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ZBP1 is a significant pyroptosis regulator for systemic lupus 
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Background: Systemic lupus erythematosus (SLE) is a common autoimmune disease that affects all 
organs. Recently, several studies have shown that pyroptosis playsa significant process in the occurrence and 
progression of SLE. However, no study has investigated the association between pyroptosis genes and SLE. 
We conducted this study to examine this association.
Methods: The GSE11090, GSE20864, and GSE112087 gene microarrays of normal and SLE patient 
samples were downloaded from the Gene Expression Omnibus database. A differentially expressed gene 
(DEG) analysis was performed using the LIMMA package in R software. Log2 fold change |logFC| >0.5 and 
a false discovery rate (FDR) <0.05 setting for DEGs’ screening value. We also performed an enrichment 
function analysis of the DEGs. To explore the role of pyroptosis genes in SLE, we selected pyroptosis genes 
that intersected with the DEGs for further analysis, we also examined the expression levels of the selected 
genes, their association with immune cell infiltration, and conducted western blotting and polymerase chain 
reaction analyses to confirm the selected genes expression levels in the SLE and normal samples.
Results: A total of 3,398 identical genes were obtained from 3 datasets for the differential analysis. 84 
upregulated genes and 52 downregulated genes were identified in SLE. The enrichment function analysis 
revealed that DEGs act as key regulators of nicotinamide adenine dinucleotide (NADH) dehydrogenase 
activity, phospholipid scramblase activity, double-stranded ribonucleic acid (RNA) binding, and the 
interferon signaling pathway. We identified the SLE-related pyroptosis gene, Z-DNA binding protein 1 
(ZBP1), by intersecting the DEGs of SLE and 40 pyroptosis genes. The differential analysis indicated that 
ZBP1 was more highly expressed in SLE patients compared to normal samples (P<0.001). Additionally, the 
expression of ZBP1 was higher in females than males (P=0.008). The SLE samples had different immune 
cell infiltration than the normal samples, and ZBP1 was significantly correlated with immune cell infiltration 
in the SLE samples. Finally, the validation experiments results showed that ZBP1 expression levels were 
significantly more highly expressed in female and SLE patients, than male and normal patients. 
Conclusions: ZBP1 may indicate that females have a high incidence rate of SLE, and it plays a significant 
role in the occurrence and progression of SLE.
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Introduction

Systemic lupus erythematosus (SLE) is characterized 
by the loss of autoantibodies, massive immune complex 
deposition, the activation of inflammation, and immunity, 
which results in different degrees of damage in different 
organs (1). The main hallmarks of SLE are losing control 
of immune tolerance and the sustained production of 
autoantibodies against nuclear autoantigens (2). Research 
on the pathogenesis of SLE has shown that several types of 
programmed cell death play significant roles in the process 
of SLE (3). In 1972, Kerr et al. first defined programmed 
cell death apoptosis (4). Subsequently, several types of 
programmed cell death, such as autophagy, NETosis, 
necroptosis, and pyroptosis, have been defined and widely 
investigated in different diseases.

The dysregulation of cell death and a decrease in the 
ability to clear death cells lead to damage-associated 
molecular patterns, and enhance inflammation, immunity 
activation and the generation of autoantigens, resulting 
in tissue and organ damage in SLE patients (5). As 
programmed cell death plays a critical role in SLE, we 
focused on the role of pyroptosis-related genes in SLE. 
Pyroptosis is a type of programmed cell death that is 
characterized by cell lysis and inflammation induced by 
various damage signals (6). Its main features are gasdermin 
family-mediated cell deformation and eventual lysis, which 
results in the release of cell contents, including interleukin 
(IL-)1β and IL-18 (3). Pyroptosis was first observed in 
Shigella flexneri-infected macrophages (7). The activation 
of pyroptosis triggers the assembly of the inflammasome 
sensor, which leads to inflammation (8). Pyroptosis plays 
a key role in various diseases (9-12). In relation to SLE, 
research has shown that abnormal cell death and the 
dysregulation of dead cell clearance induces the production 
of antinuclear antibodies and other aberrant immune 
responses (13).

