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Background: Renal cell carcinoma (RCC) is characterized by significant vascularization and
immunogenicity, which contributes to drug resistance and immune escape. CD248, a pericytes marker in
tumor vasculature, might help explain tumor microenvironment (TME) remodeling and serve as a novel
therapeutic target.

Methods: Transcriptome data and clinical information of RCC patients were obtained from The Cancer
Genome Atlas (TCGA) database. ESTIMATE and microenvironment cell population (MCP)-counter
algorithms were adopted to calculate immune and stromal contents. The prognostic value of TME was
evaluated via Kaplan-Meier and Wilcoxon signed rank test. Pearson’s correlation coefficient was employed
to explore the correlation between angiogenesis and TME, and the relationship between CD248 and
TME or RCC progression. CD248 overexpression and vascular colocalization in RCC were confirmed via
histology staining. The weighted gene coexpression network analysis (WGCNA) and enrichment analysis
were performed to explore CD248-mediated regulatory mechanism in angiogenesis and TME remodeling.
CD248-based drug response was predicted through CellMiner database.

Results: Tumor angiogenesis contributed to deteriorated RCC progression, which might be involved
with immunosuppression. More specifically, upregulated immune checkpoints exhausted infiltrated T cells.
CD248 overexpressed in RCC vessels correlated with TME and predicted a bad survival outcome. CD248
and coexpressed genes participated in angiogenesis and TME remodeling. Several clinical approved drugs
that might inhibit CD248-mediated tumor promoting effects were selected.

Conclusions: CD248 appears to contribute to angiogenesis and immunosuppressive TME, and may thus
be a promising prognostic and therapeutic target for RCC. CD248-based medication guidance might benefit
RCC patients.
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Introduction

Renal cell carcinoma (RCC) is characterized by significant
vascularization and immunogenicity, resulting in the bad
clinical outcome of patients with RCC (1). Therefore,
antiangiogenic treatment has been the standard treatment
of RCC in the last decade, including vascular endothelial
growth factor receptor 2 (VEGFR2) inhibitors like
pazopanib and apatinib; multi-receptor tyrosine kinase
inhibitors (TKIs) like sunitinib; and the mT'OR inhibitor,
everolimus (1,2). However, regardless of whether
antiangiogenic treatment alone or that combined with
conventional treatment is applied, acquired resistance
restricts the therapeutic efficacy (3,4). The close relationship
between angiogenesis and immunosuppressive tumor
microenvironment (TME) was explicit that misshapen
tumor vessels or increased pericyte coverage accelerate the
invasion of tumor cells into basement membrane but prevent
cytotoxic drug permeation, which are essential for acquired
resistance (5,6). More importantly, angiogenesis and pro-
angiogenic factor contribute to immune cell recruitment
and nourishment, which may increase metabolic complexity
and is associated with therapy resistance (7). As a result,
the therapies combining TKIs with immune-checkpoint
inhibitors (ICIs) have shown increased therapeutic efficiency
in advanced RCC (8). However, the underlying mechanisms
tumor angiogenesis contributes to TME in RCC remain
mysterious that an in-depth understanding is essential to
exploring novel treatment strategies.

CD248, also named endosialin/tumor endothelial
marker 1 (TEM1), was confirmed to be the marker of
pericytes in neovascularization and tumor vasculature (9).
Bagley et al. demonstrated that CD248 was specifically
expressed in blood vessels during embryogenesis and
tumorigenesis but not in normal mature vessels (10).
Further studies have identified that CD248, as a helper
receptor, responds to platelet-derived growth factor-BB
(PDGF-BB) through phosphorylating platelet-derived
growth factor receptor (PDGFR) and mitogen-activated
protein kinase (MAPK) extracellular signal-regulated kinase
1/2 (ERK1/2) to regulate the proliferation of pericytes (11).
Following sprouting angiogenesis, CD248 promotes
selective vessel regression and stabilization of remaining
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vessels through inducing the apoptosis and detachment of
endothelial cells (EC) (12). The overexpression of CD248
has also been reported to be correlated with unfavorable
prognoses in a variety of human malignancies. In TME,
CD248 overexpressed in vessel-associated pericytes and
myofibroblasts was shown to promote tumor growth and
metastasis (13,14). It has been shown that CD248 can
interact with CD68 to recruit macrophages and regulate
GASG6 expression in cancer-associated fibroblasts (CAFs) to
facilitate macrophage M2 polarization and promote tumor
growth (15). Whereas the exact biological function of
CD248 remains unexplained in RCC to date.

