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Abstract: Congenital heart disease (CHD) is a broad term which encompasses a spectrum of pathology, the most 

common phenotypes include atrial septal defects (ASDs), ventricular septal defects (VSDs), patent ductus arteriosus 

(PAD) and tetralogy of Fallot (TOF). The impact of CHD is profound and it is estimated to be responsible for over 

40% of prenatal deaths. MicroRNAs (miRs) are small, highly conserved, non-coding RNAs which have complex 

roles in a variety of pathophysiological states. miRs are post-transcriptional negative regulators of gene expression. 

Individual miRs are known to exert effects in multiple target genes, therefore the altered expression of a single miR 

could influence an entire gene network resulting in complex pathological states. Recent evidences suggest a role 

in the dysregulation of miRs in CHD. Mouse knock out models have contributed to our knowledge base revealing 

specific patterns of miR expression in cardiovascular physiology and pathological states. Specific miRs necessary 

for embryonic cardiac development have been revealed. Dysregulation of these miRs has been shown to cause 

structural abnormalities in the heart and vasculature, thus furthering our understanding of the processes which 

result in CHD. These advances have provided new insight into the signalling pathways responsible for CHD. 

Furthermore, this new appreciation for miRs in the development of CHD has uncovered their potential for new 

therapeutic targets where modulated miR activity may reduce the burden of disease. Here, we summarize current 

knowledge of the cause-effect relationships of miRs in CHD and consider their potential as a therapeutic targets 

and biomarkers in this clinical setting. 
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Introduction

The discovery of non-coding RNAs has provided new 
insight into the mechanisms that underpin human 
congenital and acquired diseases. This review will focus in 
microRNAs (miRs) and congenital heart disease (CHD).

miRs are small, evolutionally conserved, non-coding 
RNA molecules which have been shown to negatively 
regulate gene expression (1). Initially identified in animals 
they are now recognised to be widely distributed in the 
eukaryotic kingdom and are commonly found in vertebrates. 
It is estimated that in excess of 1,000 miRs are expressed 

in humans Furthermore, bioinformatic analyses suggests 
that the miRs have the potential to regulate 30% of human 
genes through a series of complex signalling pathways (2). 
Moreover, miRs can co-ordinately regulate the stability of 
multiple target genes. Thus, aberrant expression of miRs 
can affect multiple intracellular signalling pathways and are 
associated with many diseases such as cancer, diabetes and 
heart disease (3-5).

Furthermore, miRs are now known to be key components 
to the embryonic development of the heart, normal 
cardiovascular function and cardiac pathophysiology in 
multiple cell lineages (6-12).
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The Global Burden of Disease Study [2013] estimated 
that almost 30% of all deaths worldwide were caused by 
cardiovascular disease (13). Along the spectrum of adult 
cardiovascular diseases, congenital pathology is often the 
aetiology. Therefore, a new approach to the identification 
and treatment of CHD is necessary to reduce the prevalence 
of disease in young and old populations. Of all congenital 
malformations, CHD comprises of the majority of cases 
with a prevalence rate of 8 in every 1,000 infants (14). Over 
40% of prenatal deaths can be attributed to CHD (15). The 
incidence of CHD has been associated with both increased 
neonatal and maternal morbidity. The prevalence of CHD 
varies widely and is more diffuse in Europe than Northern 
America (16,17). The Euro Heart Survey suggests that up to 
19% of patients with CHD undergo surgery or a catheter-
based intervention (18). Common CHD phenotypes 
include, atrial septal defect (ASD), ventricular septal 
defect (VSD), patent ductus arteriosus (PDA), tetralogy of 
Fallot (TOF), transposition of the great arteries (TGA), 
pulmonary valve atresia (PA), coarctation of the aorta 
(COA) and tricuspid atresia (TA) (see Table 1 for a summary 
of CHD types). Furthermore, these phenotypes can also 
manifest in syndromic patterns with genetic associations, 
such as atrioventricular septal defects (AVSD) in patients 
with Down Syndrome (20).