Pyroptosis is a type of cell death, and the dysregulation 
of pyroptosis has been implicated in the pathogenesis of 
lupus nephritis (LN) (3,13). Research has confirmed that 
pyroptosis also significantly affects the progression of 
SLE, Faliti et al. found that restoring P2X7 activity in SLE 
patients could selectively limit the progressive amplification 
of pathogenic autoantibodies, which deteriorate patients’ 
conditions (14,15). NLR Family Pyrin Domain Containing 
3 (NLRP3) inflammasome, an inflammasome sensor that 
mediates pyroptosis, was found to be hyperactivated in 
patients with SLE and LN (16). In the presence of anti- 
double-stranded DNA (dsDNA) antibodies, dsDNA can 

induce the activation of the NLRP3 inflammasome (17).  
Similarly, NLRP3 inflammasome activation can also 
be triggered by the interaction of U1-small nuclear 
ribonucleoprotein (U1-snRNP) and anti- U1-snRNP 
antibodies (18,19). However, these studies only investigated 
the role of pyroptosis in SLE, and the process of pyroptosis 
is affected by many factors, such as pyroptosis-related genes. 
In this study, we examined pyroptosis-regulated genes to 
investigate the correlation between genes and SLE.

We present the following article in accordance with the 
STREGA reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-6193).

Methods

Original data 

We downloaded three sets of gene microarrays (GSE11090, 
GSE20864, and GSE112087) from the Gene Expression 
Omnibus (GEO) database, including SLE and normal 
samples. After normalization and combination, a gene 
expression matrix of 122 normal samples and 239 SLE 
samples was obtained for further analysis. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

The acquisition of DEGs

An analysis of gene differences between the SLE and 
normal samples was performed using the LIMMA package 
in R software. A log2 fold change |logFC| >0.5 and a false 
discovery rate (FDR) <0.05 indicated that the genes were 
differentially expressed.

Enrichment analysis of DEGs

A gene set variation analysis (GSVA package) was conducted 
to analyse and identify significantly different Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
that were activated or inhibited in the SLE sample. The 
gene oncology (GO) enrichment analysis of the DEGs was 
conducted using the ClusterProfiler package.

Identifying the SLE-related pyroptosis gene

Forty pyroptosis-related genes in the pyroptosis signaling 
pathway from the gene set enrichment analysis (GSEA, 
https://www.gsea-msigdb.org/) were extracted and 
intersected with the SLE DEGs. We also analyzed the 
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expression of SLE-related pyroptosis genes in SLE and 
normal tissues, and their correlation with clinical traits.

Immunological infiltration analysis

We calculated the relative abundance of 22 immunocytes in 
the samples with the CIBERSORT algorithm, and analyzed 
the relationship between the immunocytes and SLE-related 
pyroptosis gene.

Validation experiments

Finally, we performed several validation experiments to 
confirm the finally selected gene expression levels between 
female and male SLE patients and normal patients.

Statistical analysis

All the statistical analyses were conducted using R software 
(version 4.0.3). The difference gene analysis used the 
LIMMA package. The following threshold was set: |logFC| 
>0.5 and FDR <0.05. The Wilcoxon non-parameter test was 
used to compare two groups. The Spearman method was 
used for the correlation analysis A P value <0.05 indicated a 
statistically significant difference.

Results

DEGs and differential signaling pathways in SLE

A total of 3,398 identical genes were obtained from the 
three data sets for the differential analysis. Figure 1A shows 
a heatmap of the top 20 up/downregulated genes in SLE. 
Eighty-four upregulated genes and 52 downregulated genes 
were identified in SLE (see Figure 1B).

The enrichment analysis of the 136 DEGs revealed 10 
significantly altered pathways, 6 of which were activated and 
4 of which were inhibited in SLE (see Figure 1C).