Our previous study indicated that the overexpression
of CD248 could reflect an immunosuppressive TME and
is inversely correlated with the prognosis of patients with
RCC (16). In this paper, we further analyzed the gene
expression profiles and clinical information of RCC patients
both from The Cancer Genome Atlas (TCGA) and clinical
records. First, we defined tumor vessels as EC infiltration
in RCC via the microenvironment cell population (MCP)-
counter algorithm and confirmed that EC infiltration was
correlated with a suppressive TME. Thus, we highlighted
significant vascularization as prominent component
contributing to immunosuppressive TME. Inspired by the
results of analyses for TCGA data and clinical pathological
information we collected that were grouped by CD248
expression, we found that CD248 was significantly
expressed around CD31" ECs and positively correlated with
microvascular density (MVD). Therefore, we speculate that
CD248 might bridge the gap between angiogenesis and an
immunosuppressive TME, and therefore may be promising
prognostic and therapeutic target for RCC. To explore
the underlying mechanisms, vascular-CD248-related
differentially expressed genes (DEGs) were identified
through an interaction method, based on which weighted
gene coexpression network analysis (WGCNA) and
enrichment analysis were performed to explore the CD248-
mediated regulatory mechanism in angiogenesis and
suppressive TME remodeling. Finally, a CD248-based drug
response was predicted through the CellMiner database,
which may help guide future RCC therapy.

We present the following article in accordance with the
REMARK reporting checklist (available at https://dx.doi.
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Table 1 Clinical pathological information of RCC patients

Characteristics Number (%)
Gender

Male 42 (52.50)

Female 38 (47.50)
Age, years

<60 39 (48.75)

>60 41 (51.25)
Histological grade

I 30 (37.50)

I 29 (36.25)

M 21 (26.25)
Tumor stage

T1 42 (52.50)

T2 20 (25.00)

T3 16 (20.00)

T4 2 (2.50)
Node stage

NO 69 (86.25)

N1 11 (13.75)
Metastasis stage

Mo 78 (97.50)

M1 2 (2.50)
TNM stage

I 39 (48.75)

I 18 (22.50)

I 19 (23.75)

I\ 4 (5.00)

RCC, renal cell carcinoma; TNM, tumor-node-metastasis.

org/10.21037/atm-21-6271).

Methods
Raw data and specimen

First, 895 RCC and 128 normal samples were downloaded
from TCGA database (http://portal.gdc.cancer.gov/). The
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transcriptome data profile and clinical information were
integrated through ID numbers. “Limma” package in R
software (The R Foundation for Statistical Computing,
Vienna, Austria) was used to calculate the average
gene expression from the transcriptome data profile. R
software was also used to process and analyze the clinical
information. The pathological information of 80 RCC
patients was obtained from the Urology Department
retrospectively with the corresponding paraffin-embedded
RCC tissues and adjacent normal tissues sections from
the Pathology Department of Xijing Hospital, Fourth
Military Medical University (Xi’an, China). The 80 RCC
patients who received surgery but not chemotherapy were
included in this study. The pathological information of the
80 patients was shown in Table 1. All procedures
performed in this study involving human participants
were in accordance with the Declaration of Helsinki (as
revised in 2013). The study was approved by the Ethics
Committee of the Xijing Hospital, Fourth Military Medical
University (No. KY20162088-1). Individual consent for this
retrospective analysis was waived.

Calculation of the abundance of RCC-infiltrating immune
and stromal cells

The MCP-counter algorithm (provided by TIMER 2.0;
http://timer.cistrome.org/) was used to calculate the
abundance of RCC-infiltrating immune and stromal cells.
According to the transcriptome data profile, the abundance
of 8 kinds of immune cell types, including T cells, CD8" T
cells, cytotoxic lymphocytes, B lineage lymphocytes, natural
killer (NK) cells, monocytic lineage, myeloid dendritic
cells (MDC:s), neutrophils, and 2 kinds of stromal cell types
(EC and fibroblasts) were quantified. The scale of fraction
represented the infiltration degree of the cells in the TME.
The transcriptome data were normalized.

