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Objective: To summarize the structure, regulatory mechanism, and target genes of hypoxia-inducible 
factor-1 alpha (HIF-1α) and to comprehensively expound its role in various chronic liver diseases, thus 
providing a new perspective on the treatment of various liver diseases.
Background: Liver disease, especially chronic liver disease, is a long-standing public health problem; the 
mortality rate due to end-stage cirrhosis and liver cancer is high worldwide and continues to grow. Moreover, 
there is a lack of effective targeted therapy for most liver diseases, such as fatty liver, alcoholic liver disease 
(ALD), and advanced liver cancer, for which drug treatment approaches are extremely limited. As the liver is 
a highly aerobic organ, an insufficient oxygen supply can induce a series of diseases, and HIF proteins play an 
important role in these processes.
Methods: Literature on HIF-1α and its effects on various liver diseases were extensively searched, and the 
feasibility and challenges of targeting HIF-1α to treat various chronic liver diseases were analyzed.
Conclusions: HIF-1α is widely involved in the occurrence, development, and prognosis of ALD, 
nonalcoholic fatty liver disease (NAFLD), acetaminophen (APAP)-induced liver injury (AILI), viral hepatitis, 
hepatocellular carcinoma (HCC), and other liver diseases. HIF-1α participates in complex signaling 
pathways, and its expression is regulated in many liver diseases. These results suggest the feasibility and 
clinical significance of targeting HIF-1α to treat liver diseases.
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Introduction

The liver is not only the most important organ for 
metabolism and detoxification but also the main site of 
many biological processes (1-4). Indeed, the liver plays a 
very important role in metabolism (5), bile production (6),  

detoxification (7), blood coagulation (8), immunity (9), 
and heat generation as well as the regulation of water and 
electrolyte contents (10). Many factors negatively affect 
the liver, such as lack of sleep, alcohol consumption, 
gastrointestinal bleeding, infection, portal vein thrombosis, 
dehydration, and kidney failure (11,12). Overall, liver 
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disease, which is increasing in incidence and severity, is a 
serious health problem, resulting in considerable economic 
and social burdens (13-15).

In the early 1990s, Semenza et al. (16) discovered HIF 
while studying EPO gene expression. The 2019 Nobel 
Prize in Physiology or Medicine was awarded for work 
related to how cells detect and adapt to different oxygen 
environments, with one of the most critical factors 
being hypoxia-inducible factor (HIF), a heterodimeric 
transcription factor that consists of α and β subunits. 
Expression of the α subunit depends on oxygen, whereas the 
β subunit is constitutively expressed (17-19). HIF-1α is the 
main regulator of hypoxia signaling and is widely expressed 
(20-22).

HIF-1α is involved in the occurrence and development 
of various liver diseases, including alcoholic liver disease 
(ALD), nonalcoholic fatty liver disease (NAFLD), viral 
hepatitis, liver fibrosis, drug-induced liver injury and 
hepatocellular carcinoma (HCC) (23,24). Although HIF-
1α is expected to become a new target for the treatment of 
liver diseases, the development of strategies involving HIF-
1α regulation remains a challenge. This review discusses 
and summarizes the role and potential mechanism of action 
of HIF-1α in some common liver diseases to provide new 
methods and ideas for their treatment.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
atm.amegroups.com/article/view/10.21037/atm-21-4222/rc).

The characteristics of HIF-1α

Structure of HIF-1α

As previously described, HIF proteins constitute a family 
of transcriptional regulators that play a central role in 
regulating gene expression under conditions of low oxygen 
(25,26). The HIF family is composed of HIF-1α, HIF-
2α, and HIF-3α, each of which dimerizes with HIF-1β, 
also known as the aryl-hydrocarbon-nuclear receptor 
translocator (ARNT), and less frequently with ARNT2 (27).  
HIFs belong to the subfamily of PER-ARNT-SIM (PAS) 
transcription factors in the basic helix-loop-helix (bHLH) 
family (28). The structures of the α subunit and β subunit 
are similar, and both contain the following domains: 
an N-terminal bHLH domain, which binds to DNA; a 
middle region PAS domain, which promotes heterodimer 
formation; and a C-terminal domain, which binds with 
transcriptional cofactors to promote transcriptional 

coregulation (29,30). The most common HIF protein is 
HIF-1α, which has the most wide-ranging effects (31).

