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Background: Prostate cancer (PCa) contributes to more than 1.2 million newly diagnosed cases and more
than 350,000 deaths each year, making it the second most common malignancy and the fifth leading cause
of cancer-related deaths in men worldwide. Treatment of PCa is further complicated by drug resistance
to enzalutamide. The present study comprehensively details the genomic characteristics of enzalutamide-
resistant PCa.

Methods: The determination of enzalutamide-related genes in GSE163240 and GSE136129 was conducted
by differential expression analysis, gene set enrichment analysis (GSEA) suggested that these genes were
highly correlated with immune-related pathways. Subsequently, network analysis including module analysis
and degree analysis and univariable cox analysis were conducted, which led to the identification of both hub
genes [contactin 2 (CNTN?2) and frizzled class receptor 2 (FZD2)].

Results: GSEA suggested that these genes were highly correlated with immune-related pathways.
Subsequently, network analysis, including module analysis and degree analysis, and univariable Cox analysis
resulted in the identification of two hub genes, CNTN2 and FZD2, which were further validated using the
Gene Expression Omnibus (GEO) and Molecular Signatures Database (MSigDB). GSEA and CIBERSORT
indicated that both hub genes were highly correlated with immune-related functions in PCa.
Conclusions: In conclusion, this study comprehensively described the transcriptome landscape of
enzalutamide-resistant PCa and identified two hub genes, CNTN2 and FZD2, that play an important role in

enzalutamide-mediated immune infiltration in PCa.
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Introduction The progression and proliferation of PCa is facilitated
In 2018, there were 1,276,106 newly diagnosed cases by the androgen-signaling axis (2,3) and thus, the main
of prostate cancer (PCa) and 358,989 associated deaths, treatment for PCa involves the suppression of androgens
making it the second common malignancy and the fifth (4,5) via anti-androgen deprivation therapy (ADT) (6).
leading cause of cancer-related deaths in men worldwide (1). However, ADT inevitable leads to the emergence of
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castration-resistant prostate cancer (CRPC) (7,8).
Enzalutamide, which interferes with the androgen
receptor (AR), and abiraterone, which inhibits androgen
synthesis, are commonly used for the treatment of PCa.
There is increasing evidence to suggest that enzalutamide
may have clinical significance in the overall survival (OS) of
CRPC patients with metastasis [hazard ratio (HR) =0.63;
95% confidence interval (CI): 0.53 to 0.75; P<0.001] (9)
and in metastasis-free survival in patients without metastasis
(HR =0.29; 95% CI: 0.24 to0 0.35; P<0.001) (10). Indeed,
enzalutamide has been approved for both chemotherapy-
naive and chemotherapy-exposed CRPC patients (6,9,11).
However, almost all patients of CRPC eventually develops
resistance to enzalutamide through complex mechanisms
(8,11). Therefore, further understanding the mechanisms
by which PCa develops resistance to enzalutamide is
urgently required to develop novel treatments for patients
with PCa.
Immune

3

‘cold tumor” mainly refers to the less
infiltration of local immune cells in the tumor and the low
expression of PD-L1. If there are ways to improve the
tumor immune microenvironment, such as strengthening
the role of immune cells, increasing immune cell infiltration,
and enhancing immune antigen presentation. Further, it
can increase the response rate of PCa to immunotherapy.
However, enzalutamide resistance appears to be involved
in immune cell infiltration. The current study examined
the genomic characteristics of enzalutamide-resistant
PCa. Differential gene expression analyses and protein-
protein interaction (PPI) network analyses were performed
to determine key enzalutamide-related genes. Univariate
Cox analysis was used to identify the hub genes, contactin
2 (CNTN?2) and frizzled class receptor 2 (FZD2), with
prognostic implications. Further validation using the Gene
Expression Omnibus (GEO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (12) database suggested
that both hub genes were correlated with the AR and
enzalutamide. Gene set enrichment analysis (GSEA)
demonstrated that both hub genes were positively correlated
to immune-related pathways. CIBERSORT (13) was used to
confirm the association between the hub genes and immune
cell infiltration levels. These hub genes, CNTN2 and FZD?2,
may be potential biomarkers or immunotherapeutic drug
targets for the management of enzalutamide resistance in
PCa patients.