Survival analysis

The correlation between survival and EC infiltration or
CD248 was analyzed using “survival” and “survminer” R
packages. The Kaplan-Meier method was applied in plotting
the survival curves. The clinical endpoint was defined as the
death of the patients. The difference of overall survival (OS)
between the defined high and low groups of ECs infiltration
or CD248 expression was analyzed by Wilcoxon rank sum
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test, with a P<0.05 being considered significant.

Calculation of ImmuneScore, StromalScore and
ESTIMATEScore

The ESTIMATE algorithm was used to calculate the
ImmuneScore and StromalScore of RCC samples, which
were positively correlated with the amount of immune and
stromal components in TME. The ESTIMATEScore was
the sum of ImmuneScore and StromalScore. The count
matrix was normalized and log, transformed.

Histology staining

Immunohistochemistry (IHC) staining and
immunofluorescent (IF) staining were performed to
examine and localize CD248 expression in RCC tissues and
adjacent normal tissues. The primary antibodies used were
as follows: CD248 (#ab204914, Abcam, Cambridge, UK),
CD31 (#89C2, Cell Signaling Technology, USA), CD3
(#2100567, eBioscience, USA), CD206/MRCI1 (#24595,
Cell Signaling Technology, USA). The second antibodies
were as follows: goat anti-rabbit immunoglobin [IgG; H&L;
horse radish peroxidase (HRP); #ab6721, Abcam], donkey
anti-rabbit IgG (#ab150076, Abcam), donkey anti-mouse
IgG (#ab150105, Abcam). Nuclei were stained with DAPI
(#C1002, Beyotime, Shanghai, China). Quantification was
performed according to the percentage and intensity in IHC
staining and the percentage of the positive area in the IF
staining using Image J v1.52a (NIH, Bethesda, MD, USA).

DEGs analysis

We divided samples into 2 groups according the levels of
EC infiltration and CD248 expression. DEGs between
the 2 groups were selected with the following threshold:
corrected P<0.05 and Ilog,FCI| >1. The “Pheatmap”
package in R software was used to draw the heatmaps of the
DEGs. The upregulated and downregulated DEGs in the
EC infiltration gene set was intersected with those in the
CD248 expression gene set for further analyses, the results
of which were visualized by Venn 2.1.0 (http://bioinfogp.
cnb.csic.es/tools/venny/index.html).

WGCNA for vascular-CD248-related DEGs

The intersection method-selected vascular-CD248-related
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DEGs were grouped into modules via hierarchical average
linkage clustering. The correlation between RCC clinical
phenotype and different color-marked modules was drawn
by the module trait heatmap. A P<0.05 was considered
significant. The prognostic modules were visualized with
Cytoscape 3.6.0 and further analyzed with Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis.

GO and KEGG envichment analysis and gene set
enrichment analysis (GSEA)

GO and KEGG enrichment analyses for the DEGs
were conducted using the “clusterprofiler” package in
R. A corrected P<0.05 indicated that the GO terms and
KEGG pathways were significantly enriched. GSEA
software obtained from the Broad Institute was performed
to conduct GSEA for the KEGG gene sets. A corrected
P<0.05 indicated statistical significance. The data of the
gene sets were log, transformed.

CD248-based drug response prediction

Clinically approved drugs that might inhibit CD248-
mediated tumor-promoting effects were primarily screened
from CellMiner version 2.6 (http://discover.nci.nih.gov/
cellminer/home.do). Drugs with a P<0.05 were considered
to be significantly correlated with CD248. A correlation
coefficient <0 and >0 was considered to indicate a negative
and positive correlation, respectively; meanwhile, 0.3<
I correlation coefficient| <0.5 indicated a low response of
the drugs to CD248.

