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Background: The identification of disease-related biological modules plays an important role in our 
understanding of the process of diseases. Although single-cell RNA sequencing (scRNA-seq) provides 
high-resolution transcriptome data that can potentially characterize subtle gene expression changes within 
cells, the susceptibility of the gene expression information to the influence of individual genes also makes it 
difficult to distinguish the biological module. 
Methods: To quantify gene expression information for biological function modules, we adopted the method 
based on Shannon’s entropy and Spearman rank correlation analysis. The ingenious combination of these 
two methods enables the variation analysis of the former and the consistency analysis of the latter to make a 
more robust biological function analysis tool.
Results: We developed a computational analytical method and desktop application called NonLoss to 
analyze scRNA-seq data more robustly and to extract real biological differences between cell populations. 
The method derives its power by handling expression level data from all genes annotated to a specific 
function module, both for dimensionality reduction and reliability of function identification, avoiding 
random disturbance of individual genes. NonLoss can in principle be used to assess changes of function 
modules and identify vital functions simultaneously. Furthermore, specific genes contributing to important 
functions, even those with subtle expression changes, can be identified. The results demonstrated that 
NonLoss yields biologically significant insights into 3 different applications.
Conclusions: NonLoss was developed with a user-friendly graphical user interface, and it could identify 
the module of biologically relevant expression changes at a single-cell resolution. 
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Introduction

Cells are the smallest unit of individual life, but they are still 
exquisite at the molecular level. Biological processes within 
cells are dynamic and embodied at gene transcriptional 

level. However, the bulk of RNA-seq largely focuses on 

quantifying the gene expression information across a 

heterogeneous population of cells (1). Single-cell RNA 

sequencing (scRNA-seq) is a powerful, high-resolution 
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tool used for the study of cellular heterogeneity at a 
transcriptome level, in individual cells (2). It has been used 
to analyze embryonic development, cancer heterogeneity, 
and even novel cell types (3,4). 

According to the complexity of data analysis of cellular 
dynamics, biological variability of individual cells, the 
presence of technical limitations, and library size or 
composition bias, discerning the real biological differences 
(such as changes in biological module regulation or gene 
expression levels) between cells remains challenging. One 
of the most commonly performed tasks for RNA-seq data 
is gene differential expression (DE) analysis (5). However, 
due to the uneven gene coverage of scRNA-seq across 
different cells or experiments, even those well-established 
tools for such analysis produce bias inevitably when calling 
the DE genes (6-8), resulting in misleading conclusions 
of biological function analyses. To make scRNA-seq 
analysis protocols more robust, tremendous efforts have 
been made such as the spike-in RNA approach for scaling 
normalization and the unique molecular identifiers (UMI) 
method to avoid amplification biases from experimental 
angles (9). To some extent, these methods are beneficial, 
yet limited. Ultimately unstable factors still lead to DE 
genes bias when applied to scRNA-seq data. Conclusively, 
we should be aware when DE analysis was applied to the 
exploration of biological mechanisms and functions. From 
this perspective, gene expression data has been analyzed 
on a gene-by-gene basis by DE analysis, without regard 
for the overall impact on biological functions. Even more 
detrimentally, genes with lower expression ratios [fold 
change (FC) value <2, the major part of genes] are routinely 
excluded from downstream gene enrichment analyses 
(10,11). Furthermore, Various other approaches like D3E, 
MAST and SigEMD have been developed for the DE 
analysis (6,12,13). However, these tools try to deal with 
either the gene dropouts or multimodality. For the subtle 
DE genes as well as weak expressed genes were ignored or 
discounted, and the accumulation of information may be 
even more important.

Thus, due to the potential liability of gene expression 
levels, the strategy of comparing the same gene across 
different cells for scRNA-seq data could be meaningless. 
Alternatively,  scRNA-seq provides more detai led 
information to build a complete map of the transcriptome 
of a single-cell, exposing the cell state diversity and 
perturbations in vivid detail (14,15). To increase stability 
of functional discovery, aggregating related functional 
genes and measuring them collectively could be a viable 

option. We propose a function-oriented, non-statistical 
approach (referred to as NonLoss), to identify differential 
biological modules (DBMs) between cells or conditions. 
We categorized genes as well as gene expression data 
into biological function modules (BFMs) (also known 
as gene functional annotation), and then estimated 
expression differences based on the functional units 
rather than the individual genes. The NonLoss strategy 
successfully curtails the arbitrary effects of FC cutoffs 
of DE methods and aggregates a composite of weak 
evidence to identify functional significance, enhancing the 
power of transcriptomics at the single-cell resolution for 
understanding multiple biological processes. To facilitate 
the use of NonLoss, we have developed a software package 
that is freely available from https://github.com/X1angyang/
Nonloss-V1 upon request. The software is available as a 
desktop application with a graphical user interface and is 
programmed in Python. A detailed example of input and 
output data format of NonLoss is available in the help 
documents.

