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Background: Mitral regurgitation (MR) is the most common valve lesion worldwide. However, the 
quantitative assessment of MR severity based on current guidelines is challenging and time-consuming; strict 
adherence to applying these guidelines is therefore relatively infrequent. We aimed to develop an automatic, 
reliable and reproducible artificial intelligence (AI) diagnostic system to assist physicians in grading MR 
severity based on color video Doppler echocardiography via a self-supervised learning (SSL) algorithm.
Methods: We constructed a retrospective cohort of 2,766 consecutive echocardiographic studies of patients 
with MR diagnosed based on clinical criteria from two hospitals in China. One hundred and forty-eight 
studies with reference standards were selected in the main analysis and also served as the test set for the AI 
segmentation model. Five hundred and ninety-two and 148 studies were selected with stratified random 
sampling as the training and validation datasets, respectively. The self-supervised algorithm captures features 
and segments the MR jet and left atrium (LA) area, and the output is used to assist physicians in MR severity 
grading. The diagnostic performance of physicians without and with the support from AI was estimated and 
compared.
Results: The performance of SSL algorithm yielded 89.2% and 85.3% average segmentation dice similarity 
coefficient (DICE) on the validation and test datasets, which achieved 6.2% and 8.1% improvement 
compared to Residual U-shape Network (ResNet-UNet), respectively. When physicians were provided the 
output of algorithm for grading MR severity, the sensitivity increased from 77.0% (95% CI: 70.9–82.1%) to 
86.7% (95% CI: 80.3–91.2%) and the specificity was largely unchanged: 91.5% (95% CI: 87.8–94.1%) vs. 
90.5% (95% CI: 86.7–93.2%).
Conclusions: This study provides a new, practical, accurate, plug-and-play AI-assisted approach for 
assisting physicians in MR severity grading that can be easily implemented in clinical practice.
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Introduction

Mitral regurgitation (MR) is the most common valve 
lesion worldwide and is a growing public health problem. 
Moderate-to-severe MR is associated with significant 
morbidity and mortality (1-4). Since new methods to 
treat MR are becoming increasingly available, and such 
interventions significantly reduce mortality and morbidity (5), 
screening and rapid diagnosis becomes ever more important.

Color Doppler echocardiography is a primary clinical 
tool for diagnosing and quantifying MR. However, the 
quantitative assessment of MR severity is challenging, 
since the standard methods recommended by current 
American Society of Echocardiography (ASE) (6) and 
European Society of Cardiology (ESC) guidelines (7) 
employ either proximal isovelocity surface area (PISA) or 
stroke volume (SV) to measure regurgitation volume and 
effective regurgitant orifice area (EROA), respectively. 
These methods require multi-step processes and are 
time-consuming and associated with large inter-observer 
variability. However, in clinical practice, Wang et al. (8,9) 
reported that ~90% of echocardiographers only use visual 
assessment of the color Doppler MR jet to grade MR 
severity and that guideline-recommended quantitative 
methods were used relatively infrequently. However, visual 
evaluation relies on the experience of the echocardiographer 
and it is difficult to evaluate borderline lesions, even for 
senior echocardiographers. The required quantitative 
measurements can be helpful, but in actual clinical practice 
are time-consuming to obtain and are not in widespread 
use. Therefore, automated algorithms which can provide 
quantitative indexes have the potential to improve accuracy 
for grading MR severity in clinical practice.

Deep-learning (DL) based methods,  which are 
automatic and plug-and-play, already proved to be efficient 
in performing various computer vision tasks, including 
automatic image feature extraction from medical images 
(10,11). Moghaddasi et al. (12) developed models with high 
sensitivity and specificity for MR quantification from apical 
4-chamber (A4C) two-dimensional (2D) echocardiographic 
video views but their methods failed to incorporate 
information from color Doppler videos. To the best of our 
knowledge, no prior study developed a DL plug-and-play 
model to automatedly analyze color Doppler videos for MR 

diagnosis and quantification.
However, as a data-driving technique, the requirement 

of manual annotation of videos by experts to train DL 
models is time-consuming and laborious; this has led to the 
emergence of self-supervised learning (SSL) algorithms (13) 
to enhance the learning capability through exploration of 
large amounts of unlabeled data. Several studies have utilized 
SSL for analysis of medical images (14,15). However, this 
approach has not been used for analysis of color Doppler 
echocardiographic videos.