Statistical analysis

Statistical analyses were performed using GraphPad
Prism 8.0 (GraphPad Software, Inc., San Diego, CA,
USA). Transcriptome data were analyzed by #-test and
nonparametric test. Differential analyses between the
defined high and low groups of EC infiltration and CD248
expression were conducted by Wilcoxon rank sum test.
Pearson’s correlation coefficient was applied in correlation
analysis between TME scores and ECs infiltration or
CD248 expression. Chi-square test was used to analyze the
relationship between CD248 expression and pathological
information of the 80 RCC patients. A P<0.05 was
considered statistically significant.
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Results

Angiogenesis contributed to RCC progression through
immunosuppressive TME

"To explore the relationship between TME and RCC survival
outcome, we performed Kaplan-Meier survival analysis for
ImmuneScore, StromalScore and ESTIMATEScore. The
results indicated that high TME scores associated with poor
clinical outcomes (P<0.001, Figure 14), deteriorated tumor-
node-metastasis ('NM) grade, and pathological stage
in patients with RCC (P<0.05, Figure 1B). Furthermore,
high tumor vessel infiltration (i.e., angiogenesis) promoted
RCC progression, and EC infiltration positively correlated
with TME score and TNM grade (P<0.05, Figure 1C,1D;
P<0.05, Figure S1A). EC infiltration associated with the
recruitment of T cells, CD8" T cells, cytotoxic lymphocytes,
NK cells, monocytic lineage, MDCs, and fibroblasts, but
not B lineage or neutrophils. Interestingly, the correlation
between StromalScore and TME was similar to that of
ECs, indicating that vasculature might be the prominent
component of RCC stroma (P<0.05; Figure 1E,1F). The
relationships between TME and RCC prognosis (i.e.,
TNM grade, pathological stage, and histological grade)
were visualized with a heatmap (Figure S1B). Additionally,
several immune checkpoints were upregulated in the
high EC-infiltration group, as well as the biomarkers
of M2 macrophages (i.e., CD163, MSRI, and MS4A444;
P<0.05; Figure 1G), indicating that EC-recruited T cells
might be exhausted and that the TME was predominantly
immunosuppressive.

CD248 contributed to RCC progression through
angiogenesis

The survival outcome of RCC patients was decreased
with the overexpression of CD248 (P<0.001; Figure 2A4).
Similarly, upregulated CD248 was associated with tumor
and node stage pathological stage, and TINM stage but not
gender, age and metastasis (P<0.05; Figure 2B). CD248
also displayed a positive correlation with TME, including
ImmuneScore, StromalScore, and ESTIMATE Score
(P<0.05, Figure 2C,2D). GSEA of KEGG indicated that
CD248 was involved with multiple angiogenesis pathways,
including janus kinase/signal transducer and activator
of transcription (JAK/STAT) signaling pathway, MAPK
signaling pathway, Notch signaling pathway, transforming
growth factor p (TGF-p) signaling pathway and vascular
smooth muscle contraction (Figure 2E). Clustering
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analysis revealed that proangiogenic genes (i.e., VEGFA,
TEK, SOX18, CDHS, and SOX17) were activated in the
CD248 high expression group (Figure 2F), indicating that
CD248 might contribute to RCC progression through

proangiogenic signals.

Vascular-expressed CD248 contributed to the immune
regulation of TME

To confirm the relationship between CD248 and
angiogenesis, IHC staining of the 80 RCC patients for
CD248 expression was performed. As the representative
images shown in Figure 34,3B, CD248 was over-expressed
in RCC but not adjacent normal tissues (normal: 2.58+0.26;
RCC: 15.65£1.54; n=3). Furthermore, IHC staining analysis
confirmed the significant correlation between CD248
expression and pathological stage, tumor stage and TNM
stage as well (Table 2). CD248 was also positively correlated
with MVD (Figure 3C). Representative IF staining further
verified that CD248 was expressed surrounding CD31"
ECs (Figure 3D). A heatmap for vascular-expressed CD248
was constructed for visualization of the clinical information
and TME. This clarified that vascular-expressed CD248
negatively correlated with T cell infiltration and positively
correlated with the infiltration of ECs, CD8" T cells,
cytotoxic lymphocytes, NK cells, monocytic lineage,
MDCs, stromal fibroblasts, and TME scores (Figure S2),
indicating that vascular-expressed CD248 contributed
to the immune regulation of TME. According to the
results shown in Figure 1F, 1G, angiogenesis contributes
to immunosuppressive TME mainly characterized
by decreased T cell infiltration and M2 macrophage
polarization. Therefore, we further perform IHC staining
for RCC tissues targeting CD3 for quantitative analysis of
T cell and CD206 for M2 macrophage. Correspondingly,
the RCC tissues with overexpression of CD248 showed
decreased T cell and increased M2 macrophage infiltration
(Figure 3E,3F).