We present the following article in accordance with 
the MDAR reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-6401).

Methods

Biological function annotation

The scRNA-seq technique provides information in a high 
dimensional gene expression space. When comparing cells 
in a high dimensional gene expression space, distances 
between cells become more homogenous and a small 
significant difference can be easily overwhelmed by large 
volumes of expression data, making it difficult to distinguish 
differences between cell populations. Our main objective 
was to explore the changing trends of biological functions 
rather than several DE genes. Genes in the same biological 
module tend to exhibit strong corresponding changes at 
a transcriptional level. Gene Ontology (GO) provides 
structured, controlled vocabularies and classifications of 
categories (16,17). Exploring GO annotations for insights 
into the potential experimental meanings has become 
a widespread practice. Therefore, we chose GO as the 
biological function module (BFM) to demonstrate our 
analytic approach. However, our work can also be applied 
to the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis and other user-defined biological function 
sets. Since computing work causes instability when applied 
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to BFM with a small number of genes, we set the lower 
gene number limit to 10. Meanwhile, the BMF variation 
stabilized as the gene number of BMF increased. The 
upper gene number limit was set to 200. Of note, users can 
freely adjust the upper and lower limits depending on their 
experimental needs.

Transcriptome reference construction

Previous studies using conventional bulk RNA-seq have 
handled a relatively small number of samples with explicit 
sectioning. However, the nature of scRNA-seq is that it 
generates from thousands of samples in a single experiment 
with high-noise attributes (18). Additionally, the goal of the 
study was to explore molecular dynamic changes or cellular 
specific traits of individual cells. So, we could neither 
perform analysis by simply taking average comparisons 
between conditions nor compare 2 cells in arbitrary ways. 
To deal with this problem, inter-group reference (IGR) of 
a cell population was proposed to provide a benchmark for 
assessing differences among cells. The IGR was constructed 
by picking the median of gene expression level for each 
group of cell population (for example IGR of case group 
or IGR of the control group). Then, each cell from one 
group was compared with an IGR of another group by our 
NonLoss method. The relative BFM states of each cell were 
presented thoroughly. 

Information measurement model based on Shannon’s 
entropy

To quantify gene expression information for BFMs, we 
adopted the method based on Shannon’s entropy. Although 
entropy has previously been used to identify DE genes for 
gene expression profiles (19), we were the first to apply it 
to quantify BFMs with more complete gene expression 
information. To make the description easier to follow, we 
measured the gene information related to specific GO terms 
using Shannon’s Entropy. The CRC datasets was used for 
method building and process testing (20). Considering 
that j

ie  denotes the gene expression vector of the GO term 

( )GOi, i List∈  of cell j, and Gene
iList  was gene list annotated in 

the GO term i, then the sum gene expression value of j
ie  was 

calculated as j Gene j
i i iS List e= ∑   . Therefore, the information 

entropy of GO term i of cell j can be measured as

, ,
2log ,

j j
i k i kj Gene

i iList

e e
H Gene k List

j j
 

= − ∈  
 

∑ 	 [1]

In information theory, entropy is a measure of the 
uncertainty associated with a random variable (21). In 
this context, Shannon’s entropy was used to quantify 
the expected value of the information contained in a 
BFM or GO term. Although entropy is often used as 
a characterization of the information content of a data 
source, this information content depends crucially on 
the probabilistic model. We assumed that a major part of 
gene expression level will not fluctuate too much relative 
to its normal state. The probability distribution of gene 
expression was relatively stable for pairwise comparisons. 
So, the Shannon’s entropy value can be fixed to some 
extent, and then compared. However, the entropy functions 
follow the property that Hi is an increasing function of 
gene number Ni of GO term i, (Figure 1A). To overcome 
this shortcoming, the entropy model should be further 
normalized to account for the unequal number of GO 
terms, thus the standard entropy difference (SED) can be 
defined as

j

i

2
( )SED log

j
IGR

i i
i

cellH H
N
−

= 	 [2]