Degradation and activation of HIF-1α

The state of the α subunit determines the stability 
of HIF-1. The α subunit is degraded rapidly under 
normoxic conditions but is stable during hypoxia (32-34). 
Hydroxylation of proline residues by proline hydroxylase 
domain enzymes (PHDs) is a key step in the degradation 
of the α-subunit (32,35,36): under normoxia, the conserved 
proline residues 402 and 564 are hydroxylated by prolyl 
hydroxylases (PHD1, PHD2, or PHD3) (37). Subsequently, 
von Hippel Lindau protein (pVHL), a tumor-suppressor E3 
ubiquitin ligase component, mediates ubiquitination of HIF-
1α through specific binding to the two hydroxylated proline 
residues, promoting rapid degradation of the α subunit 
via the ubiquitin proteasome pathway (38,39). Factor-
inhibiting HIF-1 (FIH1) and reactive oxygen species (ROS) 
can also affect HIF-1α stability. The former hydroxylates an 
asparagine residue (Asn803) of HIF-1α in the C-terminal 
transactivation domain, thereby blocking HIF binding to 
the transcriptional coactivator cAMP response element-
binding protein (CBP)/p300 and inhibiting transcriptional 
activation of HIF-1α (40-43). FIH1 also interacts with 
pVHL to serve as a coinhibitor to suppress transactivation 
by recruiting histone deacetylases (HDACs) (43). ROS 
prevent HIF-1α degradation by blocking PHD activation 
to inhibit acetylation of HIF-1α (44). Acetylation has a 
profound and complex effect on the stability of the HIF-
1α protein. For example, Seo et al. (45) found that HDAC4 
and HDAC5 enhance the transactivation function of HIF-
1 by promoting dissociation of HIF-1 from FIH-1 and 
association with p300. In addition, Kang et al. (46) reported 
that FIH-1 hydroxylates hARD1/NAA10, a component of 
N-terminal acetyltransferase (NatA), under normoxia and 
thus promotes pVHL binding to HIF-1α via acetylation. 
There are also reports that HIF1α is stabilized by p300 via 
Lys-709 acetylation (47), and SIRT2-mediated HIF-1α 
deacetylation is critical for destabilization of HIF-1α (48). 
PHD activity is restricted by oxygen availability (41). In 
the absence of oxygen, the hydroxylation of HIF-1α is also 
inhibited, causing the HIF-1α subunit to become stable and 
accumulate in the cytoplasm (49). The accumulated HIF-
1α is then transferred to the nucleus, forms dimers with 
HIF-1β (ARNT), and interacts with the transcriptional 
coactivator CBP/p300 to form a transcription initiation 
complex that recognizes hypoxia response elements (HREs) 

https://atm.amegroups.com/article/view/10.21037/atm-21-4222/rc
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Figure 1 HIF-1α degradation and activation. Under normoxia, the conserved proline residues 402 and 564 of HIF-1α are hydroxylated 
by PHD. Subsequently, pVHL mediates ubiquitination of HIF-1α, which is then degraded by the proteasome. FIH1 and ROS also affect 
HIF-1α activity: the former blocks the binding of HIF to CBP/p300 and inhibits transcriptional activation of HIF-1α; the latter inhibits 
acetylation of HIF-1α by preventing activation of PHD. Under hypoxia, hydroxylation and acetylation of HIF-1α are inhibited, which 
stabilizes HIF-1α and allows it to form dimers with HIF-1β (ARNT), bind with CBP/p300 and form transcription initiation complexes and 
activate target genes. HIF-1α, hypoxia-inducible factor-1 alpha; PHD, proline hydroxylase domain; pVHL, von Hippel Lindau protein; 
FIH1, factor-inhibiting HIF-1; ROS, reactive oxygen species; CBP, cyclic adenosine monophosphate response element-binding protein; 
p300, coactivator acetyltransferase; ARNT, aryl-hydrocarbon-nuclear receptor translocator.
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in the promoters of target genes to induce transcription 
(23,39,44,50) (Figure 1).

In addition, the stability of HIF-1α is affected by some 
factors under nonhypoxic conditions, including metals, 
growth factors, pH, and mechanical stress (51,52).