Accordingly, the primary aim of this study was to develop 
an SSL model for 2D color Doppler video feature extraction 
and MR jet segmentation and investigate whether the SSL 
model could improve diagnostic accuracy of physicians 
with varying degrees of training in the interpretation of 
echocardiographic studies in practice. Furthermore, the 
secondary aim of our study was to assess the feasibility of 
directly using the semi-quantitative indicators extracted by 
the artificial intelligence (AI) model to grade MR severity.

This study was reported following the Standards for 
Reporting Diagnostic Accuracy (STARD) reporting 
checklist (available at https://dx.doi.org/10.21037/atm-21-
3449).

Methods

Study design and patients

The overall process of patient selection is detail in Figure 1. 
We constructed a retrospective cohort of 2,766 consecutive 
echocardiographic studies of patients with MR diagnosed 
based on clinical criteria from two hospitals in Beijing, 
China (584 studies from the First Medical Center and 2,182 
studies from the Fourth Medical Center of the Chinese 
PLA General Hospital) from September 1, 2019 and 
September 1, 2020. Inclusion criteria were as follows: (I) be 
obtained from patients ≥18 years old; (II) mild, moderate 
or severe MR be listed in the clinical echocardiographic 
report; and (III) at a minimum, the study included an A4C 
color Doppler (A4C-CDI) video clip. From these, we first 
established the test dataset by selecting studies that included 
all views required for quantitative assessment of MR 
severity according to strict adherence to society guidelines 
(SV method); namely parasternal long-axis-2d, A4C-
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Figure 1 Flow chart for data selection. Patient selection for testing, training, and validation was described. MR, mitral regurgitation.

mitral valve-2d, A4C-mitral valve-pulse wave, A4C-mitral 
valve-continuous wave, A5C-aortic valve-pulse wave. Of 
the original 2,766 studies in the database, only 148 studies 
fulfilled all these criteria. MR severity of the remaining 
studies were classified according to the diagnosis included 
in the echocardiographic report; these studies were used 
to develop the segmentation algorithm for the A4C-CDI 
video clips. The diagnoses of these latter studies were only 
used to stratify studies during random sampling to achieve 
matched proportions of studies with mild, moderate and 
severe MR within the training, validation and test datasets. 
By design, we aimed for a 4:1:1 ratio in the number of 
studies in the training, validation and test datasets. Since 
the number of studies in the test dataset was constrained 
at 148, this mandated a training set of 592 studies and a 
validation set of 148 studies; these studies were randomly 
selected from among the remaining 2,618 available studies. 
As noted, these studies were selected to achieve consistent 

proportions of cases with mild, moderate and severe disease 
as in the test dataset (numbers detailed in Figure 1). Finally, 
592 echocardiograms deemed to have normal heart size 
and function without MR or other disease were selected 
from the Fourth Medical Center of Chinese PLA General 
Hospital for inclusion into an additional pre-training 
dataset which was used only for the purpose of feature 
extraction; namely, for training the model to segment the 
left ventricular (LV) and left atrium (LA) contours.

The study was registered the Chinese clinical trial 
registry (ChiCTR2000030278). The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013). This study was approved by Ethical Review 
of Scientific Research Projects of the Medical Ethics 
Committee of the Chinese PLA General Hospital, for 
the use of deidentified echocardiographic and patient 
demographic data (No. S2019-319-01). Individual consent 
for this retrospective analysis was waived.
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Test methods

Technical details and preprocessing of echocardiograms
Each echocardiographic study included A4C-CDI 
video clips, all of which were acquired by Phillips 
echocardiography machine (iE-elite and 7C with transducer 
S5-1 and X5-1; Phillips, Andover, MA, USA) using a 
Nyquist limit of 50 to 60 cm/s. These video clips were 
identified automatically from each study using a previously 
developed and validated view classification algorithm having 
an accuracy of >90% (10). All original DICOM images and 
associated clinical reports were obtained for analysis in this 
study.

For a given study, two expert echocardiographers selected 
the frame with the maximum MR jet area. They manually 
segmented the LA area and MR jet using LabelMe (16). 
These manually selected frames and segmentation labels 
were used as the ground truth for training the segmentation 
network.

Automatic self-supervised feature extraction
An MR jet recognition and segmentation algorithm was 
trained for feature extraction, which we named color 
doppler SSL, or “CD-SSL”. This algorithm consists 
of two stages: (I) a novel SSL model for color Doppler 
echocardiography feature extraction; and (II) multi-
task transfer learning algorithm for MR recognition and 
segmentation. The technical details of this SSL algorithm 
are provided in the Appendix 1.