GO enrichment analysis of DEGs in SLE

The biological process (BP) of the DEGs in SLE was mainly 
enriched in the defense response to the virus, the interferon-
gamma−mediated signaling pathway, the type I interferon 
signaling pathway, the cellular response to type I interferon, 
and the response to type I interferon. The circle diagram 
shows the genes contained in the 5 BPs (see Figure 2A).  
The cell components were mainly enriched in the cell-

substrate junction, focal adhesion, oxidoreductase complex, 
fibrillar center, and npBAF complex. The molecular 
function was mainly enriched in pattern recognition 
receptor activity, 4 iron, 4 sulfur cluster binding, NADH 
dehydrogenase activity, and phospholipid scramblase 
activity (see Figure 2B).

Acquisition of the SLE-related pyroptosis gene

We identified the SLE-related pyroptosis gene, ZBP1, by 
intersecting the DEGs of SLE with the 40 pyroptosis genes 
(see Figure 3A). The differential analysis indicated that 
ZBP1 was more highly expressed in SLE patients compared 
to normal samples (P<0.001; see Figure 3B). Additionally, 
the expression of ZBP1 was higher in females than males 
(P=0.008; see Figure 3C).

Analysis of immune infiltration in SLE and normal 
samples

The CIBERSORT algorithm was used to calculate 22 
immunocells in 361 samples. Figure 4A shows the immune 
cell abundance of all the samples. Figure 4B shows the 
correlation between the 22 immunocell in the SLE patients, 
among them, resting dendritic cells and M2 macrophages 
had the highest negative correlations, and B memory cells 
and plasma were the most relevant (see Figure 4B). T 
cells CD8, monocytes, M1 macrophages, dendritic cells, 
eosinophils and neutrophils were more highly infiltrated 
in patients with SLE. While resting memory CD4 T cells, 
activated memory CD4 T cells, gamma delta T cells, and 
resting natural killer (NK) cells were lowly infiltrated in 
patients with SLE (see Figure 4C). 

The relationship between gender and immunocell 
abundance in SLE patients

The immunocell abundance and gender difference analyses 
demonstrated that activated dendritic cells (P=0.039,  
Figure 5A), M1 macrophages (P=0.019, Figure 5B), and 
neutrophils (P=0.0032, Figure 5C) were more highly 
infiltrated in female patients than male patients.

The relationship between ZBP1 expression and 
immunocells

The results indicated that activated immunocell dendritic 
cells and M2 macrophages were positively correlated 
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Figure 1 DEGs and differential signaling pathways in SLE. (A) Heatmap of the top 20 up/downregulated genes in SLE; (B) volcanic plot 
of DEGs in SLE; (C) heatmap of the dysregulated KEGG signaling pathways in SLE. DEGs, differentially expressed genes; KEGG, Kyoto 
encyclopedia of genes and genomes; SLE, systemic lupus erythematosus.

with the expression levels of ZBP1, but resting dendritic 
cells and monocytes were negatively correlated with the 
expression levels of ZBP1 in SLE patients (see Figure 6A-6D). 
Additionally, activated immunocell plasma cells, CD4 memory 
T cells, resting CD4 memory T cells, and naive CD4 T cells 
were positively correlated with ZBP1 expression (see Figure 
6E-6H); however, CD8 T cells, follicular helper T cells, 
gamma delta T cells, and regulatory T cells were positively 
correlated with ZBP1 expression (see Figure 6I-6L).

Validation experiments

To investigate the ZBP1 expression levels in SLE and 
normal samples, we performed western blotting and 
polymerase chain reaction analyses to validate the 
expression of ZBP1, and the results showed that ZBP1 was 
significantly more highly expressed in female and SLE 
patients than male and normal patients, respectively (see 
Figure 7A-7C).
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biological processes, cell components, and molecular functions of GO enrichment functions. BPs, biological processes, DEGs, differentially 
expressed genes; GO, gene oncology; SLE, systemic lupus erythematosus; BP, biological process; CC, cell components; MF, molecular 
function.