Genes targeted by HIF-1α 

As mentioned above, HIF-1α is transferred to the nucleus 
under hypoxic conditions, where it recognizes HREs in 
the promoters of target genes to promote transcription. 

In fact, HIF-1α induces the transcription of many genes 
(currently over 2,000 suggested genes and more than 300 
known genes) and is widely involved in various biological 
processes, including the following: tumor-related cell 
proliferation, metastasis, angiogenesis and apoptosis 
(Figure 2); metabolism-related glycolysis metabolism, 
nucleotide metabolism, iron metabolism and collagen 
metabolism (Figure 3); inflammation and immunity; 
erythropoiesis; pH regulation; and others (51-55). This 
review focuses on most of the genes involved in the 
above processes for the convenience of future research 
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Figure 2 Genes regulated by HIF-1α and their effects on cancer progression. HIF-1α, hypoxia-inducible factor-1 alpha; EPO, 
erythropoietin; TGF-β3, transforming growth factor β3; VEGF, vascular endothelial growth factor; NOS, nitric oxide synthase; TGF-α, 
transforming growth factor α; C-MYC, myelocytomatosis virus oncogene cellular homolog; iNOS, inducible nitric oxide synthase; HO-1, 
heme oxygenase-1; ID2, DNA-binding protein inhibitor; IGF-2, insulin-like growth factor 2; IGF-BP 1/2/3, IGF-binding protein 1/2/3; 
ADM, adrenomedullin; FN1, fibronectin 1; LOXL2, lysyl oxidase-like 2; uPAR, urokinase plasminogen activator receptor; FLT-1, VEGF 
receptor FLT-1; TIE-2, tyrosine kinase with immunoglobulin and EGF-like domains 2; PAI-1, plasminogen activator inhibitor 1; EGF, 
epidermal growth factor; TIMP-1, tissue inhibitor of metalloprotease-1; ANGPT, angiopoietin; LEP, leptin; LRP1, LDL-receptor-related 
protein 1; Bcl-2, B-cell lymphoma 2; NIP3, nonimprinted polymer 3.
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on pathways downstream of HIF-1α. Genes related 
to inflammation and immunity mainly include tumor 
necrosis factor α (TNF-α), recombination activating genes 
(RAGS), potassium channels in B cells (Task-2) and CD18 
(56-58). Erythropoiesis is associated with erythropoietin 
(EPO)  (59),  and pH adjustment is associated with 

monocarboxylate transporter 4 (MCT4) (60-63) and 
membrane-associated carbonic anhydrase IX (CA9) (64).

HIF-1α in liver diseases

This review mainly summarizes the role and mechanism 
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Figure 3 Metabolism-related genes targeted by HIF-1α. Metabolism mainly includes glycolysis metabolism, nucleotide metabolism, iron 
metabolism, and collagen metabolism. HIF-1α, hypoxia-inducible factor-1 alpha; AK3, adenylate kinase 3; GLUT1/3, glucose transporter 1 
and 3; PFK, phosphofructokinase; PFK2, 6-phosphofructo-2-kinase; PFKL, phosphofructokinase L; POK1, phragmoplast orienting kinesin 
1; FBPase, fructose-1,6-bisphosphatase; PGK1, phosphoglycerate kinase 1; PDK1, pyruvate dehydrogenase kinase 1; ALDOA, fructose 
biphosphate aldolase A; TPI, triosephosphate isomerase; GAPDH, glyceraldehyde-3-P-dehydrogenase; HK1/2, hexokinase 1 and 2; LDHA, 
lactate dehydrogenase A; PKM, pyruvate kinase muscle isozymes; ALDA, aldolase A; ALDC, aldolase C; ENO1, enolase 1; Cp, ceruloplasmin; 
TF, transferrin; TFRC, transferrin receptor; PHα(I), prolyl-4-hydroxylase α(I).
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of HIF-1α in liver diseases such as ALD, NAFLD, 

acetaminophen (APAP)-induced liver injury (AILI), viral 

hepatitis, and HCC to provide a new perspective for 

exploring potential therapeutic targets.