This review will evaluate the evidence for the association 
of miRs in CHD, explore the cause-effect relationship 
in disease states and discuss their potential as therapeutic 
biomarkers. 

miR biogenesis: an overview

The following paragraph will be an overview of miR 
biogenesis, for more detail we recommended a reading 

by Gama-Carvalho et al. (21), miR biogenesis begins 
with a long 5’-capped and poly A tailed, primitive form 
of miRNA (pri-miR) transcript configured into a hairpin 
structure which are derived from protein coding genes or 
independent non-coding transcriptional unit (22,23). These 
miR producing genes or are transcriptionally regulated like 
other protein coding genes but often contain polycistronic 
clusters. 

Maturation of pri-miRs is initiated in the nucleus 
of a cell to produce precursor miR (pre-miR) which is 
transported to the cytosol or the endoplasmic reticulum to 
be cut into its mature form (approximately 22 nucleotides 
long) by Dicer, a RNase III endonuclease. Dicer activity 
is critical to miRNA biogenesis and impacts cardiac 
physiology. In an attempt to investigate the biological 
importance of miRNAs, mutation or disruption of 
Dicer has been employed by various groups as a broad 
method to prevent miRNAs production. Both in vitro 
and in vivo, evidence exists to support a role for Dicer-
dependent miRNAs in vascular signaling and multi-system 
roles related to angiogenesis (24-28). Indeed, selective 
deletion of Dicer impacts the regulation of cardiac 
morphogenesis, electrical conduction, and cell-cycle  
control (8). In addition, dilated cardiomyopathy associated 
with heart failure, and spontaneous cardiac remodeling is 
found with the deletion of Dicer (29,30). More broadly, 
Suárez et al. excellently review the literature on miRs in 
the regulation of angiogenesis, with specific mention to 
dicer selective knockout models in cellular and animal 
models (31).

The mature miR is a single strand of RNA which has 
the potential to be recruited to the RNA-induced silencing 
complex (RISC), which also comprises Argonaute (Ago) 
proteins. In the RISC, the miR can repress the expression 

Table 1 Forms and severity of congenital heart disease as categorised by EUROCAT (19) 

Category Description

Severity I Single ventricle, hypoplastic left heart, hypoplastic right heart, Ebstein’s anomaly, tricuspid atresia

Severity II Pulmonary valve atresia, common arterial truncus, atrioventricular septal defects (AVSD), aortic valve atresia/

stenosis, transposition of great vessels, tetralogy of Fallot, total anomalous pulmonary venous return, coarctation of 

aorta; without additional CHD anomalies classified as very severe

Other Ventricular septal defect (VSD), atrial septal defect (ASD), pulmonary valve stenosis (PVS) without additional CHD 

anomalies classified as very severe or severe; VSD only: VSD without other cardiac or non-cardiac anomalies

A tubulised form of the congenital heart disease (CHD) as defined in the EUROCAT special report on CHD (19). There are a few 

subtypes of CHD, which are not included in the above table, but these are uncommon and are not included in the standard 

EUROCAT subgroups (19).
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of its messenger RNA (mRNA) targets. Each miR has the 
potential to repress the expression of multiple genes. miR 
achieves this by first recognising a complimentary (or semi 
complimentary) “seed sequence” containing 8 nucleotides 
in the 5' untranslated region (5'UTR) to miR binding 
sites of the 3' untranslated region (3'UTR) of the target 
mRNA. Ultimately, the targeted mRNA repression can be 
achieved by mRNA degradation, transcript deadenylation, 
translation inhibition or sequestration of the mRNAs 
in the processing body (P-body) (32). miRs can also be 
released extracellularly and are present in virtually any 
biological fluid. In comparisons to mRNAs, miRs are more 
resistant to degradation because of several mechanisms 
of protection, for example their being engulfed within 
extracellular vesicles or conjugated to lipoproteins or 
Ago proteins (33). Table 2 summarized the miRs so far 
implicated in development of CHD.

Ventricular septal defects (VSD)

A VSD is a discontinuation in the septal wall dividing the 
left and right ventricles of the heart. VSDs may be present 
at birth or can be acquired after myocardial infarction. 

VSDs account for approximately 20–40% of CHD but 80% 
of the surgical workload (33,44). Large defects may present 
with sever heart failure in infancy. However, small defects 
may remain asymptomatic. VSDs lead to a left to right shut 
of circulation producing left ventricular volume overload 
resulting in pulmonary hypertension (45).