We present the following article in accordance with the
STREGA reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-6191).
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Methods
Data source and preprocessing

The RNA-sequencing data of enzalutamide-resistant or
sensitive PCa cells was derived from the GSE163240 (14)
and GSE136129 (15) datasets in the GEO (16) database.
The GSE147976 (17) and GSE150807 (18,19) datasets with
gene expression data from enzalutamide-naive or -exposed
cells were also downloaded for validation.

Patient survival-related data were obtained from The
Cancer Genome Atlas (TCGA) (20), the International
Cancer Genome Consortium (ICGC) (21), cBioPortal
(22,23), and the GEO database. Based on the criteria
that datasets must have at least 20 samples with complete
follow-up data and corresponding gene expression data
to implement prognostic analysis, a total of 6 datasets
were finally included. The gene expression data including
fragments per kilobase of transcript per million (FPKM)
values and clinical data from the prostate adenocarcinoma
(PRAD) cohort in TCGA (n=493) (20) were downloaded
using the R package TCGA biolinks (24,25). Survival data
and gene expression data were collated from the PRAD-
CA (n=144) and PRAD-FR (n=25) datasets in the ICGC
database (21), the MCTP (n=35) (26) and SU2C (n=71) (27)
datasets in the cBioPortal database (22,23), and the
GSE116918 (n=248) (28) dataset in the GEO.

The raw counts data of PCa and normal control samples
were downloaded from TCGA and Genotype-Tissue
Expression (GTEx) (29) data cohorts. In addition, RNA
expression data related to PCa or control samples were also
derived from the GSE80609, GSE56829, and GSE111177
datasets (30). The study was conducted in accordance with
the Declaration of Helsinki (as revised in 2013).

Enzalutamide-related genes

The DESeq2 software was used to identify the differentially
expressed genes between enzalutamide-resistant cells
and enzalutamide-sensitive cells with a threshold of
[log2FoldChange| >1 and adjusted P value <0.01. Volcano
plots generated by ggplot2 (31) were used to depict
these differentially expressed genes. A Venn diagram
was used to intersect the differentially expressed genes
from the GSE163240 and GSE136129 datasets using the
ggvenn package (32). To explore the biological process
(BP) involved, GSEA was used to implement functional
enrichment analysis with reference to Gene Ontology
(GO) (33,34), KEGG, and Molecular Signatures Database
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(MSigDB) (35) using the clusterProfiler (36) package.

PPI network analysis

The STRING database was used to explore the interaction
among enzalutamide-related genes. A PPI network was
constructed and analyzed using Cytoscape version 3.8.2 (37).
Network module analysis and degree analysis were
conducted to identify the key nodes using Minimal
Common Oncology Data Elements (MCODE) (38) and
cytoHubba (39), respectively. The key genes were derived
by overlapping nodes in modules from MCODE and nodes
with degree >3 from cytoHubba.

Cox analysis and determination of bub genes

Hub genes were defined as genes with prognostic implications
in at least two datasets among six cohorts, including TCGA-
PRAD, ICGC PRAD-CA and PRAD-FR, cBioPortal MCTP
and SU2C, and GSE116918. Univariate Cox analysis was
used to determine the prognostic implications with reference
to OS, progression-free interval (PFI), or disease-free survival
(DFES) (40). OS is the survival time from the date of diagnosis
to the date of death by any cause. PFI is defined as the
interval from diagnosis to the first emergence of a new tumor
event (40). DFS is defined as the interval from a patient’s
disease-free status after their first diagnosis and therapy to the
first emergence of a new tumor event (40). A P value <0.05 is
considered statistically significant.

Exploration of the biological functions of the hub genes

GSEA was applied to examine the BPs in the GO database,
and the functional pathways in the KEGG database. The
threshold recommended by GSEA (41) includes a minimum
gene set size of 15, a maximum gene set size of 500, and an
adjusted P value <0.25. The association with hallmark gene
sets (35) was also determined. In addition, PCa-special scores
[AR scores and neuroendocrine prostate cancer (NEPC)
scores] (27,42,43) were analyzed based on the SU2C dataset.
The Wilcoxon rank sum and Kruskal-Wallis rank sum tests
were used to explore the expression levels of hub genes at
various stages of PCa and in normal control samples.