For the first stage, we developed a novel proxy task, 
which consists of structure recovery and color transform 
toleration to force the network to deeply exploit color-
correlated and transformation-invariant information 
from the color Doppler echocardiography videos without 
information on MR classification (Figure 2). In this step, 
1,184 color Doppler echocardiography videos (592 normal 
samples and 592 MR samples) were employed in pre-
training the network via self-supervised manner to obtain 
high quality feature representation; the MR cases 308 mild, 
200 moderate, and 84 severe samples.

For the second stage, the videos of all MR cases, along 
with their segmentation annotations, were fed into the 
pre-trained network for the MR and LA area contours 
segmentation task. In the training process, 148 samples 
were utilized as validation dataset for tuning parameters 
(e.g., learning rate, batch size, optimization strategy). After 
a large number of iterations, we obtained a validated model 
for testing.

Finally, the network was employed for testing, which 
included the 148 MR samples. In the end, five measurements 
were derived from the color Doppler segmentation images 
(see Figure 3 for details), including MR jet length, MR 
jet area, LA length, LA width, LA area. Based on these 
measurements, we considered six candidate indexes of MR 
severity, including MR jet length/LA length, MR jet length, 
LA width, LA area, MR jet area and MR jet area/LA area. 
These indexes were provided to physicians to assist them in 
making clinical diagnoses as detailed in the next section.

AI enhancement of physician diagnoses
We evaluated whether availability of the AI segmentation 
algorithm results could improve the diagnostic accuracy of 
physicians. For this analysis, A4C-CDI videos of the test 
dataset were provided to 9 physicians, who visually assessed 
the severity of MR based on their own experience. These 
9 physicians had different years of experience, including 3 
junior physicians (1–3 years), 3 physicians with intermediate 
experience (4–10 years) and 3 senior physicians (>10 years). 
Next, in a separate blinded manner, these same A4C-CDI 
videos were provided to the 9 physicians along with the 
values of the 6 indexes generated by the AI model, and they 
were asked to provide another assessment of MR severity. 
We compared the diagnostic accuracy of the physicians with 
and without the support of AI results. Care was taken to 
blind physicians from their original assessments and from 
ground truth to ensure independence of the two reads.

Establishing ground truth reference standard for MR 
classification in the test dataset

Each echocardiogram had an electronic clinical report that was 
used as the basis for the initial diagnosis of MR according to 
the 2017 ASE Recommendations for Noninvasive Evaluation 
of Native Valvular Regurgitation (7) confirming the presence, 
severity, and etiology of MR. Mild MR was defined as a 
central Doppler jet area <20% LA area and a vena contracta 
<0.3 cm. Moderate MR was defined as a central MR jet area 
of 20%–50% of LA area or late systolic eccentric MR jet MR, 
a vena contracta <0.7 cm, a regurgitant volume <60 mL and 
an EROA <0.40 cm2. Severe MR was defined as a central MR 
jet area >50% of LA area or holosystolic eccentric jet MR, a 
vena contracta ≥0.7 cm, a regurgitant volume ≥60 mL and an 
EROA ≥0.40 cm2. Moderate and severe MR was considered as 
positive disease status, non-moderate or severe was considered 
as negative.

Each of these measurements was made by two expert 

https://cdn.amegroups.cn/static/public/ATM-21-3449-Supplementary.pdf
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Figure 2 Automatic self-supervised feature extraction framework. (A) Proxy task for color Doppler self-supervised feature extraction. (a) 
represents image transformation in data pre-processing, which includes random color distortion and Gaussian blur. (b) Patch rearrangement, 
which serves for structure recovery. Z1 and Z2 follows an equal rearrangement. (c) Siamese-Octad 2D ResNet-34 is employed for feature 
extraction from each single image patch, which leads to feature vector as output. (d) FC layer represents fully-connected layer, and it 
outputs the category possibility of each possible permutation. Lsr and Lc indicate structure recovery loss and color transform consistency 
loss, respectively. (B) Transfer to downstream multi-task network. (a) ROI cropping represents central area cropping. (b) Siamese-Octad 2D 
ResNet-34 is employed for feature extraction from each single video frame, which leads to feature vector as output. (c) LSTM captures the 
information of previous frames for better feature representation. (d) Skip connection represents feature concatenation of each corresponding 
outputs of green block and red block. (e) 2D segmentation decoder aims to decode low-level feature to predicted segmentation images. 
(f) and (g) represent feature pooling and feature stack along time dimension. (h) decodes feature into vector of size of frame × w × h. (i) 
indicates average pooling layer, which outputs one-hot classification prediction. Ls and Lr indicate segmentation loss and classification loss, 
respectively. 2D, two-dimensional; FC, fully connected layer; ROI, region of interest; LSTM, long short-term memory.
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physician echocardiographers and the average of the values 
provided by the two experts was taken as reference standard. 
The expert physician echocardiographers who determine 
the reference standard were not those physicians who 
performed the index tests.

