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Background: Liver segmentation in computed tomography (CT) imaging has been widely investigated as 
a crucial step for analyzing liver characteristics and diagnosing liver diseases. However, obtaining satisfactory 
liver segmentation performance is highly challenging because of the poor contrast between the liver and its 
surrounding organs and tissues, the high levels of CT image noise, and the wide variability in liver shapes 
among patients. 
Methods: To overcome these challenges, we propose a novel method for liver segmentation in CT image 
sequences. This method uses an enhanced mask region-based convolutional neural network (Mask R-CNN) 
with graph-cut segmentation. Specifically, the k-nearest neighbor (k-NN) algorithm is employed to cluster 
the target liver pixels in order to get an appropriate aspect ratio. Then, anchors are adapted to the liver size 
using the ratio information. Thus, high-accuracy liver localization can be achieved using the anchors and 
rotation-invariant object recognition. Next, a fully convolutional network (FCN) is used to segment the 
foreground objects, and local fine-grained liver detection is realized by pixel prediction. Finally, a whole liver 
mask is obtained by Mask R-CNN proposed in this paper.
Results: We proposed a Mask R-CNN algorithm which achieved superior performance in comparison 
with the conventional Mask R-CNN algorithms in term of the dice similarity coefficient (DSC), and the 
Medical Image Computing and Computer-Assisted Intervention (MICCAI) metrics.
Conclusions: Our experimental results demonstrate that the improved Mask R-CNN architecture has 
good performance, accuracy, and robustness for liver segmentation in CT image sequences. 
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Introduction

Liver segmentation in medical imaging data is of great clinical 
significance for lesion resections and liver transplantations  

(1-3). In addition, accurate liver segmentation offers a 

substantial aid to physicians in diagnosing and treating 

liver diseases (4-6). However, manual liver segmentation 
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takes a lot of time and effort. Automatic liver segmentation 
algorithms have been proposed to reduce these costs, but the 
performance outcomes of such algorithms are still limited 
due to several challenges in computed tomography (CT) 
imaging. First, the liver grayscale patterns in CT images are 
very similar to those of the surrounding organs (such as the 
stomach, pancreas, kidneys, and muscles) (7-9). Secondly, 
liver shapes and sizes vary widely across patients (10,11). 
Thirdly, differences in CT scanning equipment lead to large 
variations in CT image appearance and liver location (12,13).

State-of-the-art liver segmentation performance has 
progressively improved with the emergence of deep network 
architectures (14,15). However, segmentation accuracy and 
speed are still unsatisfactory for complex scenes (16-18).  
In addition, the use of fine-grained classification in liver 
segmentation is complicated by the small inter-class 
differences that arise from the close similarities between 
subcategories and by the large intra-class variabilities 
in position, scale, and orientation (19,20). Indeed, fine-
grained recognition is popular in computer vision and 
pattern recognition applications (21,22); it facilitates the 
learning of object parts and helps differentiate between 
object subclasses, and hence can be employed to learn liver 
patterns more accurately (23). 

In 2016, Girshick et al. (24) designed a region-based 
convolutional neural network (R-CNN), which used 
candidate region proposals and a CNN-based classification 
algorithm for detection. This R-CNN architecture boosted 
the performance of target detection and recognition systems 
and inspired the creation of more powerful deep-learning 
algorithms for such systems. In particular, the R-CNN 
algorithm adopted 4 steps, comprised of conventional target 
detection framework, feature extraction, image classification, 
and non-maximum suppression. Nevertheless, the R-CNN 
algorithm exploited CNN-based features instead of 
traditional hand-crafted features such as those of the scale-
invariant feature transform (SIFT) (25,26) or the histogram 
of oriented gradients (HOGs) (27-29). The fast R-CNN 
(Fast R-CNN) (30) and mask R-CNN (Mask R-CNN) (31) 
were both built as variants of the R-CNN algorithm.

This study sought to improve liver segmentation 
performance through an enhanced variant of the Mask 
R-CNN algorithm (32-35). A novel idea in the study is that 
the k-NN was employed for data clustering and obtaining 
an appropriate aspect ratio during the training phase. 
Compared with other models, our proposed model can 
effectively reduce computational resources and improve 
computational accuracy. Enhanced Mask R-CNN algorithm 

is based on original algorithm and combined with k-NN, we 
applied this model to liver segmentation for the first time. 
At present, this model has not been widely used in clinical 
trials, and we will study this model as soon as possible and 
apply it to clinical treatment.

The experimental results demonstrate significant 
performance improvements based on the proposed method.