Vascular-CD248-related DEGs contributed to RCC
angiogenesis

To explore the regulatory mechanism of vascular-
expressed CD248 on RCC angiogenesis, 2,864 DEGs
based on CD248 expression and 2,611 DEGs based on
ECs infiltration were obtained, with the top 100 DEGs
being shown in Figure 44,4B, respectively. Then, the
vascular-CD248-related DEGs were identified through
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Figure 1 Tumor vasculature led to a poor prognosis and immunosuppressive TME in RCC. (A) Kaplan-Meier survival analysis for RCC

patients of stromal score, immune score, and ESTIMATE score with high and low scores. (B) Distribution of TME scores in TNM
classification and RCC stage. (C) Statistic analysis for RCC patients of high and low degree of EC infiltration in TME scores. (D) The

correlation between EC infiltration and TME scores. (E) The correlation of immune and stromal cells with TME scores. (F) Statistical

analysis for the high and low degree of EC infiltration in TME components and scores. (G) Gene expression of ICI molecules and M2

macrophage markers in RCC patients of a high and low degree of EC infiltration. ***, P<0.0001. RCC, renal cell carcinoma; TME, tumor

microenvironment; EC, endothelial cells; ICI, immune-checkpoint inhibitor; ns, no significance.

interaction analysis, revealing 1,079 upregulated DEGs and
1,181 downregulated DEGs (Figure 4C). GO enrichment
analysis indicated that vascular-CD248-related DEGs were
associated with the GO terms of vasculature development,
including vascular wound healing, vasculogenesis, positive
regulation of smooth muscle contraction, kidney vasculature
development, and others (Figure 4D). KEGG enrichment
analysis revealed the top 20 pathways enriched by vascular-
CD248-related DEGs. Notably, several angiogenesis-
related pathways were significantly enriched, such as
vascular smooth muscle contraction, PI3K-Akt signaling
pathway, hypoxia-induced factor-1 (HIF-1) signaling
pathway, Rap1 signaling pathway, and others (Figure 4E).

Vascular-CD248-related DEGs contributed to angiogenesis

and immune regulation

To explore the regulatory mechanism of vascular-expressed
CD248 on immune regulation, WGCNA of vascular-
CD248-related DEGs was performed. As a result, 13
coexpression gene modules were divided via hierarchical
average linkage clustering (Figure 54 and Figure S3). A
module-trait heatmap indicated that modules marked with
black, blue, green-yellow, and yellow were significantly
associated with RCC progression (P<0.05; Figure 5B). The
interactions among the 4 selected modules were visualized
with a regulatory network, and the prominent GO function
of each module was labeled (Figure 5C). The blue module
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annotated with angiogenesis were visualized (Figure 5D).
Furthermore, GO and KEGG enrichment analysis was
performed to explore the mechanisms of the modules
related to RCC progression (Figure SE,5F). The yellow
module annotated with immunity was also visualized and
the corresponding GO and KEGG enrichment analysis
was performed as well (Figure 5G-5I). A regulatory network
of the black module annotated with stromal and green
module annotated with metabolism and the corresponding
GO and KEGG enrichment analysis were also conducted
(Figure S4). As shown in Figure 57, the interactions among
CD248, the top 20 hub genes most closely related to the
others of the blue and the yellow module, were visualized.
Moreover, 7 angiogenesis-related genes and 15 immune-
related genes were included in the regulatory network, in
which CD248 was at start position, indicating that vascular-
expressed CD248 contributed to immune regulation.