Sample size calculation

The sample size of the main analysis was determined by 

methods detailed by Alonzo et al. (17). The sensitivity and 

specificity with which physicians made accurate diagnoses 
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of MR severity without support from AI were assumed to 
be 0.7, and we expected a 1.2-fold increase in performance 
(i.e., sensitivity and specificity to increase to 0.84) with the 
support of the AI algorithm. Based on a significance level 
of 0.05 and power of 0.8, the desired sample size consisted 
of 56 positive and 56 negative studies. Considering all 
studies in the main analysis dataset will be evaluated by 9 
physicians, the sample size can be even reduced with this 
study design. So the 148 MR samples included in the main 
analysis were sufficient.

Statistical analysis

Continuous variables are expressed as median and 
interquartile range, or counts and percentages, as 
appropriate. The diagnostic performance of the physicians 
was assessed by sensit ivity and specif icity.  These 
performance measures and their confidence intervals were 
estimated with generalized estimating equation (GEE) 
model, which can deal with clustered data for multiple 
readers (18). The diagnosis performance was also assessed 
in each experience group. The diagnostic performance of 
the indexes generated by the AI segmentation algorithm 
was presented with receiver operating characteristic (ROC) 
curve and the area under the ROC curve (AUC). Statistical 
analyses were conducted using R software (version 3.6.1) 
and packages geepack and pROC.

Results

Patient characteristics

The clinical and echocardiographic characteristics of 
patients included in this study are summarized in Table 1. In 
the 148 patients included in the main analysis, the median 
age was 71 (IQR: 61, 81), 98 (66.2%) were male, 21 (14.2%) 
had severe MR and 50 (33.8%) had moderate MR.

Evaluation of the AI segmentation model

We first evaluated the performance of our automatic 
segmentation framework. Examples of automated 2D color 
Doppler MR jet area segmentation (green line) and left atrial 
area segmentation (blue line) are shown in Figure 3. The 
performance of the framework, summarized in Table 2, yields 
89.2% and 85.3% average segmentation dice similarity 
coefficient (DICE) in the validation and test datasets, 
which achieved 6.2% and 8.1% (absolute) improvements 
compared to a conventional Residual U-shape Network 
(ResNet-UNet) model, respectively.

Our framework relied on identification of the video 
frame with the maximum MR jet area. This process was 
automated by training the network in an end-to-end 
manner based on reference standards tagged by experts. 
To evaluate the reproducibility of this framework, we 
randomly choose a segment of 16 continuous frames, one 
of which contained the maximum jet area as determined 
by the expert grader and re-tested the algorithm. We run 
10 such simulations on each of the 148 videos in the test 
dataset. Our model achieved an overall accuracy of 95.9% 
(±0.1) for identifying the frame with the maximum MR  
jet area.

MR indexes generated by AI segmentation model

The six quantitative indexes generated by the AI 
segmentation model, including MR jet length/LA length, 
MR jet length, LA width, LA area, MR jet area and MR 
jet area/LA area, had significantly different distributions 
among MR severity groups (box plots shown in Figure 4, 
all P<0.001). If these indexes were used individually for 
diagnosing the severity of MR, they also yielded outstanding 
performance. The AUCs of MR jet length/LA length (AUC 
=0.951), MR jet length (AUC =0.953), MR jet area (AUC 
=0.952) and MR jet area/LA area (AUC =0.951) were all 
above 0.95. However, LA width (AUC =0.683) and LA area 
(AUC =0.713) performed less well (Figure 5).