MiR-1-1 and miR-181c have been implicated in the 
pathogenesis of VSDs (35). MiR-1 is a regulator of bone 
morphogenic protein receptor type II (BMPR2) and gap 
junction protein alpha 1 (GJA1) while miR-181c can 
regulate sex determining region Y (SRY)-box 9 (SOX9). In 
human cardiac tissue with VSDs, elevated levels of GJA1 
and SOX9 coincided with reduced expression of miR-1-1, 
and elevated miR-181c expression was associated with down 
regulation of BMPR2 (35).

Over-expression of miR-1 plays a fundamental role 
in ventricular cardiomyocyte proliferation and prevents 
expansion of the ventricular myocardium (46). Hand2 (a 
transcription factor that promotes ventricular cardiomyocyte 
expansion) is a target for miR-1. In addition, this study 
showed that knockouts of miR-1 results in a reduced pool 
of proliferating ventricular cardiomyocytes mass in the 
developing heart (46). Furthermore, haplo insufficiency 

Table 2 MicroRNAs implicated in congenital heart disease

MicroRNA Species Congenital heart defect References

miR-133a-1/miR-1-2;  

miR-133a-2/miR-1-1

Mice VSD, chamber dilatation Zhao et al. (8); Liu et al. (34),  

Catalucci et al. (9)

miR-1-1/miR-181c Human cardiac tissue VSD Li et al. (35)

miR-92 Mouse embryos VSD Catalucci et al. (9)

miR-17-92 cluster Mice VSD Ventura et al. (36)

19b, 29c Human maternal blood VSD Zhu et al. (37)

let-7e-5p, miR-155-5p,  

miR-222-3p, miR-379-5p,  

miR-409-3p, miR-433, miR-487b

Human plasma VSD Li et al. (38) 

miR-196 Foetal human heart samples Cardiac septation, 

morphogenesis, valve formatio

Goddeeris et al. (39) 

miR-99a, let-7c, miR-125b-b,  

miR-155, miR-802

Human DNA Down Syndrome Latronico et al. (40) 

miR-19b, miR-22, miR-29c,  

miR -375, miR -421

Human maternal blood TOF Zhu et al. (37),  

O’Brien et al. (41)

miR-26a, miR-95, miR-30b and 

miR-141

Human aortic valves; porcine 

valvular interstitial cells

BAV Nigram et al. (42);  

Yanagawn et al. (43) 

List of microRNAs implicated in congenital heart disease (CHD). miR, microRNA; VSD, ventricular septal defect; TOF, tetralogy of 

Fallot; BAV, bicuspid aortic valve.
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of miR-1 or miR-133a is associated with an increased risk 
of VSD via a process of Hand2 and serum response factor 
(SRF) respectively (9). In addition to this, a reduction 
in miRNA-1 and miR-133 expression is associated with 
cardiac hypertrophy in murine models and human diseases 
associated with cardiac hypertrophy (9). Similarly, miR-92 
deficiency is associated with VSDs in mouse embryos (9).

Targeted deletion of the miR-1-2 gene in mice produces 
50% embryonic lethality as a result of VSDs. The surviving 
miR-1-2 homozygous mice exhibited a diverse range of 
phenotypes including, rapid dilation of the heart and 
ventricular dysfunction with of atrial thrombi (8). MiR-
133a-1/miR-1-2 and miR-133a-2/miR-1-1 are myocyte 
enhancer factor (MEF)-2 dependant enhancers which 
have been shown to be activate in the linear heart tube 
during mouse embryogenesis and controls transcription 
in the cardiac chambers (34). Both miR-133a-1/miR-1-
2 and miR-133a-2/miR-1-1 genes are expressed in the 
intraventricular septum and the ventricular myocardium 
(9,34). Interestingly, singular deletion of either miR-
133a-2 or miR-133a-1 in mice does not result in pathology. 
However, combined deletion of miR-133a-2 and miR-
133a-1 produced late embryonic and neonatal deaths due to 
VDS and dilatation of the cardiac chambers (47). Similarly, 
targeted deletion of the miR-17-92 family of miRs results in 
neonatal lethality from lung hypoplasia and VSDs (36).