After normalization, this problem can be solved 
reasonably using this formula (Figure 1B). The higher 

j

iSED  the greater GO difference was represented compared 
with IGR. We used Shannon’s entropy to measure the 
information difference with more stability and less 
susceptibility to the influence of stochastic events (22), 
thereby reducing the impact of non-functional related 
DEGs in BFMs. We did not expect a single gene to become 
the highlight; instead, we aimed to discover a set of genes 
that affected biological functions. This method was relatively 
insensitive to outliers. However, the Shannon entropy 
model did not consider the internal expression order in a 
BFM. For example, if 2 genes A and B were annotated to 
a GO term k and the gene expression vector of 2 cells m 

a n d  n  w a s  ( ) ( ), , , ,0.2, 0.8 , 0.8, 0.2m m A m B n n A n B

k k k k k ke e e e e e= = = = = = , 
respectively. Despite the great differences between the 2 at 
a transcriptional level, the value obtained from the formulas 
would be 0kSED =  resulting in an incorrect conclusion. 
To overcome this shortcoming, we introduced consistency 
analysis which is defined in the subsequent sub-section.

Consistency analysis

Entropy has a problem with measuring the pertinence of 
the variable elements within a calculation unit. To solve 
this problem, we introduced the Spearman rank correlation 



Zhao et al. Biological function mining based on entropy information

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(24):1788 | https://dx.doi.org/10.21037/atm-21-6401

Page 4 of 13

O
rig

in
al

 e
nt

ro
py

 in
fo

rm
at

io
n

C
or

re
la

tio
n 

co
ef

fic
ie

nt

C
or

re
la

tio
n 

co
ef

fic
ie

nt
N

or
m

al
iz

ed
 e

nt
ro

py
 in

fo
rm

at
io

n10

8

6

4

2

0

1.0

0.5

0.0

−0.5

1.0

0.8

0.6

0.4

0.2

0.0
0

0

−1.0 −0.5

−0.5

−1.0

0.5 1.0

0100

100

100200

200

200300

300

300400

400

400500

500

500
Annotation gene number

Annotation gene number

Annotation gene number

Normalized entropy information difference

A

C

B

D

Figure 1 Scatter diagrams used to show the characteristics of entropy information and correlation coefficients of tested GO terms. (A) 
Scatter plot of annotation gene number (x-axis) and original entropy information (y-axis), entropy information increased with the increase of 
annotation gene number. (B) Scatter plot of annotation gene number (x-axis) and normalized entropy information (y-axis). (C) Scatter plot of 
annotation gene number (x-axis) and correlation coefficient (y-axis). The correlation coefficients were more volatile with smaller annotation 
gene numbers and became stable with the increase of annotation gene number. (D) Scatter plot of normalized entropy information 
difference (x-axis) and correlation coefficient. The IScores were computed by the Euclidean distance between coordinated point values of 
GO terms and coordinates [0, 1]. GO, Gene Ontology; IScore, integrated scores.

analysis, a non-parametric similarity measure which is 
robust against outliers (23). This compensated for the 
disadvantage of the original entropy method to measure the 
consistency of gene expression in BFMs.

Correlation simply measures the relationship of gene 
expression consistency between 2 samples for a specific 
BFM. This relationship, which was expressed by what is 
known as the correlation coefficient, is represented by a 
value within the range of (−1.0, +1.0). To achieve significant 
differences, genes in specific BFM between 2 samples 
should not be highly correlated. When the correlation 
increased, the diversification difference decreased and vice 
versa. A correlation coefficient of +1.00 indicates that the 
expression of genes in a specific BFM showed a perfect 
proportion between 2 cells. This module always gives a very 
weak difference between samples. A correlation coefficient 
of 0 indicates that expressions of genes in a specific BFM 
are completely random. This may be attributed to biological 

molecules function disorders. A correlation coefficient of 
−1.00 indicates that expression of genes in a specific BFM 
show the opposite direction between 2 samples. This may 
be an interesting result depending on the annotation gene 
number. The correlation coefficients when annotation 
gene numbers were small were volatile and stabilized as the 
annotation gene numbers increased. The probability of this 
case was very small if an appropriate threshold was selected 
(Figure 1C).