Validation of the association with between the hub genes

and enzalutamide

A differential gene expression analysis was conducted in
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enzalutamide-exposed PCa cells and enzalutamide-naive
PCa cells from the GSE147976 and GSE150807 datasets.
Moreover, the enzalutamide-targeted functional pathways
were examined using the KEGG database and GSEA
was conducted to determine whether the hub genes were
enriched in enzalutamide-targeted functional pathways with
a threshold of P value <0.05.

Exploration of the association between the PCa hub genes
and immune cell infiltration

The immune subtypes related to PCa and the genes that
code immunomodulators and chemokines were identified
using studies by Thorsson er /. (44) and Charoentong
et al. (45), respectively. A total of 4 immune subtypes,
including C1 (wound healing), C2 [interferon-gamma
(IFNg) dominant], C3 (inflammatory), and C4 (lymphocyte
depleted), were identified. The Kruskal-Wallis rank sum test
was used to assess the association between immune subtypes
and the hub genes. The Spearman correlation coefficient
was calculated to explore the association between hub genes
and immunomodulators or chemokines. CIBERSORT
in the R program was used to enumerate the absolute
infiltration levels of 22 types of immune cells in PCa. The
differential infiltration immune cells between PCa samples
and normal samples were determined by the Wilcoxon rank
sum test. Spearman correlation coefficient analysis was
performed to investigate the association between immune
infiltration levels and hub genes. A P value <0.05 was
considered statistically significant.

Statistical analysis

All statistical tests were based on a significant P value <0.05.
The Benjamini-Hochberg method was used to adjust the P
value. An adjusted P value <0.05 was applied when analyses
involved multiple comparisons. The R program (version
4.0.2) (46) was used for all statistical analyses.

A schematic diagram depicting the processes involved in
this study is shown in Figure 1.

Results
Identification of the enzalutamide-related genes

Analysis of the GSE163240 dataset comparing
enzalutamide-resistant cells and enzalutamide-sensitive cells
revealed a total of 686 up-regulated genes and 253 down-
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Figure 1 The schematic diagram depicting the study process. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
PPI, protein-protein interaction; MCODE, Minimal Common Oncology Data Elements; TCGA, The Cancer Genome Atlas; ICGC,

International Cancer Genome Consortium; GEO, Gene Expression Omnibus; GSEA, gene set enrichment analysis; CNTN2, contactin 2;

FZD2, frizzled class receptor 2; PCa, prostate cancer.

regulated genes (Figure 24). In the GSE136129 dataset,
there were 1,246 up-regulated genes and 1,329 down-
regulated genes (Figure 2A4). A Venn diagram revealed 329
overlapping enzalutamide-related genes identified in both
datasets (Figure 2B). A chord diagram constructed using
the circlize package (47) showed that the enzalutamide-
related genes were significantly negatively correlated with

androgen response, L6/7JAK/STAT3 signaling, and tumor

© Annals of Translational Medicine. All rights reserved.

necrosis factor (TNF)a signaling via nuclear factor (NF) B
(Figure 2C). GO analysis suggested that the differentially
expressed enzalutamide-related genes identified in the
GSE163240 and GSE136129 datasets were enriched in
BPs including cell-cell adhesion via plasma-membrane
adhesion molecules, synapse assembly and organization,
and granulocyte and neutrophil activation associated
with the immune response (Figure 2D). KEGG analysis
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Figure 2 Identification of the differendally expressed enzalutamide-related genes. (A) A volcano plot showing the differentially expressed
genes between enzalutamide-resistant cells and enzalutamide-sensitive cells. The hub genes, CNTN2 and FZD?2, are labeled and circled in
yellow. (B) A Venn diagram showing the differentially expressed genes in the GSE163240 and GSE136129 datasets. (C) A chord diagram
showing the enrichment results of GSEA with reference to hallmark gene sets in MSigDB. (D) GSEA was applied to characterize the
biological functions of the enzalutamide-related genes with reference to BP in GO and functional pathways in KEGG. CNTN2, contactin 2;
FZD2, frizzled class receptor 2; GSEA, gene set enrichment analysis; MSigDB, Molecular Signatures Database; BP, biological process; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

demonstrated that the differentially expressed enzalutamide- nodes and 355 edges was constructed (Figure 3), with
related were mostly associated with pathways including an enrichment P value of 1.0e-16, suggesting that this
adrenergic signaling in cardiomyocytes, GABAergic synapse network has significantly more interactions than expected.
and relaxin signaling pathway, cytokine-cytokine receptor Furthermore, module analysis using MCODE extracted 7
interaction, neutrophil extracellular trap formation, and clusters, including 53 genes. The largest module is depicted
viral protein interaction with cytokines and cytokine in Figure 4. In addition, cytoHubba analysis suggested that

there are 70 genes with a degree >3. By overlapping these

receptors (Figure 2D).
genes, 37 key genes were identified for further analysis.
Development of the PPI network