Figure 3 Indicator illustration example. Six indexes (MR jet 
length/LA length, MR jet length, LA width, LA area, MR jet area, 
MR jet area/LA area) are evaluated by our self-supervised model. 
Green line represents MR jet area, dark blue line represents left 
atrial area, light blue lines represent LA width, MR jet length, LA 
length. MR, mitral regurgitation; LA, left atrium.
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Table 1 Baseline characteristics

Characteristics Analysis/test Training Validation Total

Patient number 148 592 148 888

Age (years), median [IQR] 71 [61, 81] 69 [59, 78] 65 [57, 79] 69 [59, 79]

Male, n (%) 98 (66.2) 386 (65.2) 101 (68.2) 585 (65.9)

Etiology, n (%)

Primary MR 8 (5.4) 30 (5.1) 12 (8.1) 50 (5.6)

Secondary MR 140 (94.6) 562 (94.9) 136 (91.9) 838 (94.4)

Comorbidities, n (%)

Hypertension 84 (56.8) 320 (54.1) 82 (55.4) 486 (54.7)

Hyperlipidemia 35 (23.6) 156 (26.4) 32 (21.6) 223 (25.1)

Diabetes 27 (18.2) 115 (19.4) 30 (20.3) 172 (19.4)

Coronary heart disease 65 (43.9) 272 (45.9) 77 (52.1) 414 (46.6)

Myocardial infarction 27 (18.2) 143 (24.2) 38 (25.6) 208 (23.4)

HCM 4 (2.7) 7 (1.2) 4 (2.7) 15 (1.9)

DCM 2 (1.4) 10 (1.7) 2 (1.4) 14 (1.6)

Lesion severity, n (%)

Mild 77 (52.0) 308 (52.0) 77 (52.0) 462 (52.0)

Moderate 50 (33.8) 200 (33.8) 50 (33.8) 300 (33.8)

Severe 21 (14.2) 84 (14.2) 21 (14.2) 126 (14.2)

Echocardiographic, median [IQR]

LVEF (%) 56 [38, 60] 52 [39, 59] 55 [36, 59] 54 [38, 59]

LVEDV (mL) 107 [90, 144] 114 [90, 139] 118 [105, 147] 107 [90, 144]

LVESV (mL) 48 [36, 80] 54 [38, 78] 59 [42, 85] 53 [38, 78]

LVEDD (mm) 47 [43, 53] 48 [45, 54] 49 [45, 55] 48 [45, 54]

LA (mm) 40 [34, 44] 40 [35, 43] 41 [36, 44] 40 [35, 44]

RA (mm) 32 [30, 36] 33 [30, 36] 33 [30, 35] 33 [30, 36]

RV (mm) 31 [28, 34] 32 [29, 34] 32 [30, 35] 32 [29, 34]

MR, mitral regurgitation; HCM, hypertrophic cardiomyopathy; DCM, dilated cardiomyopathy; LVEF, left ventricular ejection fraction; LVEDV, 
left ventricular end-diastolic volume; LVESV, left ventricular end-systolic volume; LVEDD, left ventricular end-diastolic dimension; LA, left 
atrium; RA, right atrium RV, right ventricular.

Diagnostic accuracy of physicians without and with support 
of AI segmentation model

When physicians made the judgement of MR grade solely 
based on visual assessment of the 2D color Doppler videos, 
they achieved a sensitivity of 77.0% (95% CI: 70.9–82.1%) 
and a specificity of 91.5% (95% CI: 87.8–94.1%). When 
physicians were supported by the AI segmentation model, 
the sensitivity increased to 86.7% (95% CI: 80.3–91.2%) 

and specificity did not change significantly, remaining at 
90.5% (95% CI: 86.7–93.2%).

Availability of AI segmentation model results improved the 
sensitivity of grading moderate and severe MR in physicians, 
regardless of years of experience (Table 3). However, it was 
only for senior physicians with >10 years of experience where 
the specificity of grading increased, in this case from 93.9% 
(95% CI: 92.4–95.2%) to 95.7% (95% CI: 93.4–97.2%).
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Table 2 Evaluation of the segmentation algorithm in validation and test datasets

Dataset Method Max frame recognition ACC
DICE

MR jet LA AVG DICE↑

Validation ResNet-UNet 92.0 0.811 0.848 0.829 –

CD-SSL 93.1 0.863 0.920 0.892 0.063

Test ResNet-UNet 93.5 0.767 0.776 0.772 –

CD-SSL 95.9 0.821 0.884 0.853 0.081

“ResNet-UNet” indicates residual U-shaped network, which is our baseline model; “CD-SSL” indicates our segmentation framework 
which elaborates SSL; “max frame recognition ACC” indicates the max MR jet area frame recognition accuracy; “DICE” indicates  
segmentation DICE coefficient; “AVG” and “DICE↑” indicate the average dice coefficient of MR and LA and the improvement compared 
to the conventional ResNet-UNet model. ACC, accuracy; DICE, dice similarity coefficient; MR, mitral regurgitation; LA, left atrium; AVG,  
average; ResNet-UNet, Residual U-shape Network; CD-SSL, color doppler self-supervised learning.