Integrated score with IScore and difference of IScore

As mentioned, both the entropy information method 
and the consistency analysis method can explain part of 
variations for biological function. Through analysis, it was 
found that they complement each other very well. In this 
section, we proposed a comprehensive method to measure 
the degree of GO difference by combining the entropy 
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method and consistency method. We introduced Euclidean 
distance to measure the degree of BFM variation, which was 
defined as follows:

2 2( 1)ij iIScore SED R= + − 	 [3]

Therefore, the integrated scores (IScore) of BFM were 
defined as the Euclidean distance between (SEDi,Ri−1) nd 
(0,1) (Figure 1D). Then, the BFM variations of each cell 
were quantified by comparing the IGR using IScores. The 
IScore was primarily used to compare biological functional 
changes between 2 cell populations. Thus, the difference 
of IScore (DIS) was defined by the taking difference of two 
population averages from each BFM.

( ) ( )a bDIS average averageIScore IScore= − 	 [4]

Statistical analysis

All statistical tests were performed using Python3.7 
(scipy 1.4.1). Correlation coefficient were calculated by 
spearman correlation. Difference between two groups were 
tested using unpaired t-test and FDR P value <0.05 were 
considered statistically significant.

Data sets description

The first data set [Gene Expression Omnibus (GEO) 
accession number: GSE81861] contained 375 cells collected 
from colorectal cancer (CRC) tissue and 215 nearby normal 
mucosa qualified expression profiles (20). A total of 272 
tumor and 160 normal mucosa epithelial cells were identified 
respectively by ring clustering algorithm (RCA) (20). 
We explored biological feature differences in these 2 cell 
populations. For ease of description, CRC-data was defined 
as an abbreviation for the first data set. A second data set 
was from human non-stimulated and cytokine-activated 
mucosal-associated invariant T cells (MAIT) (6). The MAIT 
dataset was defined as an abbreviation for the data set. The 
sample came from human non-stimulated and cytokine-
activated [interleukin (IL)-12, IL-15, and IL-18 treated] 
MAIT cells which were from peripheral blood mononuclear 
cells. The CD8+ MAIT cells were sorted. We obtained data 
from 47 stimulated and 49 non-stimulated MAIT profiles 
and used them for further functional analyses. The primary 
human skeletal muscle myoblasts (HSMM) data sets (GEO 
accession number: GSE52529) containing both scRNA-seq 
and bulk RNA-seq data were used as the third data set for 

validating our method and extending the application with 
a bulk RNA-seq data (24). In each analyzed scRNA-seq 
dataset, genes that were never expressed were filtered out. 
The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013).

Results

We aimed to acquire insight on the gain or loss of biological 
functions of different cell types and provide candidate 
targets for further investigation. To examine the newly 
developed DBMs identification pipeline, 3 published 
scRNA-Seq datasets were applied (see Methods section). 
The first CRC data was used to perform systematic 
and comprehensive analyses for purposes of method 
validation and tutorial construction. NonLoss takes gene 
annotations and gathers all gene expression information 
for consideration. As its working principle was different, it 
could not be directly compared with other traditional DE 
methods. Then, an alternative strategy was used to compare 
the findings of NonLoss and MAST methods (6). The 
second data set (MAIT) was used for the sake of consistency 
and reproducibility in comparison to traditional DE 
method. Nevertheless, the scRNA-seq data was expected to 
uncover more sensitive biological features relative to bulk 
RNA-seq. We expected to find overlap DBMs between the 
2 sequencing schemes. For this reason, the third data set 
[human skeletal muscle myoblast (HSMM)] containing both 
scRNA-seq and bulk RNA-seq data were used for validation 
of NonLoss, as well as extending the application to bulk 
RNA-seq data. We envisioned that NonLoss could be 
useful for a range of applications. The detailed information 
for these 3 data sets is presented in the Methods section.

Validation of NonLoss through application to CRC data set

Differential KEGG pathways identification
As KEGG is a comprehensive and reliable knowledge 
base for assisting biological interpretations of large-
scale molecular datasets, to explore significant biological 
functional modules and interactions between tumor and 
normal mucosa epithelial cells of CRC-data, we first carried 
out NonLoss analysis based on KEGG pathway modules. 