The key aspects of our study were as follows:
(I)	 The study highlighted the importance of random 

variations in liver images. With these variations, 
the proposed Mask R-CNN method provided 
remarkable improvements in segmentation 
compared to the conventional Mask R-CNN 
method. Labeled data was augmented through image 
rotation operations during the data preparation 
phase to improve generalization and reduce 
overfitting;

(II)	 During the training phase, the k-nearest neighbor 
(k-NN) algorithm was employed for data clustering 
and obtaining an appropriate aspect ratio. Moreover, 
a fully convolutional network (FCN) was adopted to 
realize the segmentation algorithm after accounting 
for width-height reversal and noise;

(III)	 The performance of the proposed Mask R-CNN 
algorithm was evaluated in comparison with the 
conventional Mask R-CNN algorithm according 
to 3 metrics, namely, detection accuracy (DA), 
detection speed (DS), and false-detection rate (FD). 
The effectiveness and feasibility of the proposed 
algorithm were verified in comparison to state-
of-the-art segmentation algorithms through the 
measurement of the volumetric overlap error (VOE), 
the relative volume difference (RVD), the average 
symmetric surface distance (ASD), the root-mean-
square symmetric surface distance (RMSD), and the 
maximum symmetric surface distance (MSD).

We present the following article in accordance with 
the MDAR reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-5822).

Methods

Conventional Mask R-CNN

Figure 1 shows the general framework and the associated 
network structure for the conventional Mask R-CNN 
algorithm. First, feature extraction is performed through 
convolutional layers on input liver images of arbitrary sizes 
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Figure 1 Framework of the conventional Mask R-CNN algorithm. FPN, feature pyramid network; RPN, region proposal network; FCN, 
fully convolutional network; Mask R-CNN, mask region-based convolutional neural network.
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to form feature maps. Then, a region proposal network 
(RPN) exploits the convolutional layer outputs for domain 
(or proposal) generation, as well as category and bounding-
box regression, in order to speed up the computations. 
Pixel-wise segmentation of the target lever and liver 
localization in the image are carried out by a parallel feature 
pyramid network (FPN).

The conventional Mask R-CNN algorithm follows a 
two-stage object detection method. Firstly, a candidate 
target region is generated, and the boundary box of the 
candidate object is proposed in line with the Faster R-CNN 
method. Secondly, binary masks, predicted classes, and 
bounding-box offsets are returned by the conventional 
Mask R-CNN algorithm for each region of interest (RoI), 
where the classification outcomes are dependent on mask 
predictions (36,37). In the training phase, a multi-objective 
loss function is defined for each RoI sample as (38):

cls box maskL L L L= + + 	 [1]

where Lcls, Lbox, and Lmask denote the classification loss, the 
bounding-box loss, and the segmentation loss, respectively.

The conventional Mask R-CNN algorithm proposes 
a RoI Align layer that obtains image values at pixel 
points with floating-point coordinates through bilinear 
interpolation. This approach avoids any quantization 
of the RoI boundaries or intervals and thus ensures the 

continuity of the entire process of feature aggregation. 
Specifically, the RoI Align layer does not carry out 
pooling by merely supplementing the coordinate points 
on the candidate region boundary. Instead, this layer first 
traverses each candidate region and keeps the floating-point 
boundary unquantized. Each region is then subdivided 
into K × K units with unquantized boundaries, and 4 fixed 
coordinate positions are found in each unit through bilinear 
interpolation. Hence max pooling is applied. The RoI Align 
layer clusters local features in the Mask R-CNN algorithm 
reduces misalignment caused by the two quantization 
operations in RoI pooling and thus improves the DA (39,40).

Enhanced Mask R-CNN algorithm

In this study, novel improvements were made to the 
conventional Mask R-CNN detection framework. The 
proposed network framework is outlined in Figure 2. This 
framework can be divided into two steps. The first step was 
the candidate region identification, and in the second step, 
the global and local features of image blocks were learned, 
mainly by a part-based segmentation algorithm and the FCN 
architecture. The details of the two steps are as follows.

Step 1: the RPN was exploited to extract features and 
generate a feature map at the last layer. The whole image 
was scanned by a sliding window to get target anchors. 
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For each image position, it was possible to identify tens 
of thousands of overlapping candidate target regions with 
different dimensions and aspect ratios. These regions 
covered the whole image. We used the k-NN algorithm 
to optimize the number of target regions, largely reduce 
the computational overhead, and improve computational 
accuracy (Figure 2). In addition, the RPN generated two 
outputs for each anchor, namely, the anchor category and the 
border tuning parameter. For multiple overlapping anchors, 
we adopted non-maxima suppression to obtain rough target 
results, where the anchor of the highest foreground score 
was retained. Therefore, it was possible to use the RPN 
prediction outcomes to select the best anchor containing the 
target, and fine border adjustment was applied.