Figure 4 Box plot figure for six indexes. The relatedness between each index and ground truth. MR, mitral regurgitation; LA, left atrium.

Discussion

The current study reveals two main technological advances 
in automated analysis of color Doppler videos. First, we 
developed and validated our SSL method for automated 
color Doppler video feature extraction, which considers 
the characteristic of color Doppler echocardiography and 
therefore offers an effective and automatic tool for medical-
related feature extraction. With this model, we were able 
to accurately and reliably select and segment the frame of 
a video containing the maximum MR jet area. Second, we 

performed head-to-head comparisons among a group of 
physicians with different years of experience, and showed 
that availability of AI segmentation model results can 
improve the diagnostic performance of physicians.

Several prior studies (19-21) have reported automated 
methods for grading severity of MR. Those methods 
utilize three-dimensional (3D) full-volume color Doppler 
transthoracic echocardiography (FVCD). However, they 
rely on commercially available software packages which 
are only incorporated into the latest hardware versions 
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Figure 5 Performances of six indexes generated by the AI segmentation model in classification of moderate-severe vs. non-moderate-severe 
in MR patients based on ROC curves. AI, artificial intelligence; MR, mitral regurgitation; ROC, receiver operating characteristic.

Table 3 Performances of physicians without and with support of AI in classification of moderate-severe vs. non-moderate-severe in MR patients

Physician group
Sensitivity (%) (95% CI) Specificity (%) (95% CI)

Without AI With AI Without AI With AI

All physicians (n=9) 77.0 (70.9–82.1) 86.7 (80.3–91.2) 91.5 (87.8–94.1) 90.5 (86.7–93.2)

Junior physicians (n=3) 84.0 (72.6–91.3) 95.8 (94.3–96.9) 87.4 (78.9–92.8) 84.4 (82.2–86.4)

Intermediate physicians (n=3) 77.5 (68.7–84.3) 85.4 (76.1–91.6) 93.1 (89.7–95.4) 91.3 (89.3–93.0)

Senior physicians (n=3) 69.5 (68.7–70.2) 78.9 (74.7–82.5) 93.9 (92.4–95.2) 95.7 (93.4–97.2)

AI, artificial intelligence; MR, mitral regurgitation.

which are not widely available in most clinical settings. In 
contrast, our model which is based on an SSL algorithm 
is plug-and-play and therefore has the potential for 
widespread application, independent of echocardiographic 
hardware.

In recent years, the use of AI for interpreting medial 
images has developed rapidly, and some studies report 
automatic disease identification and diagnosis with 
comparable accuracy to those of experienced physicians 
(22-25). In addition, AI avoids interobserver variability, 
which inherently yields reproducible results. More 
specifically, previous studies have employed AI platforms to 
investigate image analysis of echocardiograms. For instance, 
Zhang et al. (26) developed an algorithm for automated 
view identification, image segmentation, quantification 
of structure and function, and detection of 3 diseases. 
Ouyang et al. (27) developed video-based algorithms for 
segmenting the left ventricle, estimating ejection fraction 

and assessing cardiomyopathy. Huang et al. (28) tested a 
DL network to automate the recognition of regional wall 
motion abnormalities. However, those approaches are based 
on standard 2D echocardiography and lack the ability to 
capture information contained in the color aspects of the 
color Doppler echocardiographic videos. To overcome 
these limitations, we developed an SSL-based model to 
extract features from color Doppler echocardiograms which 
automatically provides segmentation prediction and indexes.

Prior studies have described SSL algorithms for natural 
color image feature extraction for medical imaging 
applications, such as Jigsaw puzzle (29) and RotNet (30). 
Other medical-image-based SSL methods, such as Rubik’s 
Cube+ (31), Models Genesis (14) and distance prediction 
methods (32) are ad-hoc methods proposed and applied in 
specific imaging modalities such as MRI or CT. In contrast, 
our CD-SSL considers information regarding image color 
and cardiac structure of color Doppler echocardiograms, 
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thus offering a specialized and effective tool for MR severity 
grading.