Huang et al. Pyroptosis gene ZBP1 in systemic lupus erythematosus

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(24):1773 | https://dx.doi.org/10.21037/atm-21-6193

Page 6 of 11

DEGs

136 39

Pyroptosis

ZBP1

Nor (n=122) SLE (n=239) Female Male

Gender

Z
B
P
1 

ex
pr

es
si

on

Z
B
P
1 

ex
pr

es
si

on

P<0.001
P=0.008

12

10

8

6

4

10

8

6

4

B CA

Figure 3 The expression and gender difference of the pyroptosis gene ZBP1 in SLE. (A) Venn diagram of DEGs of SLE and pyroptosis 
genes; (B) expression levels of ZBP1 in SLE blood samples and normal blood samples; (C) expression levels of ZBP1 in male and female SLE 
samples. DEGs, differential expressed genes; SLE, systemic lupus erythematosus; ZBP1, Z-DNA Binding Protein 1.

100%

80%

60%

40%

20%

0%

0.4

0.3

0.2

0.1

0.0

Fr
ac

tio
n

Nor (n=122)
SLE (n=239)

B cells naive
B cells memory
Plasma cells
T cells CD8 
T cells CD4 naive
T cells CD4 memory resting
T cells CD4 memory activated
T cells follicular helper 
T cells regulatory (Tregs)
T cells gamma delta 
NK cells resting
NK cells activated
Monocytes 
Macrophages M0
Macrophages M1
Macrophages M2
Dendritic cells resting
Dendritic cells activated
Mast cells resting 
Mast cells activated
Eosinophils 
Neutrophils

B
 c

el
ls

 n
ai

ve

B
 c

el
ls

 m
em

or
y

P
la

sm
a 

ce
lls

T 
ce

lls
 C

D
8 

T 
ce

lls
 C

D
4 

na
iv

e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
st

in
g

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r 

he
lp

er
 

T 
ce

lls
 re

gu
la

to
ry

 (T
re

gs
)

T 
ce

lls
 g

am
m

a 
de

lta
 

N
K

 c
el

ls
 re

st
in

g

N
K

 c
el

ls
 a

ct
iv

at
ed

M
on

oc
yt

es
 

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c 
ce

lls
 re

st
in

g

D
en

dr
iti

c 
ce

lls
 a

ct
iv

at
ed

M
as

t c
el

ls
 re

st
in

g 

M
as

t c
el

ls
 a

ct
iv

at
ed

E
os

in
op

hi
ls

 

N
eu

tr
op

hi
ls

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1

R
el

at
iv

e 
pe

rc
en

t

BA

C

Figure 4 Analysis of immune infiltration in SLE and normal samples. (A) Histogram of the relative abundance of 22 immunocells in SLE 
and normal samples; (B) correlation heatmap between 22 immunocells; (C) Violin diagram of the differential expression of 22 immunocells 
between SLE and normal samples. SLE, systemic lupus erythematosus.

Discussion

SLE is an autoimmune disease, and it can damage several 
important organs, such as the brain, heart, kidneys, and 
lungs, and SLE patients suffer more during in these target 
organ complications. The epidemiology of SLE proves 

that it has a significant relationship with gender, and young 

women are at a higher risk than young men in terms of 

morbidity. Besides, the multiple underlying mechanisms of 

SLE have been classified. Among the various mechanisms, 

cell death plays a key role in SLE progression. The cell-
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Figure 5 The relationship between gender and immunocell abundance in SLE patients. (A) Activated dendritic cells; (B) M1 macrophages; (C) 
neutrophils. SLE, systemic lupus erythematosus.
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type process induces inflammation, releases auto antigens, 
and leads to some diseases. Research of the pyroptosis 
process revealed that it is involved in multiple diseases, 
including SLE (20-22). This study explored pyroptosis 
gene expression levels in different samples, the fundamental 
biological functions of pyroptosis’ DEGs, and pyroptosis 
gene’ role in SLE.