Step 2: image segmentation was performed using 
an FCN architecture that could take an input image of 
arbitrary resolution and produce an output of the same size. 
This architecture located targets in fine-grained images 
and treated segmentation prediction as target masking. For 
effective mask learning, all fine-grained training and testing 
images retained their original resolutions. The FCN-based 
mask learning process is shown in Figure 2. First, FCN-
based prediction was applied to obtain a local target mask 
in a given input image. If a pixel was predicted to be a local 
target position, the actual mask value was retained. Thus, 
fine-grained liver detection was carried out. Otherwise, if 
the pixel-wise prediction indicated a background region, the 
corresponding mask values were reset to zero. The global 
and local liver features in each image were learned, and the 
FCN algorithm returned a more accurate target mask. In 
addition, the obtained target masks could locate the target 
positions by finding the bounding rectangles. In this study, 
the FCN was used for target mask learning and prediction.

In addition, in Figure 3, the 3 streams shown correspond 

to the angle rotations of 3 image blocks. The characteristics 
of each of these blocks were learned through a series of 
operations such as convolution, activation, pooling, and 
discriminator selection. Indeed, combining image features 
of different scales in this study enhanced the robustness of 
liver detection. 

Statistical analysis

In our experiments, we use 6 metrics to evaluate the 
segmentation performance of different algorithms. Firstly, 
we use the dice similarity coefficient (DSC) (41,42), 
which reflects the degree of spatial coincidence between 
a segmentation output region U1 and the corresponding 
ground-truth region U2. This coefficient can be defined 
mathematically as 

( ) 1 2
1 2

1 1

2
,

U U
DSC U U

U U
=

+


	
[2]

where |Ui| denotes the cardinality of the set Ui, and 
  denotes set intersection. The higher the DSC value, 
the better the segmentation performance. The best 
segmentation performance was achieved when the DSC had 
a value of 1 (i.e., when the U1 and U2 sets were identical), 
while the worst performance was indicated by a DSC value 
of 0 (when the U1 and U2 sets were mutually disjoint). 

In addition to the DSC metric, we also employed 5 
metrics suggested by the Medical Image Computing and 
Computer-Assisted Intervention (MICCAI) society. These 
metrics were the VOE, the RVD, the ASD, the RMSD, and 
the MSD (5,43).
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Figure 2 The enhanced Mask R-CNN framework. RPN, region proposal network; FPN, feature pyramid network; k-NN, k-nearest neighbor; 
FCN, fully convolutional network; Mask R-CNN, mask region-based convolutional neural network.
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Figure 3 A demonstration of liver image enhancement.
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where S(U1) and S(U2) denote the boundaries of the 
two regions, respectively. Also, for any pixel v, d(v,S(U1)) 
denotes the shortest distance between v and S(U1), i.e., 

( )( ) ( ) 1111, min
Us US Ud v S U v s∈= − ,  where || ||  i s  the Eucl idean 

distance.
The lower the value of each of the VOE, ASD, RMSD, 

and MSD, the better the segmentation performance. As 
the RVD metric could be negative (in the case of under-
segmentation), the absolute value of this metric was used 
for evaluating the segmentation performance. The smaller 
the absolute RVD value, the better the segmentation 

performance. In general, each of these 5 metrics had a 0 
value for perfect segmentation.

Results

Experimental data and environment

In our experiments, we used a CentOS7 with an Intel 
Core i7 processor and a 48-GB GPU NVIDIA RTX8000 
graphics card with 128GB of memory. We carried out 
the algorithm implementation and simulation in Python 
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3.6. For system training and testing, we exploited the 
liver segmentation dataset of the Codalab competition 
(https://competitions.codalab.org/). This dataset contains 
723 sequences of enhanced CT with a resolution of 
512×512 (39,40) and has 3-phase ground-truth data of 
liver CT images. The total CT image count was 3,034 
after accounting for liver image rotations. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Parameter settings

In this study, the enhanced Mask R-CNN architecture 
was trained for liver segmentation. Reasonable parameters 
values were selected to speed up training and prevent 
overfitting. The specific parameter settings employed 
herein are shown in Table 1. 

Experimental analysis

Experiments were conducted to compare the performance 
of the conventional Mask R-CNN against the enhanced 
Mask R-CNN, which employed sequence information and 
a graph-cut function and technical repeat 12 times. Six 
slices of liver images (with normal and pathological cases) 
were selected to investigate the effect of using sequence 
information and the graph-cut function in improving the 
Mask R-CNN segmentation outputs. Figure 4 gives a 
comparison of the results, which are shown in red contours.