D "
A total of 329 enzalutamide-related genes were imported etermination of bub genes

into the STRING database. A network including 321 To obtain genes with prognostic significance to PCa,
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Figure 3 The development of the PPI network to analyze enzalutamide-related genes. PPI, protein-protein interaction.

univariate Cox analysis was applied in the TCGA, PRAD- 0.927; P<0.05), NMU (HR =1.408-2.421; P<0.05), MAMIL?2
CA, PRAD-FR, MCTP, SU2C, and GSE116918 datasets. (HR =0.615-0.950; P<0.05), RORI (HR =0.611-0.997;

The TCGA dataset identified 9 genes that were P<0.05), ORM?2 (HR =0.842-1.000; P<0.05), and CYP2EI
significantly correlated with PFI, including CNTN2 (HR (HR =1.162-2.567; P<0.05). Analysis of the PRAD-CA
=1.140-5.225; P<0.05), EFNA3 (HR =1.058-1.602; P<0.05), dataset revealed that the genes ADRBI (HR =1.308-11.696;
ROR2 (HR =0.686-0.983; P<0.05), FBLN1 (HR =0.665- P=0.015) and FZD2 (HR =0.078-0.743; P=0.013) were
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Figure 4 Module analysis of the protein-protein network extracted 7 clusters. The largest modules are depicted.

significantly correlated with OS. The MCTP and SU2C
datasets, respectively, demonstrated that FZD2 (HR
=1.264-2.603; P=<0.05) and GHRHR (HR =0.335-0.874;
P<0.05) were correlated with OS. The GSE116918 dataset
further suggested that both CNTN2 (HR =1.053-3.529;
P<0.05) and LOX (HR =1.553-5.727; P<0.05) significantly
impacted DFS in PCa patients. However, examination of
the PRAD-FR dataset revealed that there was no significant
correlation among any of the genes (Figure 5). Therefore,
the CNTN2 and FZD2 genes were considered hub genes
due to their significant implication in PCa prognosis in at
least two datasets.

Biological function of the hub genes

GSEA was used to depict the biological function of the
hub genes. As shown in Figure 64, CNTN2 was strongly
correlated with BPs including ATP synthesis coupled
proton transport, energy coupled proton transport, down
electrochemical gradient, and mitochondrial ATP synthesis
coupled proton transport. FZD2 was associated with
BPs involving phagocytosis, engulfment, regulation of

© Annals of Translational Medicine. All rights reserved.

antigen processing and presentation, and renal filtration.
KEGG analysis suggested that both CNTN2 and FZD?2
were associated with the intestinal immune network for
immunoglobulin (Ig)A production (Figure 64). Hallmark
gene sets revealed that both hub genes were highly
associated with immune-related pathways (such as allograft
rejection, inflammatory response, IFNg response, IFNa
response, IL6/JAK/STAT3 signaling, and complement and
coagulation) and proliferation-related pathways (such as
mitotic spindle and the p53 pathway) (Figure 6B). Analysis
of the SU2C dataset reveal that both hub genes were
negatively associated with AR scores [correlation coefficient
(R) =-0.172 and P<0.05 for CNTN2; and R=-0.327 and
P<0.05 for FZD2; Figure 6C]. Furthermore, FZD2 was
positively correlated to NEPC scores (R=0.176 and P<0.05;
Figure 6C).