In this case, parameter default values were used to 
calculate the IScore of each cell. The states of specific 
biological functions for each cell were quantified by 
IScore. Therefore, these IScore values served to reveal 
the heterogeneity of biological functions of the cell 
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population. Despite the existence of a few outliers, the 
trend remained stable within groups and IScore differences 
between  conditions clearly (Figure 2A). Then, results 
were further analyzed by permutation tests between the 
2 conditions and the DISs were quantified by calculating 

deltas of 2 condition means. A total of 134 KEGG pathways 
were annotated, wherein, 54% of the pathways were 
remarkably different between the 2 conditions (P<0.05). 
However, 8 (5.9%) of the DISs were greater than or equal 
to the pre-set threshold (0.3), and a majority of DISs (94.1%) 

KEGG pathway: antigen processing and presentation

KEGG pathway: alcobolism

hsa04612 0.93 54.65

KEGG Tu Mu DIS FDR*

To
p 

5 
B

FM
s

La
st

 5
 B

FM
s

hsa03320 0.75 19.95

hsa04978 0.64 46.76

hsa05164 0.55 16.74

hsa04919 0.49 16.66

hsa05031 0.00 0.05

hsa05034 0.00 0.04 −
2

2
D
IS

hsa04071 0.00 0.03

hsa05206 0.00 0.02

hsa04211 0.00 0.00

Tu
 lo

g2
 (E

+
1)

Tu
 lo

g2
 (E

+
1)

M
u 

lo
g2

 (E
+

1)
M

u 
lo

g2
 (E

+
1)

15

10

5

0

15

10

5

0

0

5

10

15

0

5

10

15

A

B

C

Figure 2 Biological function module analysis of CRC-data. (A) The heatmap shows the IScore of each cell. The top 5 and last 5 BFMs of 
KEGG pathways were presented to show differences between Tumor (Tu) and normal mucosa (Mu) groups. (B) The violin plot shows gene 
expression patterns in Tu and Mu groups. Genes displayed in the graph were annotated in the hsa04612 KEGG pathway. (C) The violin plot 
shows gene expression patterns of the hsa05034 KEGG pathway. Gene names with scarlet font indicate significant differentially expressed 
genes, and others are represented by the gray font. To better present the expression trend of genes, gene expression values were log-
transformed and shown as colored circles for each gene, whereas the empty circles indicate the median of gene expression value across cells. 
FDR* indicates the log-transformed and converted into the positive value of FDR. KEGG, Kyoto Encyclopedia of Genes and Genomes; 
BFM, biological function module; FDR, false discovery rate; CRC, colorectal cancer. 
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showed a difference less than the default. The results 
accorded with biological principles; sustained homeostasis is 
the goal of living cell function regulation in the condition of 
being stimulated by stresses. 

For comparison purposes, the top 5 and the last 5 KEGG 
pathways were used to show differences between each 
other. The differences of IScore between the 2 conditions 
were more striking for in the top 5 compared with the last 
5 (Figure 2A). The differences were closely related with 
gene expression patterns between 2 conditions. We further 
found that the ratio of significantly differentially expressed 
genes in the top 5 KEGG pathways was higher than the last 
5 (Table 1). These results provided objective evidence for 
DBMs identified by NonLoss. Notably, since the immune 
system always fails to destroy tumor cells (25), we found 
genes of major histocompatibility complex class I emerged 
with differential expression patterns. Immune-related key 
genes were significantly downregulated in tumor epithelial 
cells (B2M, HLA-A, HLA-B, HLA-E, HLA-F; Figure 2B).  
More remarkably, 64% of genes from the hsa04612 
pathway were significantly different between the two groups 
(P<0.05). However, only 4 genes showed slight differences 
between the conditions for hsa05034, which was not DBM 
(Figure 2C). Therefore, the analyses with the KEGG 
pathway modules showed that NonLoss was able to identify 

biological significance in particular cancer cell populations.

Differential GO modules identification 
A goal of NonLoss was to provide a more robust way 
to identify significant function modules responding to 
stimulus. The GO is becoming a more expressive way 
of describing the function of gene products that allows 
annotations to be connected together to give a complete 
function of what each gene does in the context of a larger 
biological process (26,27). 

To test robustness, we further operated on the CRC-data 
based on GO modules. In total, 386 biological process (BP), 
251 molecular function (MF), and 240 cellular component 
(CC) GO terms were accepted for calculations based on the 
defaults for each of the parameters. Furthermore, 28/386 
(7.2%) BP, 16/251 (6.3%) MF, and 17/240 (7.1%) CC GO 
terms were identified as DBMs by setting DIS threshold to 
0.5 for illustrative purposes (Figure 3), which were highly 
relevant to cancer development, such as “cellular response 
to hypoxia” in BP, “phospholipid binding” in MF and 
“specific granule lumen” in CC categories (Figure S1). 
We found most of the GO terms were not significantly 
different or had low DIS (Figure 3). These results provided 
further evidence for the biological law which keeps cell state 
relatively stable, maintaining basic cellular metabolism and 