A Chinese study, investigated circulating miR in  
20 patients with VSDs compared with 8 VSD-free  
controls (38). This group identified 1 miR significantly up-
regulated (hsa-miR-498) and 7 miRs which were down-
regulated in the VSD group (let-7e-5p, miR-155-5p, 
miR-222-3p, miR-379-5p, miR-409-3p, miR-433, miR-
487b). Gene ontology analysis in this study suggested that 
right ventricle morphogenesis were the potential target of 
these miRs. Specifically, this group predicted NOTCH1, 
HAND1, ZFPM2, and GATA3 as mRNA targets of let-7e-
5p, miR-222-3p and miR-433 (39).

Foetal human heart samples have been found to contain 
mir-196a at gestational age 12–14 weeks (48). Mir-196a 
is implicated in HOXB8-Shh signalling which is utilised 
throughout cardiac septation, morphogenesis and valve 
formation (48). Therefore, miR-196a dysregulation could 
have a role in the formation of atrioventricular septal 
defects (AVSDs) and cardiac valve dysfunction.

Syndromic congenital heart disease (CHD)

In a population not affected by prenatal diagnosis, 40–60% 

of babies born with Down syndrome have CHD (49,50). 
Downs syndrome is characterised by a number of clinical 
signs and symptoms, it is often diagnosed via fluorescence 
in situ hybridisation (FISH) which demonstrates trisomy of 
chromosome 21. Downs syndrome has now been linked to 
five miRs, including, miR-99a, let-7c, miR-125b-2, miR-
155 and miR-802 (40). These miRs have been identified 
on human chromosome 21. In addition, these miRs have 
been found to be over-expressed in cardiac tissue of patients 
with trisomy 21 (40). Furthermore, DiGeorge syndrome 
which results from the deletion of critical region 8 on 
chromosome 22 (22q11.2) is responsible for the encoding a 
component of the RNA-induced slicing complex essential 
for miR biogenesis, leading to haploinsufficiency of this 
complex (51). Many patients with DiGeorge Syndrome have 
associated CHD. This association suggests that multiple 
miRs are implicated in this syndrome and that dysfunction 
of miRNA expression could contribute to a gene dosage 
sensitivity to this disease (51,52).

Embryological links between cardiac and neuronal-
craniofacial defects exits at the molecular level and clinically. 
Deletions of Dicer in neural crest cells result in a range of 
sever cardio-facial-crest defects. These syndromes include 
Noonans Syndrome, DiGeorge Syndrome, LEOPARD 
syndrome, cardio-facio-cutaneous syndrome and Costello 
syndrome (53-55).

Cyanotic congenital heart disease (CHD)

More recently, miRs have been investigated into the aetiology 
of cyanotic CHD (41). TOF is the most common form 
of cyanotic CHD and represents 5–7% of all CHD, with 
males and females equally affected (56-58). The term TOF 
describes the tetrad of (I) mostly large and non-restrictive 
VSDs; (II) an over-riding aorta; (III) right ventricular outflow 
obstruction; and (IV) right ventricular hypertrophy (59). 
TOF is now recognised as a spectrum of diseases which share 
similar intracardiac pathology. The exact cause of TOF is 
unknown. However, there is a growing understanding of 
the importance of 22q11 in its incidence. For example, Di 
George syndrome and velocardiofacial syndrome, both of 
which have 22q11 deletions, is frequently co-diagnosed in 
those with TOF (60).

O’Brien et al. identified an association with non-
syndromic TOF, miRs and spliceosomal RNAs (41). This 
group identified 61 miRs to have significant changes in 
expression levels in children with TOF compared with 
normally developing children. Interestingly, the levels of 
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miR expression in children with TOF remained similar 
to those in the foetal myocardium. This group looked at 
gene expression critical to cardiac development and their 
correlation to miR expression in TOF myocardium. They 
found that in children with TOF, splicing variants were 
observed in 51% of genes critical to cardiac development. 
They identified 33 miRs which were significantly down-
regulated in TOF myocardial tissue compared to the 
normally developing myocardium (41). Together these 
findings suggest central roles for miRNAs and their 
spliceosomal function in TOF. 

Later this group identified an inverse correlation 
between the expression of miR-421 and SOX4 in patients 
with TOF. SOX4 is a key regulator of the Notch pathway, 
which has been implicated in cardiac function, suggesting 
that miR-421 is a potential contributor to TOF (61).