In present study, the results showed that 136 DEGs 
were differentially expressed between the SLE and normal 
samples. The top DEGs included OAS3, PHF11, PLSCR1, 
TRAP1, RPLP1, RPS19, RPL15, CYBA, PCNT, U2AF2, 
PTBP1. Gao et al. revealed MALAT1 affects SLE by 
regulating the expression of OAS3 (23). Yamada et al. found 
that PHF11 is a regulator of inflammation (24). PPLSCR1 
was observed to be overexpressed in monocytes in SLE 
samples (25). TRAP1 and RPLP1 play key roles in SLE 
progression (26,27). Regrettably, several genes have not 
been found to have an association with SLE, including 
OAS3, PHF11, PPLSCR1, TRAP1, and RPLP1. In the 
present study, we examined the enrichment functions of 
these DEGs, and found that NADH dehydrogenase activity, 
phospholipid scramblase activity, double-stranded RNA 
binding, and the interferon signaling pathway may be the 
most important biological functions. Suzuki et al. found that 
phospholipid scramblase (phospholipid scramblase 1) induces 
fibrin turnover and increases cell-surface phosphatidylserine 
exposure, promoting the risk of thrombus (25). Double-
stranded RNA antibodies have also been investigated in SLE, 
and RNA antibody levels have been found to be associated 
with disease activity (28). Interferon has been shown to act as 
an important regulator of SLE, and interferon lambda affects 
the immune system and inflammation dysregulation (29). 

Thus, DEGs play a key role in SLE. We selected 

pyroptosis genes for further analysis and examined the 
intersection between the pyroptosis genes and DEGs in 
the SLE samples. ZBP1 was selected and we investigated its 
role in SLE. The results showed that ZBP1 was significantly 
more highly expressed in SLE patients than normal 
patients, and the subgroup analysis revealed that females 
have higher ZBP1 expression levels than males. ZBP1 is 
a Z-DNA-binding protein type that can be induced via 
interferons (30). ZBP1 can act as a regulator of interferon-
induced necroptosis (31). Further, ZBP1 is also an innate 
sensor for inflammation, and is a significant regulator of 
multiple disease processes, such as influenza virus infection, 
NLRP3 inflammasome, and proinflammatory responses 
(32,33). Takaoka et al. revealed that ZBP1 is the ligand 
of double-strain DNA, and may have an association with 
autoimmune disease (34). However, the role of ZBP1 in 
SLE is still unclear.

As autoimmune disease and ZBP1 have a significant 
relationship with inflammation and necroptosis, and 
immune cells act as important factors in these processes, we 
investigated the relationship between ZBP1 and immune 
cell infiltration. The analysis results showed that ZBP1 
is significantly associated with several types of immune 
cell infiltration, including dendritic cell, monocyte, 
macrophage, CD4 T cell, and CD8 T cell infiltration. 
ZBP1 is negatively correlated with regulatory T cells, and 
many studies have shown regulatory T cells play a key role 
in SLE progression (35-37). Several studies have revealed 
that SLE patients have increased CD8 T cell levels, which 
induce autoantibody production, resulting in organ damage 
(38,39). However, in the present study, ZBP1 was found to 
be negatively correlated with CD8 T cell infiltration.

Macrophage cells are critical cells in the inflammation 
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Figure 7 The validation experiments of ZBP1. (A,B) The western blot of ZBP1; (C) the quantitative real-time PCR of ZBP1. * represent 
no-SLE female samples; # represent male SLE patients samples, and & represent female SLE samples, respectively. ZBP1, Z-DNA Binding 
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process and autoimmune disease. Macrophages are 
tissue resident immune cells that can as immune respond 
cell. Macrophages canactivated via IgG IC, induce the 
production of cytokines, such as IL-6, TNFα, IL-1β, and 
inflammatory mediators (40-42). Jing et al. revealed that 
macrophages may be reprogrammed as therapy targets for 
LN (43). The biological function of monocytes in SLE 
has also been explored. Monocyte cells can induce change 
via cytokines and have a significant effect on SLE (44).  
Additionally, CD4+ T cells, B cells, and plasma cells also 
have a strong effect on the progression of SLE (45-47). 
These results showed that ZBP1 can play a significant 
role by regulating various immune cell infiltration in SLE 
patients. 

Conclusions

In the present study, we found that the pyroptosis 
gene, ZBP1, may act as a biomarker for diagnosing and 
assessing the activity of SLE. Our findings may lead to the 
development of complementary therapy methods for SLE 
via the regulation of pyroptosis genes, such as ZBP1.
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