Table 1 The statistical information of the top 5 and last 5 KEGG pathways identified by NonLoss

Accession ID Function module
Number of genes

Ratio
Total Sig

Top 5 BFMs

Hsa04612 Antigen processing and presentation 22 14 0.64 

Hsa03320 PPAR signaling pathway 13 7 0.54 

Hsa04978 Mineral absorption 13 8 0.62 

Hsa05164 Influenza A 36 14 0.39 

Hsa04919 Thyroid hormone signaling pathway 23 7 0.30 

Last 5 BFMs

Hsa05031 Amphetamine addiction 16 4 0.25 

Hsa05034 Alcoholism 24 4 0.17 

Hsa04071 Sphingolipid signaling pathway 16 1 0.06 

Hsa05206 MicroRNAs in cancer 31 8 0.26 

Hsa04211 Longevity regulating pathway 12 2 0.17 

Note: ‘Total’ represents the number of genes annotated to the module and ‘Sig’ represents the number of significantly differentially 
expressed genes. The last column is the ratio of ‘Sig’ and ‘Total’ column. KEGG, Kyoto Encyclopedia of Genes and Genomes.

https://cdn.amegroups.cn/static/public/ATM-21-6401-supplementary.pdf
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promoting survival.

Evaluating robustness of the NonLoss method

To evaluate the robustness of the NonLoss method, random 
sampling tests were carried out on CRC-data. We first 
acquired the top 15 GO terms from the BP category, which 
were the analyses from half the cells of each condition, as 
the standards for reference. The sampling number (SN) 
was settled from 50 to 100 and incremented by 10. Next, 
the number of SN cases were randomly sampled from the 
rest of the cells from each group 100 times and analyzed by 
NonLoss with the default values. Therefore, the number 
of GO term repeats were recorded and the repeat rates 
were obtained by dividing by 100. By increasing SN from 
50 to 100, the repeat rate of each GO term was markedly 
elevated (Figure 4A). For example, when the number of SN 
increased, the repeat rate of “GO:0071456” went from 0.62 
to 0.95. In summary, NonLoss illustrated the variability 
of scRNA-seq data by taking into account the biological 
stability or technique. It also displayed the powers of 
robustness and resistance to the low-quality data. 

Furthermore, we introduced the conformance testing 
for random sample sets. The overlap rates were calculated 
by taking the intersections of DBMs from random sample 
sets with a specific SN (Figure 4B) from normal mucosa 
and tumor cell populations, respectively. The average 
overlap rate significantly increased from 0.27 (SN =50) to 
0.68 (SN =100). In fact, this was exactly what our results 
demonstrated; there may be some small or inconspicuous 
biological functional differences which were notoriously 
prone to be enriched or falsely ignored between conditions. 
This would ultimately lead to poor overlap rates. However, 

alternatively, the repeat rates of the top GO terms with 
higher DIS exhibited remarkably high values (for instance, 
the repeat rate of “GO:0071456” was 0.95, when SN 
was 100). This was further evidence that it had a high 
detectability for key biological function sets and a better 
robust system based on more complete data. This ability of 
biological feature identification was further demonstrated 
by a converse-solving strategy. A random and grouped 
method was used to randomly divide cells from the CRC-
data into 2 groups. Then we used NonLoss analysis on 
these 2 randomly sampled groups. The results were then 
compared with normal paired groups. We got a significantly 
(P<0.05) lower overlap rate compared with the normal 
paired groups from CRC-data (Figure 4B). The overlap 
rates of the random groups for all SN were less than 0.1 and 
significantly decreased from 0.036 (SN =50) to 0.003 (SN 
=100). These findings suggested that NonLoss can extract 
real biological features from different cell populations.