CD248-based drug response prediction
Having confirmed that CD248 plays a pivotal role in RCC

progression via angiogenesis and immune regulation,
we screened for several clinically approved drugs that
might inhibit CD248-mediated tumor-promoting effects
(Figure 6). Zoledronate, nelarabine, epirubicin, and
temsirolimus positively responded to CD248. Conversely,
CD248 expression might reduce the effectiveness of
pralatrexate, trametinib, 7-ethyl-10-hydroxycamptothecin,
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Figure 2 CD248 was associated with a poor prognosis and was involved in angiogenesis in RCC. (A) Kaplan-Meier survival analysis for
RCC patients of CD248 with high and low expression. (B) Distribution of CD248 expression in TNM classification and stage of RCC. (C)
Statistical analysis for RCC patients of high and low expression of CD248 in TME scores. (D) The correlations between CD248 expression
and TME scores. (E) The hallmark enrichment of high and low expression of CD248 in RCC patients according to GSEA. (F) The heatmap
of angiogenic factors in RCC patients with high and low CD248 expression. ***, P<0.0001. RCC, renal cell carcinoma; TME, tumor

microenvironment; TNM, tumor-node-metastasis; GSEA, gene set enrichment analysis.

cobimetinib and vismodegib.

Discussion

There are over 400,000 new cases and 175,000 deaths of
RCC worldwide every year. The incidence of RCC is more
common in males, being twice as that which occurs in
females (17). The treatment of RCC drastically advanced
in the past decade during which targeted therapies and ICIs
have been applied in the front-line and second-line settings,
demonstrated survival benefit in advanced RCC. Although
RCC is susceptible to immunotherapy, immune tolerance
and immune escape are inevitable due to the complex
vascularization and immunogenicity. Therefore, an in-depth
understanding of tumor angiogenesis and TME is essential
to exploring novel treatment approached for RCC. For
one, abnormally distributed tumor vessels with increased
tortuosity and permeability can facilitate epithelial cell
invasion into blood while inhibiting T cell infiltration (18).
For another, proangiogenic factors leading to vascular
abnormalities in tumor can directly and indirectly contribute

© Annals of Translational Medicine. All rights reserved.

to an immunosuppressive TME through anaerobic
metabolism-induced low PH and immunosuppressive cell
recruitment, including that of immature dendritic cells
(DCs), regulatory T (Treg) cells, and M2-type tumor-
associated macrophages (TAMs) (6,19). Moreover, VEGF
inhibition-mediated angiogenesis normalization can reverse
the transition of antigen-presenting cells (APCs) toward a
tolerant phenotype involved with T cell suppression (18).
Indeed, the existence of close relationship between tumor
angiogenesis and immunosuppressive TME remodeling is
certain; however, the interaction mechanism remains largely
unknown.

In the present study, we demonstrated that both immune
and stromal components are positively correlated with
poor prognosis. More precisely, the infiltration of ECs,
CD8" T cells, cytotoxic lymphocytes, NK cells, monocytic
lineage, MDCs, and stromal fibroblasts were significantly
increased in the stroma of RCC. An increased infiltration
of ECs (a marker of vascularization) could promote tumor
angiogenesis and enhance immune response via immune
cell infiltration. However, increased CD8" T cell infiltration

Ann Transl Med 2021;9(23):1741 | https://dx.doi.org/10.21037/atm-21-6271
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Figure 3 CD248 was expressed in RCC vasculature and involved in an immunosuppressive TME. (A) IHC staining of CD248 in RCC and
adjacent normal tissues (scale bar, 100 pm). (B) Quantitative analysis for the data derived from the IHC staining. (C) MVD of RCC tissues
with positive and negative expression of CD248. (D) Representative IF costaining of CD248 and CD31 in RCC (scale bar, 100 pm). (E) IHC
staining of CD3 and CD206 in RCC tissues with positive and negative expression of CD248 (scale bar, 100 pm). (F) Quantitative analysis for
the data from the IHC staining in (E). **, P<0.01; ***, P<0.001; ****, P<0.0001. RCC, renal cell carcinoma; TME, tumor microenvironment;

THC, immunohistochemistry; MVD, microvascular density; IF, immunofluorescent.
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Table 2 The relationship between CD248 and pathological information of RCC patients
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CD248, n (%)

Characteristics Total X 95% ClI P value
Positive Negative

Gender 0.409 0.522
Male 42 18 (42.86) 24 (57.14) 0.272-0.585
Female 38 19 (50.00) 19 (50.0) 0.333-0.667