The importance of the bub genes in PCa

Both CNTN2 and FZD2 hub genes were significantly
down-regulated in PCa samples compared to normal
healthy tissues obtained from the TCGA and GTEx data

Ann Transl Med 2021;9(24):1782 | https://dx.doi.org/10.21037/atm-21-6191
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Figure 5 Determination of the hub genes. Network analysis by MCODE and cytoHubba suggested 37 key nodes. Univariable Cox analysis
was used to determine the hub genes with prognostic significance in at least two datasets among the TCGA-PRAD, ICGC PRAD-CA and
PRAD-FR, cBioPortal MCTP and SU2C, and GSE116918 cohorts. A P value <0.05 was regarded as the cutoff value. *P<0.05; **P<0.01,;
***P<0.001. MCODE, Minimal Common Oncology Data Elements; TCGA, The Cancer Genome Atlas; PRAD, prostate adenocarcinoma;

ICGC, International Cancer Genome Consortium; PFI, progression-free interval; DFS, disease-free survival; OS, overall survival.
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cohorts (P<0.05 for CNTN2; P<0.05 for FZD2; Figure
7A4). The GSE80609 dataset also verified the significant
differential expression of the hub genes in both low-grade
PCa (P=0.00034 and 1.9e-05 for CNTN2 and FZD2,
respectively) and advanced PCa (P=8.2e-05 and 0.00033
for CNTN2 and FZD?2, respectively) compared to benign
prostatic hyperplasia (BPH). In addition, CNTN2 was also
significantly differentially expressed in CRPC (P=0.0096;
Figure 7B). However, in the GSE80609 dataset, there
was no significant difference in the expression of either
hub genes across different stages of PCa (Figure 7B). The
MCTP dataset comparing metastatic CRPC (mCRPC) with
localized PCa showed statistical difference in the expression
of FZD2 (P=0.029; Figure 7C). Furthermore, the correlation
between hub gene expression and castration was examined.
The expression of FZD2 was up-regulated after castration
(P=8.32¢-03; Figure 7D) and ADT (P=6.91e-03; Figure 7E).
However, in the GSE56829 dataset, there was no significant
difference in CNTNZ2 expression after castration (P=0.894;
Figure 7D), while the GSE111177 dataset indicated that
CNTN?2 expression was significantly associated with ADT
(P=3.59¢-04; Figure 7L).

Validation of the association between the bub genes and
enzalutamide

Differential expression analysis in the GSE147976 and
GSE150807 datasets showed that FZD2 was significant up-
regulated in the enzalutamide-exposed group compared
to the enzalutamide-naive group, while there were no
statistical differences in CNTN2 expression (Figure 84). We
got both gene sets targeted by enzalutamide after searching
KEGG database (hsa05215: PCa and hsa05200: pathways
in cancer) (48). GSEA suggested that both hub genes were
enriched in PCa pathways (P<0.05 both for CNTN2 and
FZD2) and FZD?2 was also related to cancer pathways
(P=1.22e-04; Figure 8B).

Analysis of the immune infiltration in PCa

The Kruskal-Wallis rank sum test indicated that both hub
genes were differentially expressed across different immune
subtypes (P=1.42¢-06 and 6.58e-08 for CNTN2 and FZD2,
respectively; Figure 9A4). Interestingly, both hub genes
showed positive correlation with most immunomodulators,
chemokines, receptors, and major histocompatibility
complexes (MHCs) (Figure 9B). CIBERSORT was applied

to estimate the infiltration abundance of 22 types of immune

© Annals of Translational Medicine. All rights reserved.
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cells in PCa and normal control samples (Figure 9C).
There was a significant difference in the level of infiltration
of regulatory T cells (P=6.71e-05), neutrophils (P=2.56e-11),
monocytes (P=1.61e-03), resting mast cells (P=6.04e-03),
MO macrophages (P=7.04e-09), resting dendritic cells
(P=4.21e-03), activated dendritic cells (P=0.048), and naive
B cells (P=7.95e-03) between PCa and normal control
samples (Figure 9D). Spearman correlation analysis indicated
that both hub genes exhibited positive correlation with the
infiltration abundance of most of immune cells (resting
mast cells, activated dendritic cells, resting dendritic cells,
M2 macrophages, M1 macrophages, monocytes, activated
natural killer (NK) cells, regulatory T cells, follicular helper
T cells, CD4 memory resting T cells, CD8 T cells, plasma
cells, and naive B cells) (Figure 10).

Discussion

PCa is the most common cancer and the second leading
cause of cancer-related deaths in men in United States.
In 2020, there were an estimated 191,930 new cases and
33,330 related deaths (49). Unfortunately, resistance
to enzalutamide presents a significant challenge in
the treatment of PCa. The present study explored the
underlying molecular characteristics of enzalutamide-
resistant PCa using data obtained from the GEO, ICGC,
cBioPortal, TCGA, and GTEx databases.