NonLoss highlights blood transcriptional module 
implicated in MAIT cell activation

Different DE analysis methods can draw different gene lists; 
however, the overlaps of genes between the methods are 
usually relatively low (<70%) (28). The dynamic fluctuations 
in DE gene lists can greatly impact gene enrichment 
analyses (10,29), leading to enormous deviations in the 
discovery of biological functions. To compare and verify 
the ability of function identification reported by NonLoss 
objectively, we built an entire application on MAIT-data 
from MAST test data directly and evaluated the outcomes 
by result comparison (6). A total of 24 blood transcriptional 
module (30) DBMs were obtained as the default (Table S1).  

https://cdn.amegroups.cn/static/public/ATM-21-6401-supplementary.pdf
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Figure 4 Robustness evaluation of the NonLoss method. (A) Repeat rates of the top 15 GO terms show the frequency of their occurrence 
for different SN, when randomly sampled 100 times. (B) Overlap rate was calculated by taking the intersection of DBM results of a random 
sample set with a specific SN. The x-axis shows the average overlap rate of DBMs from random sampling 100 times. The y-axis displays 
the number of cells randomly sampled from datasets. The gray bars represent 2 groups of the calculation that were randomly sampled from 
normal mucosa and tumor cell populations, respectively (paired), whereas the crimson bars represent 2 groups of the calculation that were 
randomly sampled from the CRC-data (random). GO, Gene Ontology; SN, sampling number; DBM, differential biological module.

The intersection of significant function modules of the  
2 methods was 11 (45.8%). The major responsive modules 
were consistent with each other such as “suppression of 
MAPK signaling”, “AP-1 transcription factor network”, 
“spliceosome”, “proteasome”, and “cell cycle and growth 
arrest”, whereas the NonLoss methods revealed more 
modules related to T-cell signatures [“signaling in T cells 
(I)”, “enriched in T cells (II)”,” T cell differentiation 
(Th2)” and “mitotic cell cycle in stimulated CD4 T cells”], 

exclusively. Furthermore, “type I interferon response” 
(31,32), “phosphatidylinositol signaling system” (33),  
and “myeloid, dendritic cell activation via NFκB” (34) 
were consistent with previous findings. Moreover, genes 
in DBMs exhibited significant differences in expression 
patterns between the 2 conditions (Figure S2). The results 
showed that our proposed method was better for presenting 
the change of biological functions compared with traditional 
DE methods.

https://cdn.amegroups.cn/static/public/ATM-21-6401-supplementary.pdf
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Conjoint analysis of bulk and single-cell RNA-seq data for 
time-course profiles

As mentioned above, bulk RNA-seq quantified gene 
expression information on the average level of a cell 
population showed the general gene expression patterns. It 
could possess relative stable results from both experimental 
and biological perspectives. In contrast, scRNA-seq 
could provide unparalleled resolution to study cellular 
heterogeneity. However, due to biological variability 
of individual cells as well as the presence of technical 
limitations of scRNA-seq, these factors are likely to skew 
the results. Therefore, we further extended our method 
to a set of data (GSE52529) with both bulk and single-cell 
RNA-seq profiles (24). 

The data came from a primary human skeletal muscle 
myoblast (HSMM-data) under high-mitogen conditions 
(GM) and induced differentiation by switching to low-
serum medium (DM) at 4 time points, which has been 
described in the Methods section. We carried out NonLoss 
analysis between the cells and samples from different time 
points (cells collected at 0, 24, 48, and 72 h) for both data 
sets on the default parameters. Some of the entities we 
ascertained were worth meditative which may contribute to 
discovering universal biological laws. 

Firstly, there were both intersections and differences of 
DBMs identified by bulk and scRNA-seq data, respectively. 
The intersections resulted in 0 vs. 24, 0 vs. 48, and 0 vs. 
72 comparisons of 2 technology solutions having 23, 
46, and 49 GO BP terms, respectively (Figure S3). The 
results showed both commonness and specialty on the 
discovery of biological function changes from bulk RNA-
seq and scRNA-seq data. The majority of the terms were 
associated with cell proliferation and differentiation, such 
as “negative regulation of G0 to G1 transition”, “sister 
chromatid cohesion”, “negative regulation of growth”, 
and so on. Due to bulk RNA-seq data providing more 
complete information and incorporating more genes 
for biological modules, bulk RNA-seq data garnered 
more DBMs under the same conditions and revealed 
higher stability and repeatability through IScore analyses  
(Figure 5A, available online: https://cdn.amegroups.cn/
static/public/atm-21-6401-1.xlsx). Nevertheless, scRNA-seq 
data was more sensitive to biological features relative to bulk 
RNA-seq and showed heterogeneity due to unsynchronized 
development among cell population, or contamination by 
other cells. For example, the GO terms such as “response 
to ischemia”, “cellular response to glucose starvation” 

and “response to cadmium ion” reflect the changes of 
microenvironments from the switch to low-serum medium 
(DM) that were highly consistent with expectations and 
were exclusively identified by the scRNA-seq data (available 
online: https://cdn.amegroups.cn/static/public/atm-21-
6401-1.xlsx). 