Age, years 0.217 0.642
<60 39 17 (43.59) 22 (56.41) 0.273-0.599
>60 41 20 (48.78) 21 (51.22) 0.328-0.648

Histological grade 13.305 <0.001
I 30 6 (20.00) 24 (80.00) 0.048-0.352
-1 50 31 (62.00) 19 (38.00) 0.481-0.759

Tumor stage 16.986 <0.001
T1-2 62 21 (33.87) 41 (66.13) 0.218-0.460
T3-4 18 16 (88.89) 2 (11.11) 0.728-1.050

Node stage 1.551 0.213
NO 69 30 (43.48) 39 (56.52) 0.315-0.555
N1 11 7 (63.64) 4 (36.36) 0.297-0.975

Metastasis stage - 0.503
MO 78 36 (46.15) 42 (53.85) 0.348-0.575
M1 2 1(50.0) 1(50.00) -5.853 t0 6.853

TNM stage 13.306 <0.001
-1l 57 19 (33.33) 38 (66.67) 0.207-0.460
-1V 23 18 (78.26) 5(21.74) 0.600-1.000

Cl, confidence interval; CD, cluster differentiation; TNM, tumor-node-metastasis; RCC, renal cell carcinoma.

was associated with a worse RCC survival outcome rather
than an antitumor effect, which was consistent with a
previous study (20). We speculated that infiltrated T cells
might be exhausted in an immunosuppressive TME.
First, prominent immune-suppressive factors (i.e., VEGE
iterleukin-10, and TGF-B) in RCC TME may transform
infiltrated MDCs to the tolerant phenotype and promote
immunosuppression (21). In addition, infiltrated monocytes
may have the markers of M2 macrophages, which can
not only directly stimulate angiogenesis and tumor cells
proliferation, but also produce immunosuppressive
cytokines and extracellular matrix remodeling enzymes to
promote immunosuppressive TME (22). Overexpressed
immune checkpoints also contribute to T cell exhaustion.
Therefore, T cell exhaustion and increased infiltration of

© Annals of Translational Medicine. All rights reserved.

immunosuppressive cells ascribed to RCC vascularization
might lead to an immunosuppressive TME and tumor
progression.

CD248 expressed in tumor stromal fibroblasts and
vessels could promote tumor cell migration and invasion
(23,24). Indeed, pericytes expressing CD248 have been
shown to facilitate tumor cell intravascular migration
in a cell contact-dependent manner (14). Further study
reported that proangiogenic factors (i.e., TGF-B, PDGF-
BB, and Notch pathways) were altered in mice lacking the
CD248 cytoplasmic domain, which led to tumor growth
reduction (25). Notably, CD248 not only contributes
to tumor progression through angiogenesis, but also
contributes to tumor-promoting immune regulation.
Immunotherapy targeting CD248 has proven to be effective

Ann Transl Med 2021;9(23):1741 | https://dx.doi.org/10.21037/atm-21-6271
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Figure 4 Acquisition and enrichment analyses of GO and KEGG for DEGs. (A,B) Heatmap for DEGs generated by a comparison of the
high versus low group in EC infiltration and CD248 expression. (C) Venn plots for the shared upregulated and downregulated DEGs by
EC infiltration and CD248 expression. (D,E) GO (D) and KEGG (E) enrichment analysis for 2,260 DEGs; terms with P and q<0.05 were
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Figure 6 Prediction for clinically approved drugs responding to CD248. The correlation between CD248 and clinically approved drugs.

Drugs with a P<0.05 were considered significant. The correlation coefficient is marked in the figure.

in sarcoma and melanoma (26,27). DNA vaccine targeting
of CD248 has confirmed that the vaccine TEM1-TT can
induce CD8" cytotoxic T cell response against murine
tumor-specific antigens (28). The sensitivity of CD248 in
predicting OS has been published in our previous article.
In short, a CD248-based prognostic signature has an
excellent ability to predict the prognosis of patients with
AUC =0.889 (16). Therefore, CD248 might bridge the gap
between angiogenesis and immunosuppression, and thus be
a promising prognostic and therapeutic target for RCC.