Bicuspid aortic valve (BAV)

BAV are a leading cause of calcific aortic stenosis and 
insufficiency which results in a high prevalence of thoracic 
aortic aneurysms in this patient group, BAV is a common 
congenital cardiac defect which has a population presence 
of 1–2% (62). 

Recently, Yanagawa et al. have identified distinct 
miR profiles a small cohort of human BAV leaflets in 
comparisons with control patients with a tricuspid aortic 
valve (TAV). This group identified 8 miRs which were 
up-regulated and 27 miRs which were down-regulated in 
patients with BAV, compared to patients with TAV. Most 
significantly, expression of miR-141 was down-regulated 
14.5 fold in patients with BAV (43).

Nigam et al. further investigated the association of 
miRs and BAV (42). In this study, the authors investigated 
miR expression in aortic valve leaflets of patients with 
aortic stenosis and those with aortic insufficiency in nine 
patients undergoing aortic valve replacement. They were 
able to show that miR-26a and miR-195 levels were 
significantly reduced and miR-30b expression to be reduced 
by 62% (P<0.06) using quantitative reverse transcription-
polymerase chain reaction. Following this they identified 
that human aortic valve interstitial cells treated with miR-
26a or miR-30b mimics reduced miR levels of calcification-
related genes, such as BMP2, alkaline phosphatase (ALPL) 
and SMAD1 and of SMAD3. Interestingly, aortic valve 
interstitial cells treated with miR-195 showed increased 
mRNA levels of calcification-related genes, specifically 
BMP2 and RUNX2.

miR-mediated regulation in CHD

miR mediated signalling in the formation of CHD may 
include multiple pathways. Intracellular signalling activated 
by transforming growth factor beta (TGF-β) have a key 
role in cardiovascular development and specifically in 
cardiogenesis. Studies in both humans and animal models 
have indicated that altered TGF-β activity results in a 
variety of CHDs including, double outlet right ventricle, 
septal defects and an overriding tricuspid valve (63,64). 
Although not essential for cardiac development, inactivation 
of the genes encoding the TGF-β type 1 (TGFBR1) or type 
2 receptors (TGFBR2) in cardiac myocytes leads to severe 
valvuloseptal defects (65,66). Interestingly, inactivation in 
cardiomyocytes was not shown to lead to obvious cardiac 
defects in embryos by this group. Transgenic evidence 
suggests that constitutively activated TGFBR1 arrests 
cardiac development at the looping stage and results in 
ventricular hypoplasia (67). In addition, human genetic 
studies have supported the significance of altered TGF-β 
signalling in CHD. For example, mutations in the genes 
encoding for TGFBR1 and TGFBR2 are associated with 
Marfan syndrome and Loeys-Dietz syndrome, both of 
which are implicated in CHD (68-71). Furthermore, there 
is evidence to show that mutations in TGFB2 and SMAD3 
are associated with syndromic aortic aneurysms (72-74).

Peng et al. have shown that inactivated Dicer1 in mice at 
midgestation leads to severe myocardial wall defects (75). 
These mutant hearts display abnormal cell proliferation, 
apoptosis, and expression of contractile proteins. Expression 
of TGFBR1 is up-regulated in mutant hearts and inhibition 
of TGFBR1 reduces the defect observed in cardiomyocyte 
apoptosis. To add another layer of complexity, TGFBR1 
mRNA is regulated by multiple miRNAs at different stages 
of cardiogenesis (75-77).

In human cardiac tissue, Akt is highly expressed. Akt is 
a protein which is known to have critical application in the 
regulation of cardiac development including proliferation, 
metabolism, angiogenesis and survival through a process 
of phosphorylation of downstream substrates that control 
the apoptotic machinery (78-80). Akt mediated signalling is 
complex, and involves a system of miRs, PIWIs (P-element-
induced wimpy testis) interacting RNAs (piRNAs) and 
their associated proteins (78-83). A In the embryonic heart 
Akt3 is highly expressed, whereas Akt1 is predominantly 
expressed in the adult heart (79).