As noted, a key feature of our method is the reliable 
identification of the frame containing the maximum MR jet 
area, which is the cornerstone of accurate grading of MR 
severity. The robustness of this feature was demonstrated by 
challenging the algorithm by randomly shifting the location 
of the selected frame in the video sequence. This feature 
of the algorithm can therefore eliminate the variability of 
manual selection in clinical practice.

We also investigated the potential use of individual 
quantitative indexes generated by the AI segmentation 
model from Color Doppler echocardiography, in detecting 
moderate and severe MR. In the clinical setting, most 
echocardiographers often evaluate MR severity based on 
visual assessment using semi-quantitative assessments 
of parameters such as MR jet area/LA area and MR jet 
length/LA length. However, it is difficult for clinicians to 
reliably identify the frame containing the maximum jet 
area and to accurately quantify and assign MR severity 
from these indexes, particularly for many borderline 
lesions. An automatic and reliable tool to diagnosis the 
presence and assess severity of MR would offer many 
advantages to improve diagnostic accuracy and workflow 
efficiency. The current study showed that several indexes, 
such as MR jet length/LA length, MR jet length, MR jet 
area and MR jet area/LA area, determined automatically 
by our DL algorithm yielded excellent diagnostic 
performance and may therefore be useful as diagnostic 
markers or candidate variables for clinical prediction 
models.

Limitations

The current findings need to be considered within the 
context of several limitations. First, grading of MR severity 
based on society guidelines requires analyses based on 
multiple 2D color, continuous and pulse wave Doppler 
signals. However, in clinical practice, as in our overall 
database, images from all required views of sufficient 
quality are not always available. Accordingly, by design, 
our algorithm relied only on the A4C view, which was 
reliably obtained in the overall dataset. While this limited 
our analysis to metrics of MR derivable from segmentation 
of LA and MR contours, we demonstrated that this 
approach yielded excellent results when compared with 
thorough analyses by experts based on a larger number of 
metrics obtained from multiple views which are required 

by society guidelines. Notably, all views required for 
such thorough analysis were available in only a ~5% 
(148/2,766) of echocardiograms obtained in our real-world 
retrospective analysis. Overall, the results showing the 
excellent performance of our segmentation model and index 
quantification algorithms demonstrate the effectiveness of 
this approach. Nevertheless, the DL architecture developed 
for the present study could readily be trained and applied to 
other views if so desired.

Further related to model training, our algorithm 
employed SSL pre-training to overcome the need for a 
large number of labeled images, and thus markedly reduced 
the burden of manual annotation.

As noted, the test dataset was selected based on 
the availability of sufficient views to calculate EROA. 
Accordingly, this may represent a biased sample with a 
different distribution of MR severity compared to the 
overall population of patients with MR. This could reduce 
model performance in practice. Thus, further external 
validation in prospective cohort studies is required.

Finally, the “black box” nature of a DL algorithm 
poses potential difficulties in acceptance in real-world 
application due to the interpretation problem, i.e., the lack 
transparency in how the diagnoses are made. Therefore, 
the current algorithm was specifically designed to provide 
quantitative indexes to assistant clinicians, rather than 
to replace physicians by making the MR classification by 
itself.

Conclusions

In conclusion, this study introduced and validated a new, 
practical, accurate, plug-and-play AI-based approach based 
on a single 2D color Doppler echocardiographic view for 
assisting physicians in MR severity grading that can be easily 
implemented in clinical practice. The feature extractor 
model was developed via an SSL approach to obtain feature 
representations of the disease by considering the specific 
characteristics of medical images, e.g., color Doppler 
echocardiography. The results show that this model can 
improve the diagnostic performance of physicians.
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Technical details of automatic self-supervised 
feature extraction

Data pre-processing

Assume X=(x1,x2,…,xm) denotes one input video sample with m 
frames, where xi is the ith frame. For an input video frame x, we 
first randomly crop a sub-area, and then transform them into z1 
and z2 by different data transformations:

zk=T(x),k=1,2	 [1]
where T() includes random color distort and Gaussian blur. 
After data transformation, each zk is divided into 3×3=9 tiles 
while leaving a gap (about 6 pixels) between two adjacent tiles 

as { }1 2 9
, , ,= ⋅⋅ ⋅k k k kz z z z

Network architecture

A Siamese network with 9 (which is the number of tiles) 
sharing weight branches is adopted to solve the proxy task. The 
backbone network φ is 2D ResNet-34 excluding the last fully-
connected layer. We can obtain feature representation as:

( ), 1,2, ,9; 1,2
j jk kf z j kϕ= = ⋅⋅ ⋅ = � [2]

Structure recovery

We formulate a proxy task which aims to rearrange and recover 
the structure. We first yield all the permutations (P) of tiles, 
i.e., P=(p1,p2,…,p9!) and iteratively select H (H≤9!) permutations 
with the largest Hamming distance from P, i.e., P^'=(p1,p2,…,pH). 
Then the 9 tiles of zk are rearranged according to a random 
selected p from permutation pool P’. Therefore, the network 
is trained to identify the selected permutation. The feature fk' 

can be obtained by feature concatenation of ( )1 2 9
, , ,k k kf f f⋅ ⋅ ⋅ ,  

then the predicted possibilities l of each permutation can be  
generated via:

( )kl g f ′= − 	 [3]

where g represents a fully-connected layer. Assume the index 
of chosen permutation for each zk is y, the loss (Lsr) can be 
defined as:

2

1 1 1
log log

i

H H
i i ki ki k i

Lsr y l y l
= = =

= − =∑ ∑ ∑ 	 [4]

Color transform toleration

We design another proxy task to force the network more 
concentrate on color-correlated information. Assume a subset 

{x}, which may belong to different videos, is sampled in each 
mini-batch, the feature representations in each mini-batch 

are { jikf ; i=1,2…,N,k=1,2; j=1,2,…,9}, where N is the size of 
mini-batch. The f generated from the same x is regarded as a 
positive pair, and vice versa. The network is force to minimize 
the difference between positive pairs and enlarge the negative 
ones.

( )
( )

1 29

1 1
1, , 1,2

,
log

,
j j

j j

i iN
c Ni j

pk pkp p i k k

c f f
L

c f f= =
′ ′′′ ′′= ≠ = =

= − ∑ ∑
∑ 	 [5]

where C(x,y)=exp
Tx y

x yτ
 
 
   

, and τ is a temperature parameter.

Objective

Our total loss function of our SSL feature extraction can be 
defined as:

L=Lsr+Lc	 [6]

MR jet recognition and segmentation

Feature encoding

Our backbone model φ is then transferred to downstream tasks, 
namely MR jet recognition task and segmentation task (shown 
in Figure 2B). Since X may consist of several cardiac cycles, we 
let E=(e1,e2,…,em) denotes a one-hot ground truth indicating 
the max MR jet area frame, and Y=(y1,y2,…,ym) denotes the 
segmentation ground truth. The segmentation ground truths 
of those desirable frames are acquired, where ei=1, and ei=0 
vice versa. We first crop a central area of each frame and then 
obtain feature representations via:

fi=φ(xi),i=1,2,…,m	 [7]

The max MR frame recognition

The {fi} are then concatenated into f’ along the time dimension. 
A 3D decoder Dr, which consists of two 3D convolution 
layer, one 2D pooling layer, and one fully-connected layer, is 
employed to generate predicted label E’={e1',e2',…,em'}. The loss 
function is represented as:

( )2 2 2
1

m
r r i ii

L E E D f E e e
=

′′ ′= − = − = −∑      	 [8]

The max MR frame segmentation

We integrate the information of those previous frames, which 
lack of segmentation ground truth, by introducing the long 
short-term memory (LSTM) architecture to explicitly promote 
the exploring of all video frames for better segmentation 
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reconstruction. Assume f_k is one of the max MR frames. Then 
the integrated feature is:

fk'=LSTM(f1,f2,…,fk-1,fk)	 [9]
Then fk' is fed into a 2D decoder Ds with skip-connection 

to obtain predicted segmentation yk'. Segmentation loss Ls is 
generated via dice loss.

( ) ( )( )01 1
, ,

i i

m m
s e i i e s k ii i

L I Dice y y I Dice D f y≠ ≠= =
′ ′= =∑ ∑ 	 [10]

where I is an indicator function evaluating to 1 if e_i≠0, and 
vice versa.

Objective

Our total objective of multi-task framework is:
L=Lr+Ls	 [11]
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