ALD

Long-term alcohol intake can seriously affect liver function, 
leading to liver hypoxia, steatosis, and eventually ALD 
development (65,66). ALD is the general term for a series 
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of diseases that range from simple liver steatosis to severe 
alcoholic hepatitis, followed by liver fibrosis and cirrhosis, 
which may eventually lead to HCC (67,68). ALD is a 
major cause of morbidity and mortality worldwide (69-71);  
its pathogenesis is complex, and there is still a lack of 
effective targeted treatment methods. Recent research 
has shown that HIF-1α is involved in the pathogenesis of 
ALD. However, the specific mechanism of action of HIF-
1α in ALD remains unclear, a situation that is complicated 
by conflicting evidence. Indeed, some studies indicate that 
HIF-1α plays a protective role in ALD, whereas others 
suggest that HIF-1α aggravates liver damage and liver 
steatosis in ALD.

Nevertheless, a number of mechanisms support the 
protective effects of HIF-1α. Impaired intestinal barrier 
function and oxidative stress injury play a key role in 
the pathogenesis of ALD (72). Alcohol intake can cause 
intestinal barrier dysfunction, which mainly includes 
increased intestinal permeability, bacterial translocation, 
and release of endotoxin into the circulation (73). In 
addition, alcohol-induced inflammatory reactions and 
oxidative stress exacerbate tissue hypoxia (74). It is well 
known that long-term alcohol intake increases liver oxygen 
consumption, resulting in hypoxia around the center of 
the organ (75,76), leading to the occurrence, development, 
and further aggravation of ALD. Lin and colleagues (77)  
found that alcohol causes thinning and dysbiosis of 
intestinal villi, reduces expression of genes such as HIF-
1α, occludin, GPX1 and SOD1, and impairs intestinal barrier 
function. Dietary copper supplementation can alleviate 
the intestinal morphology and dysfunction caused by 
alcohol to contribute to a cure for ALD. According to Shao  
et al. (78), a lack of intestinal HIF-1α can aggravate ALD 
by inducing intestinal disorders and barrier dysfunction. 
Previous studies have also suggested that treatment with 
Lactobacillus rhamnosus GG enhances expression of intestinal 
hypoxia-inducing factors, promotes intestinal integrity, and 
reduces alcoholic liver injury (79). Moreover, Nishiyama 
et al. (80) reported that hepatocyte-specific deletion of the 
HIF-1α gene in mice exacerbates alcoholic hepatic steatosis 
and causes alterations in hepatic gene expression, leading 
to increased fatty acid synthesis via inhibition of DEC1 
induction.

The opposite view is that alcohol damage activates 
expression of HIF-1α mRNA (81,82), and interleukin (IL)-
8 aggravates alcoholic fatty liver in mice through the Akt/
HIF-1α pathway (83). Satishchandran et al. (84) found that 
HIF-1α mRNA levels in the liver tissues of patients and 

ALD mice were increased compared with the control group. 
MiR-122 appears to protect the liver from ethanol-induced 
damage by decreasing HIF-1α expression. Ethanol can 
also induce an increase in portal pressure, which depends 
on upregulation of endothelin-1 expression mediated by 
HIF-1α (85). These findings indicate that HIF-1α acts 
as a mediator of proinflammatory and vasoconstrictive 
phenotype development in ALD (86). Furthermore, Nath 
et al. (87) confirmed that the accumulation of lipids in liver 
cells caused by alcohol consumption involves activation 
of HIF-1α. Jin and colleagues (88) reported that oroxylin 
A reduces accumulation of lipid droplets associated with 
lipid metabolism regulation genes and significantly inhibits 
nuclear translocation of HIF-1α in ethanol-treated cells. 
In general, oroxylin A prevents and treats alcohol-induced 
liver steatosis by inhibiting HIF-1α. Moreover, vitamin C 
reduces the level of HIF-1α protein expression and lipid 
accumulation (89).

In summary, HIF-1α plays a complex but indispensable 
role in the occurrence and development of ALD, and 
targeting HIF-1α in the liver may be therapeutic for ALD.

NAFLD

NAFLD is a common chronic liver disease associated with 
systemic metabolic disorders (90,91). Recently, experts have 
begun to replace the concept of NAFLD with metabolic-
associated fatty liver disease (MAFLD). The prevalence 
of NAFLD is 20–30% in the general population and as 
high as 75–100% among individuals with obesity (92). 
Although most patients with NAFLD have no overt clinical 
symptoms, 20% experience progression to chronic hepatitis, 
which in turn leads to cirrhosis, portal hypertension, 
HCC, and eventually mortality. The specific pathogenesis 
of NAFLD has not been fully elucidated to date, and no 
effective targeted therapy is yet available.

