed a combination of three ways to select variables: (I) 
U-test of hypothesis testing idea; (II) RF that eliminated 
invalid information through the angle of information gain; 
and (III) LASSO regression uses ROC as an evaluation 
criterion to reduce the impact of collinearity and correlation 
between variables by adding penalty factors.

The C plan U-test + RF + LASSO was relatively less 
used among the three combination schemes in other 
studies. In our research, the C scheme was more robust and 
had the highest performance. This finding might be because 
after adding the linear method (LASSO) and the nonlinear 
method (RF), the interference of irrelevant variables was 
eliminated from both angles simultaneously, making its 
efficiency the highest. This discovery also provided new 
ideas for subsequent related research.

Although KNN had some improvement after multi-
sequence merging, it was still the worst of the models. 
SVM (RBF) and RF had relatively better effects, and the 
integrated model was the best. After combining multiple 
sequences, the effect of logistic regression was greatly 
improved, indicating that when the key information of 
the sample was sufficient, some simple linear classification 
models could also obtain better results.

Our work has some limitations. First, the differences 
between different devices might affect the results. Second, 
the sample size of this study was too small, leading to 
unsatisfactory results. In addition, the data were all from 
the Chinese population, and the extrapolation of the 
model needs to be verified and supplemented by adding 
populations from other regions. Therefore, we should 
conduct additional prospective multicenter studies to 
improve the performance of radiomics in detecting problems 
in tumors of the central nervous system. Nevertheless, the 
results are suitable for providing a reference for such related 

research, especially in gliomas with high heterogeneity. We 
can try to use this method to predict the expression of Ki-67 
index to judge the prognosis of the patient. This may break 
through some of the limitations of existing glioma-related 
research, resulting in better performance.

In this study, based on the image features of the three 
sequences of T1W, T2W, and T1WC, three feature 
selection methods were used to construct the prediction 
model, which had good accuracy in predicting the 
expression of the Ki-67 index. Clinically, the proposed tool 
has important guiding significance for analysis and judging 
the growth, differentiation, and prognosis of MB.
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