As previously discussed, abnormal miR-155 activity 
is implicated in patients with Down Syndrome. A study 
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investigating miR-155 in human cardiomyocyte progenitor 
cells has showed that increased expression of miR-155 can 
inhibit necrosis. However, they observed that necrotic cell 
death was not induced by inhibiting endogenous miR-
155. Their study also suggested that increased miR-155 
levels did not impact the expression patterns of cell survival 
and apoptotic related genes. Therefore, miR-155 inhibits 
necrosis mediated by repressing the receptor interacting 
protein 1 (RIP1), but independently of the Akt pro-survival 
pathway (81).

Other miRs known to be implicated in CHD have also 
been linked to the Akt signalling pathway. For example, miR-
92 is thought to activate the Akt pathway through inhibiting 
its negative regulator PHLPP2 (84). MiR-92 increases 
resistance to apoptosis and deficiency of miR-92 resulting 
in apoptosis, which may induce the formation of the VSD 
phenotype (84). The miR-17-92 cluster which is highly 
expressed in the murine myocardium may protect the heart 
by diminishing the apoptosis and alleviating ischemia (84). 
Furthermore, overexpression of MiR-1 targets Akt, via an 
insulin sensitive pathway which may be partially responsible 
for the formation of VSDs (85,86). MiR-26a and miR-
22 targets PTEN leading to activation of Akt which may 
precipitate complex CHD, including TOF and BAV (87-89). 

MiR mediated signalling is likely to be complex and 
driven by multiple factors (79). However, this evidence 
suggests that miR mediated signalling in the myocardium 
may provide critical information leading to novel 
therapeutic targets in CHD. 

miRs as a biomarker

MiRs are attractive clinical biomarkers as they remain stable 
in blood, urine and other biological fluids and evade RNA 
degrading enzymes (90-93). After using sequencing by 
oligonucleotide ligation and detection (SOLiD) sequencing 
to systemically screen maternal serum miRNAs, Zhu et al. 
hypothesised that miRs in the maternal serum could act as a 
candidate biomarker for the prenatal detection of foetal CHD 
in early pregnancy (37). This group studied 60 women in total 
(30 control women with normal pregnancies and 30 pregnant 
women who have foetuses with CHD) and identified four 
significantly up-regulated miRs (miR-19b, miR-22, miR-29c, 
miR-375) in mothers carrying foetuses with CHD. Sensitivity 
for these biomarkers ranged from 55.6–77.8% and specificity 
ranged from 66.7–88.9%. Furthermore, a combination of the 
four differentially expressed biomarkers was showed to be 
a more efficient marker for CHD detection. Of note, miR-

19b and miR-29c were significantly up-regulated in VSDs 
and all four miRs were up-regulated in TOF. Furthermore, 
miR-22 may be specifically upregulated in TOF. The results 
of this study are very important because they suggest that 
specific miR are associated with types of CHD, furthermore 
they explore the use of serum detection is a possible method 
for prenatal diagnosis. However, this idea is its infancy and 
there are certainly some limitations to this study regarding 
the sample size, huge heterogeneity of CHD and possibly 
variability within the mother populations themselves. Further 
research is required to accurately explore the possibility that 
miR can be used in the clinical practice for prenatal detection 
in CHD.

Discussion

The aetiology of CHD is likely to be a multifactorial 
process with contributions from anomalous gene 
expression and processing, epigenetic factors and a variety 
of environmental factors. It is considered that miRs over 
and under expression and co-expression have specific and 
generalised effects on cell signalling pathways involved in 
CHD. Despite our expanding knowledge base of the genetic 
basis and signalling pathways involved in vertebrate cardiac 
formation there are still huge gaps that require further 
investigation. 

Previous studies have identified a central role for miRs 
in embryonic cardiogenesis (e.g., miR-1 and mir-133-a/b).  
However, it is likely that miRs have multiple effects in 
embryology across different cell linages and also in disease 
progression.

In light of recent advances in our knowledge base 
regarding miR expression and function in human and animal 
studies, there are still significant roles of miRs in physiology 
and pathophysiological process we have yet to discover.

It is hoped that a simple blood or urine test may be a 
novel diagnostic biomarker for the detection of CHD. 
miR detection from placental tissues from foetuses with 
CHD and from maternal peripheral blood suggests a role 
for serum biomarkers as an early way to detect such CHD. 
Measuring these abundant molecules in minimally-invasive 
tests on easily accessible maternal and children samples 
may provide highly specific and sensitive future role in the 
prenatal and postnatal detection of CHD. 
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