As mentioned above, HIF-1α plays a very important 
role in NAFLD, with a mechanism of action that is 
mainly divided into a protective effect by inhibiting 
excessive accumulation of liver fat and a damaging effect 
by promoting liver fibrosis. In the study by Arai et al. (90), 
HIF-1α-induced lipin1 expression prevented abnormal lipid 
accumulation by inhibiting peroxisome fatty acid oxidation, 
though Finck et al. (93) found that lipin1 also functions 
as a coactivator for PPARα and PGC-1α to promote fatty 
acid beta-oxidation in the liver. HIF-1 regulates lipid 
metabolism in a specific way in the liver by sensing the 
cellular microenvironment under different conditions. 
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He et al. (94) confirmed that silencing HIF-1α aggravates 
NAFLD in vitro by inhibiting PPAR-α/ANGPTL4 
signaling. Another study using HepG2 cells also reported 
a protective effect of HIF-1α expression against fatty 
acid-induced toxicity (95). Regardless, a large number 
of studies have shown that hepatocyte HIF-1 promotes 
hepatic fibrosis in NAFLD (96), primarily by activating 
the PTEN/p65 signaling pathway (97). By inhibiting 
Nrf2-mediated oxidative stress and inhibiting expression 
of a variety of fibrosis factors through the miR-122/HIF-
1α signaling pathway, isochlorogenic acid B (ICAB) has a 
significant protective effect against fibrosis in nonalcoholic 
steatohepatitis (NASH) (98). In addition, HIF-2α is also 
an important regulator of liver lipid metabolism (99-101). 
HIF-2α promoted the progression of NAFLD by triggering 
the release of serum-rich glycoproteins from liver cells (100). 
During obesity, activation of intestinal HIF-2α can lead to 
liver cirrhosis (101).

AILI

Many factors can cause liver injury (102-106). Below, we 
describe the mechanism and role of HIF-1α in AILI. AILI 
is the most common drug-induced liver injury and the main 
cause of acute liver failure in Western countries (107). Studies 
have shown that HIF-1α participates in the early stages of 
APAP toxicity (108). For instance, HIF-1α-deficient mice 
show reduced production of thrombin and plasminogen 
activator inhibitor-1, indicating that HIF-1α signaling 
contributes to hemostasis in APAP liver toxicity. A previous 
study also demonstrated accumulation of neutrophils in the 
liver of HIF-1α-deficient mice and a decrease in plasma 
concentrations of IL-6 and regulated on activation, normal 
T cell expressed and secreted (RANTES), indicating a 
change in the inflammatory response (108). Suzuki et al. (109) 
also found that HIF-1α gene deletion in T cells aggravates 
the acute inflammatory response induced by APAP. The 
underlying mechanism involves abnormal recruitment 
of natural-like γδT cells, increasing excessive neutrophil 
infiltration in the liver. In addition, anti-PHD2 promotes 
angiogenesis in vivo by upregulating the protein and mRNA 
levels of HIF-1α target genes, significantly reducing high 
ALT and AST activities, and significantly improving APAP-
induced lobular central necrosis (110). In summary, in the 
pathogenesis of APAP toxicity, HIF-1α helps to reduce 
bleeding, aseptic inflammation and early hepatocyte necrosis.

Viral hepatitis

Some studies have clarified the role of HIF-1α in the 
pathogenesis of viral hepatitis, mainly with regard to 
hepatitis B and C. Hepatitis B virus (HBV) encodes 
the viral tumor protein transactivator protein X (HBx), 
which promotes extracellular matrix modification 
through the HIF/LOX pathway in liver cancer (111), 
and HBx mutation affects the activation of HIF-1α in 
HCC to varying degrees (112). Direct interaction of 
HBx with the bHLH/PAS domain of HIF-1α decreases 
the binding of pVHL to HIF-1α and prevents ubiquitin-
dependent degradation of HIF-1α. HBx can also induce 
angiogenesis by stabilizing HIF-1α (113). A previous 
study demonstrated that hepatitis C virus (HCV) infection 
enhances autotaxin protein expression by hypoxia-induced 
transcription factors and provides an environment in 
the liver that promotes fibrosis and liver injury (114). 
Furthermore, HCV-associated mitochondrial dysfunction 
facilitates HIF-1α-mediated glycolytic adaptation (115). 
The HCV glycoprotein interferes with tight junctions and 
adhesion connexins and promotes HCC migration and the 
epithelial to mesenchymal transition (EMT) by stabilizing 
HIF-1α (116).