To explore the underlying mechanism of vascular-
CD248 in immune regulation and tumor promotion,
we first demonstrated that overexpression of CD248 in
tumor vasculature is associated with poor RCC survival
outcome. Additionally, CD248 was found to be involved
in vasculature development signaling pathways and several
typical proangiogenic factors such as VEGFA, indicating
that CD248 contributes to RCC progression through

© Annals of Translational Medicine. All rights reserved.

proangiogenic signals. Grouped by CD248 expression, we
further performed IHC staining for infiltrated T cells and
M2 macrophages and the results was corresponding to that
grouped by ECs expression, which indicated that CD248
was an ideal target for vascularization in RCC. CD248 was
also associated with other infiltrated immunosuppressive
cells like monocytic lineage and MDCs, whereas relevant
proof studies are lacking. WGCNA and enrichment analysis
demonstrated that vascular-CD248-related DEGs could
be divided into 4 prognostic gene modules, among which
angiogenesis and immune-regulation-related modules were
selected and visualized. Interestingly, 7 angiogenesis-related
and 15 immune-regulation-related hub genes were found to
interact with CD248. Therefore, further investigation for
these hub genes and signaling pathways might give insight
into the regulatory mechanism between angiogenesis and
immune regulation.

Based on the aforementioned results, CD248 appears

Ann Transl Med 2021;9(23):1741 | https://dx.doi.org/10.21037/atm-21-6271
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to be a promising prognostic and therapeutic target for
RCC. Using the CellMiner database, we screened several
clinically approved drugs that might inhibit CD248-
mediated tumor promotion. The candidates with statistical
significance might guide RCC therapy to a certain
extent, especially those drugs that respond positively to
CD248, including zoledronate, nelarabine, epirubicin,
and temsirolimus. Zoledronate has demonstrated positive
effects on skeletal-related events in patients with RCC
and bone metastasis (29). Epirubicin in combination
with lexatumumab was reported to exert a synergistic
cytotoxicity on human RCC cells (30). Temsirolimus has
also shown proven clinical benefit in patients with non-
clear cell RCC (31). Meanwhile, nelarabine, a purine
analogue applied in the treatment of lymphoma or T cell
lymphoblastic leukemia, warrants further clinical trials to
explore its effects on RCC patients with high expression
of CD248 (32). Additionally, CD248-based targeting
therapy might be a potent antitumor strategy. Ontuxizumab
(MORAB-004), a monoclonal antibody targeting CD248,
has proven to be effective in metastatic melanoma in phase
I and II clinical trials (27,33). Yuan et al. isolated a single-
chain variable fragment 78 (scFV78) against CD248 from
a yeast display scFV library and showed that this might be
useful for immunotoxin-based therapy in CD248-positive
solid tumors (34). scFV78-based fully human antibody
IgG78 has also exhibited antitumor effects in patients with
hepatocellular carcinoma (15).

In conclusion, vascular-expressed CD248 contributes
to RCC progression through angiogenesis and suppressive
immune regulation, and may thus be a promising prognostic
and therapeutic target for RCC. Targeting CD248 may
prove to be a novel antitumor strategy in reversing an
immunosuppressive TME. Further investigation of dual-
related hub genes and pathways might offer insight into
the regulatory mechanism between angiogenesis and
immunosuppression.
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Figure S2 The heatmap of TME
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Sample dendrogram and trait heatmap
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Figure S3 Analysis of the network topology for adjacency matrix weighting parameters (power). (A) Hierarchical average linkage clustering.
Branches of the dendrogram represent genes with similar expression patterns. (B) The x-axis represents soft threshold (power), and the y-axis

represents the scale-free fitting index and connectivity for each power. The soft-thresholding power for network construction was set at 0.9.
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Figure S4 The WGCNA and enrichment analysis of the shared DEGs by EC infiltration and CD248 expression. (A) The coexpressed
network of the black module annotated with stroma. (B,C) GO (B) and KEGG (C) enrichment analysis of the black module. (D) The
coexpressed network of the green-yellow module. (E,F) GO (E) and KEGG (F) enrichment analysis of the green-yellow module. WGCNA,
weighted gene coexpression network analysis; DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes.
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