As shown in Figure 4, the conventional Mask R-CNN 
method obviously missed lesion areas of adjacent greyscale 
liver regions during liver slice processing. Also, this 

Figure 4 A comparison of segmentation results between the enhanced and conventional Mask R-CNN algorithms. Mask R-CNN, mask 
region-based convolutional neural network.
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Table 1 Learning parameters for the enhanced Mask R-CNN 
architecture

Description Value

Momentum 0.9

Decay 0.0002

Batch size 32

Learning rate 0.001

Iteration 50,000

Mask R-CNN, mask region-based convolutional neural network.
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method misjudged small liver regions, resulting in mis-
segmentation. Our proposed method managed to correct 
these mis-segmentation problems by incorporating the 
sequence aspect ratio information. Our method could, 
to a certain extent, improve segmentation accuracy and 
robustness for each slice in the sequence. This is an 
obvious advantage of our enhanced Mask R-CNN over the 
conventional Mask R-CNN. 

As shown in Table 2, the experimental results of the 
enhanced Mask R-CNN were evaluated in terms of the 
following indicators: the average precision (AP), the 
false-positive rate (FPR) (also called the complemented 
sensitivity), and the detection rate (DR). The enhanced 
algorithm had relatively high AP and FPR values, as 
well as very low temporal complexity. This performance 
can be ascribed to the training adequacy and the relative 
roughness of the output boundary, though there were mis-
segmentation or over-segmentation errors.

Further experiments were carried out to assess the impact 
of sequence information and the graph-cut function on 
improving the Mask R-CNN method in comparison to the 
FCN-8s algorithm (44), the 2D-dense-FCN algorithm (45), 
and the U-Net algorithm (46). Parameter settings for these 
networks were seen in Table 1 and the performance was 
evaluated using the DSC, VOE, RVD, ASD, RMSD, and 
MSD metrics. A comparison of the segmentation results of 
the 4 algorithms is shown in Figure 5. The test data for this 
comparison included slices with large, medium, and small 
liver regions. 

The results in Figure 5 show that for the 6 liver slices, 
some under-segmentation or over-segmentation errors 
were made by the FCN-8s, U-Net, and 2D-dense-FCN 
algorithms. Also, some of the segmented liver slices did not 

exhibit complete boundaries, while others had extraneous 
parts that did not belong to the original liver slices. 
However, our enhanced Mask R-CNN method was able to 
produce more solid boundaries and return segmented liver 
slices with no extra holes. 

Table 3 indicates that the enhanced Mask R-CNN 
method significantly outperformed the other algorithms, 
except for the U-Net method, which shows a better VOE, 
and the 2D-dense-FCN method, which shows a better RVD 
(but less stability) compared to our method. However, our 
algorithm clearly outperformed the U-Net algorithm for all 
other indicators. In addition, our algorithm showed superior 
performance for all 5 indicators in comparison to all the 
other algorithms. The relatively large ASD, RMSD, and 
MSD values for both the U-Net and FCN-8s algorithms 
indicate large differences between the liver segmentation 
results and the corresponding ground-truth regions.

Conclusions

Automatic algorithms for liver segmentation in CT 
images seek to handle peripheral organs and the large 
inter-personal differences in liver characteristics (47). 
Filtering a certain number of anchors can greatly improve 
accuracy and reduce time consumption. To address the 
weaknesses of the conventional Mask R-CNN algorithm, 
we proposed a novel enhanced Mask R-CNN algorithm. 
Specifically, we augmented the conventional method 
with rotation angle adjustment and filtered out a certain 
anchor ratio. We also used the enhanced Mask R-CNN 
for liver slice segmentation as well as the creation of a 
probability map. Our proposed solution enhanced the 
Mask R-CNN algorithm by incorporating the advantages 
of the k-NN methodology. In addition, our solution 
improved the segmentation accuracy and robustness 
using the rotation information obtained from liver image 
sequences. While we focused on enhancing and employing 
the Mask R-CNN algorithm in liver segmentation in this 
study, the methodology can be extended to enhancing 
the segmentation outcomes for other organs (48,49). 
Otherwise, for the same CT images, we can apply this 
model to segment any type of bodily tissue, but adjusting 
the parameters appropriately was required.

Table 2 Comparison of segmentation algorithms before and after 
enhancements

Algorithm type AP (%) FPR (%) DR (s)

Original Mask R-CNN 79.78 4.34 0.332

Improved Mask R-CNN 83.23 2.34 0.112

Mask R-CNN, mask region-based convolutional neural network; 
AP, average precision; FPR, false-positive rate; DR, detection 
rate.
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Figure 5 A comparison of the segmentation results between the algorithms of FCN-8s, U-Net, 2D-dense-FCN, and enhanced Mask R-CNN. 
FCN, fully convolutional network; Mask R-CNN, mask region-based convolutional neural network.
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