HCC

According to global cancer statistics, liver cancer is the third 
leading cause of cancer-related death (117,118), and chronic 
HBV and HCV infection, smoking, excessive alcohol 
consumption, and aflatoxin exposure, among others, are 
the main causes (119-121). Among these, HBV infection 
is the most common inducer, especially in Asia (122). 
The standard treatment for liver cancer includes surgical 
resection, transarterial embolization, radiation therapy, 
and chemotherapy (123-126). However, due to delays in 
diagnosis and the presence of metastasis, these treatments 
are often inadequate, eventually leading to the development 
of advanced HCC (127). Moreover, many patients are at an 
advanced stage of HCC at the time of diagnosis. Therefore, 
early prevention and diagnosis of liver cancer have become 
the main research directions.

A large number of previous studies have found that HIF-
1α is widely involved in the occurrence and development 
of liver cancer. HIF-1α overexpression indicates a poor 
prognosis for HCC patients (128,129). HIF-1α is mainly 
involved in promoting tumor migration (130), invasion (130),  
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Table 1 Function and potential mechanism of HIF-1α in HCC

Function Related genes and pathways References

Migration IL-8/NF-κB axis (125)

Invasion HIF-1α/RIT1 axis (125)

Metastasis HIF-1α/IL-8/Akt axis (126)

Angiogenesis Upregulates the expression of LOXL2 and BCLAF1 (127,128)

Glycolysis HIF-1α/PPAR-γ/PKM2 axis (129)

EMT PTEN/p-AKT/HIF-1α signaling pathway (130)

Lipid metabolism FABP5/HIF-1α axis (131)

Drug resistance miR-183-IDH2/SOCS6-HIF-1α feedback loop (132)

PFKFB3/HIF-1α feedback loop (133)

HIF-1α, hypoxia-inducible factor-1 alpha; HCC, hepatocellular carcinoma; EMT, epithelial to mesenchymal transition.

metastasis (131), and angiogenesis (132,133), as well 
as in glycolysis regulation (134), the EMT (135), lipid  
metabolism (136) and other aspects, involving various 
signaling pathways (Table 1). HIF-1α promotes the migration 
and invasion of liver cancer cells through the IL-8/NF-
κB axis. Additionally, the HIF-1α/RIT1 axis and HIF-
1α/IL-8/Akt axis play important roles in facilitating the 
migration and invasion of human hepatoma cells. HIF-1α 
promotes the formation of angiogenic mimicry in HCC by 
upregulating expression of LOXL2 in the hypoxic tumor 
microenvironment. In addition, BCLAF1 promotes HCC 
angiogenesis by regulating HIF-1α transcription (133). 
HIF-1α promotes glycolysis in cancer cells through the 
HIF1α/PPAR-γ/PKM2 axis, leading to accelerated tumor 
growth, and HIF-1α-induced EMT is a critical process 
associated with metastasis. Feng and colleagues found that 
basil polysaccharide is able to inhibit hypoxia-induced 
metastasis and progression of liver cancer by inhibiting HIF-
1α-mediated EMT. In general, reprogramming of lipid 
metabolism has become a hallmark of cancer, and recent 
studies have reported that HIF-1α is related to this process. 
Fatty acid-induced upregulation of FABP5 expression 
drives the progression of HCC through HIF-1-mediated 
reprogramming of lipid metabolism.