Enzalutamide-related genes were determined by
differential expression analysis. As expected, these genes
were highly inversely correlated with androgen response
in both gene datasets (GSE163240 and GSE136129)
(Figure 2C). Previous studies have reported that resistance
to enzalutamide is associated with the AR signaling pathway
(8,11). In addition, the enrichment of the IL6/JAK/STAT3
signaling pathway in both gene sets indicated that the
resistance of enzalutamide may be related to immune-
associated functions in PCa. GO and KEGG analysis verified
that enzalutamide resistance is related to immune activity
(including cell-cell adhesion via plasma-membrane adhesion
molecules, granulocyte activation, and neutrophil activation),
and this is consistent with previous reports (50,51).

Network analysis and univariate Cox analysis identified
two hub genes, CNTN2 and FZD2, both of which were
significantly correlated with the AR. The expression of
CNTN?2 and FZD2 were significantly different at various
stages of PCa compared to normal healthy samples.
Furthermore, both hub genes were significantly associated
with ADT. Interestingly, the expression of FZD2 was

Ann Transl Med 2021;9(24):1782 | https://dx.doi.org/10.21037/atm-21-6191
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significantly up-regulated in enzalutamide-exposed samples,
while no statistical difference was found for CNTN2, and
this may have been due to the small sample size. These
findings suggested that both hub genes, CNTN2 and
FZD?2, play a vital role in the resistance of PCa cells to
enzalutamide.

The GSEA results indicated that both hub genes were
highly correlated with immune-associated functional
pathways, including allograft rejection, inflammatory
response, IFNg response, IFNa response, IL6/JAK/STAT3
signaling, and complement and coagulation. Furthermore,
both hub genes showed significantly positive correlations
with the expression of almost all immunomodulators,
chemokines, receptors, MHCs, and the infiltration of 22
types of immune cells. This suggested that the resistance
of enzalutamide may be related to immune infiltration
(50,51) and thus, both hub genes may be potential
immunotherapeutic targets in PCa.

To date, there have been limit studies relating to CNTN2
and most research have been conducted in gliomas. CNTN2
is highly up-regulated in oligodendrogliomas compared
with glioblastomas (52). It has also been reported to
coamplify with MDM4, which is involved in the progression
of malignant gliomas (53). In addition, CNTN2 has been
shown to mediate the RTK/RAS/MAPK pathway in glioma
cells (54). Although there is a paucity of data regarding
CNTN?2 and PCa, studies have suggested that the RAS/
MAPK pathway may be involved in the development and
progression of PCa and in the resistance to castration
(55-57). Indeed, the RAS/MAPK pathway interacting with
PI3K-AKT-mTOR has been implicated in many drug-
resistance mechanisms including enzalutamide, ipatasertib,
and capivasertib (57-59). Therefore, it is possible that
CNTN2 may play an important role in mediating
enzalutamide resistance in PCa cells.

FZD2, which is a receptor for Wnts, has been
implicated in both non-canonical and canonical Wnt
signaling pathways in PCa (8,60). FZD2 can regulate the
epithelial-mesenchymal transition (EMT) pathway which
is characterized by promoting tissue differentiation and
shaping (61), and is correlated with the proliferation and
metastasis of breast, endometrial, colon, liver, lung, and
salivary adenoid cystic carcinomas (62-68). There is strong
evidence that the EM'T pathway is related to the metastasis
and development of NEPC and CRPC (69-71). In addition,
the activation of Wnt signaling pathway is one of the
mechanisms leading to enzalutamide resistance in PCa
cells (8). All these studies suggested that FZD2 may be an
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effective biomarker for enzalutamide-resistant PCa.

This current study comprehensively explored potential
enzalutamide-related biomarkers in PCa. However, there
were some limitations to this investigation. Further in vitro
and 7z vivo studies should be conducted to further examine
the detailed molecular mechanisms by which CNTN2 and
FZD?2 mediate enzalutamide-resistance in PCa cells.

In conclusion, this study analyzed the genetic
characteristics of enzalutamide-resistant PCa and identified
two hub genes, namely, CNTN2 and FZD2, that are
related to immune infiltration in PCa. These findings
provide crucial information regarding the mechanisms of
enzalutamide-resistance in PCa. These hub genes may serve
as potential biomarkers or immunotherapeutic drug targets
for the management of enzalutamide resistance in PCa.
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