HIF-1α is also a potential target for solving drug 
resistance in liver cancer. Studies have found that miR-
183 regulates multidrug resistance in liver cancer cells 
through a miR-183-IDH2/SOCS6-HIF-1α feedback 
loop (137); the PFKFB3/HIF-1α feedback loop regulates 
sorafenib resistance in HCC cells (138). In fact, there are 
many studies related to hypoxia and HCC chemotherapy 

resistance (139-142), and increased levels of HIF-1α and 
vascular endothelial growth factor (VEGF) have been 
detected in hypoxia (26,143). Shi et al. (144) found that 
VEGF inhibitors can reverse the resistance of SMMC-
7721 hepatoma cells to etoposide under hypoxic conditions. 
Mechanistically, hypoxia impedes the function of etoposide 
in inducing DNA damage and cell death and leads to drug 
resistance. Intervention of VEGF suppresses hypoxia 
induction by HIF-1α, reversing drug resistance in SMMC-
7721 cells. In addition, Zhang and colleagues (145) found 
that geniposide suppresses secretion of VEGF, migration 
of endothelial cells, and formation of blood vessels in 
tumors independent of HIF-1, providing a new anti-
VEGF mechanism for the treatment of HCC. In summary, 
overexpression of HIF-1α promotes HCC; therefore, HIF-
1α inhibitors may be used to treat liver cancer. In addition, 
it has to be said that HIF-2α also plays an important role in 
HCC. One study showed that HIF-2α was associated with 
angiogenesis and poor prognosis in HCC (146). However, 
Sun et al. (147) found HIF-2α regulated autophagy and 
apoptosis, and high expression of HIF-2α was related 
to a better prognosis in HCC. Clearly, the mechanisms 
regulating HIF-2α function need to be further explored.

All in all, Table 2 summarizes the relationship between 
HIF-1α and chronic liver diseases such as ALD, NAFLD, 
AILI, viral hepatitis, and HCC, and the specific mechanism 
of action.

Potential therapeutic value

As mentioned above, anti-PHD2 treatment significantly 
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Table 2 HIF-1α on the progression of liver diseases and key mechanism

Diseases
Inhibit or promote disease 

progression
Key mechanism References

ALD Inhibit Protect intestinal integrity (77-79)

Reduce fatty acid synthesis (80)

Promote Cause lipid accumulation, and increase portal pressure (81,84,86-89)

Through the Akt/HIF-1α pathway (83)

NAFLD Inhibit Inhibit excessive accumulation of liver fat (90,94,95)

Promote Promote liver fibrosis (96-98)

AILI Inhibit Contribute to hemostasis (105)

Reduce inflammatory reaction (105,106)

Improve centrilobular necrosis (107)

Viral hepatitis – Increase autotaxin protein expression (111)

Facilitate HIF-1α-mediated glycolytic adaptation (112)

HCC Promote Promote migration, invasion, metastasis and angiogenesis (125-127)

HIF-1α, hypoxia-inducible factor-1 alpha; ALD, alcoholic liver disease; NAFLD, nonalcoholic fatty liver disease; AILI, acetaminophen 
(APAP)-induced liver injury; HCC, hepatocellular carcinoma.

improves APAP-induced central lobular necrosis in 
AILI by upregulating HIF-1α levels (110). In addition, 
the systemic inactivation of 4-hydroxylase 2, the pro-
product of HIF, can prevent alcohol-induced fatty liver 
disease (148,149). In NAFLD, HIF-P4H-2 inhibited and 
enhanced intestinal fructose metabolism, and induced heat 
generation to prevent the occurrence of NAFLD (150).  
PHD inhibitors act as stabilizers of HIFs in vivo (151,152). 
JTZ-951 inhibited PHD, which could reduce liver-related 
diseases in mice on a high-fat diet (151). In HCC, VEGF 
intervention inhibits hypoxia-induced HIF-1α, preventing 
drug resistance (144). Certain HIF-targeted drugs are 
continuously passing clinical trials. EZN-2968, an antisense 
oligonucleotide inhibitor of HIF-1α, is mainly used in the 
treatment of HCC, and clinical trials have been completed 
(NCT01120288) (32). In addition, the PHD inhibitor 
ethyl 3,4-dihydroxybenzoate has been shown to activate 
HIF-1α and its target HMOX1, thereby inhibiting the 
mitochondrial permeability transition and reducing IR-
induced liver damage (153). As a potential therapeutic 
target, HIF-1α provides a new perspective for the treatment 
of various liver diseases (154,155).

Conclusions

Overall, HIF-1α is widely involved in the occurrence, 

development and prognosis of various liver diseases, and 
there is increasing evidence that HIF-1α may be involved in 
complex signaling pathways to regulate its own expression 
in a variety of liver disease processes. The results of such 
studies have important implications for targeting HIF-1α 
in treatment for liver disease. Further in-depth research on 
HIF-1α and liver disease is warranted.
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