Secondly, by comparing the 0, 24, 48, and 72 h successive 
time orders using the 2 data types, we found that the DBM 
overlaps between successive time pairs were considerably 
smaller (Figure 5B). It also revealed that cell physiology 
states corresponding to stimulations changed at different 
time points. Finally, with time, physiological cell states 
gradually became comparatively balanced depending on 
the condition. This presented as a slowdown in DBM 
accumulation from both bulk and single-cell data. However, 
they still exhibited distinct functional variations between 
cell populations at successive time points (Figure 5C). 

By comparing DBMs identified from the scRNA-seq 
and bulk RNA-seq profiles, we could uncover functional 
changes that were undetectable when averaging over the 
cell population. In addition, we gained the ability to assess 
the level of heterogeneity of key differentiation regulators. 
Further development of this analytical technique may enable 
us to assess variations in proliferation and differentiation 
potential across individual cells. Collectively, these findings 
indicated that NonLoss could identify significant DBMs 
effectively and could be applied to bulk RNA-seq profiles. 

Discussion 

Most studied specimens of bulk RNA-seq consist of mixed 
cell types that display differences in their transcriptomic 
profiles, as changes in genes which are sensitive or 
responding to the condition may alter their expression 
significantly. The situation is even more serious in 
cancer research which obscures the signatures of tumor 
characteristics because the intra-tumor heterogeneity 
of tumor cells is different from normal control. To 
eliminate such cell type specific effects and secure research 
authenticity, the scRNA-seq technique can be used to 
identify rare but significant biological functions between 
conditions.

Traditional strategies for biological function research 
have focused on DE gene analysis between conditions of 
interest and then conducting gene enrichment analysis. 
To interpret the DE analysis result, GO terms or other 
biological functional modules have been used to assess the 
over-representation of a function in the DE genes (gene 

https://cdn.amegroups.cn/static/public/ATM-21-6401-supplementary.pdf
https://cdn.amegroups.cn/static/public/atm-21-6401-1.xlsx
https://cdn.amegroups.cn/static/public/atm-21-6401-1.xlsx
https://cdn.amegroups.cn/static/public/atm-21-6401-1.xlsx
https://cdn.amegroups.cn/static/public/atm-21-6401-1.xlsx
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enrichment analysis). Although useful, these methods 
ignore a lot of information that may provide more robust 
information about subtle changes at a transcriptional level 
(FC <2). 

It is important to consider biases such as incomplete 
knowledge of the target genome or functional annotation 
bases. Our ultimate goal was not to evaluate the results 
analyzed by DE and gene enrichment methods, but rather 
to examine whether the most significant features can be 
more effectively identified through a different analytical 
approach. Our proposed method, NonLoss, is particularly 
useful for efficiently translating scRNA-seq transcriptome 
to biological discoveries from an entire network of genes. 

An advantage of the single-cell approach is that we can 
study the distribution of expression levels across the whole 
cell population, thereby capturing cell-to-cell variability 
in gene expression. The expression relationship of genes 
within the same cell is key to the biological function analysis 

in our model. Therefore, different calculation methods of 
expression values do not affect the results. To explore the 
gain or loss of biological function by different stimuli in 
a single-cell, we carried out DBM analyses of normalized 
FPKM or RPKM of scRNA-seq profiles. The higher 
noise, technical problems, and even stochastic nature of 
transcription make the interpretation of results and cellular 
differences difficult to discern. More importantly, DE of 
a gene may be remarkably different between cells, despite 
not being functionally critical—and vice versa. Hence, the 
vast majority of genes with low or no differences should not 
be omitted from further analyses. Functional analysis was 
carried out using a small subset of genes called “DE genes”. 
These incomplete data inevitably skewed the results. To 
account for the confounding factor of expression level, we 
developed a more robust differential biological functions 
identification method. We aggregated a functionally related 
set of genes into one basket and requested the algorithm to 
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Figure 5 The overlap analysis of DBMs between different time pair comparisons. (A) The Venn diagram shows the number of DBMs 
overlap between cells of DM and cells collected 24, 48 or 72 h after serum switch, respectively. Upper panel is for bulk RNA-seq data and 
lower panel is for scRNA-seq data. (B) The Venn diagram shows the number of DBMs overlap between successive time paired comparisons. 
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re-classify its weight. Therefore, dimensionality reduction 
from a group of related genes transformed the functional 
module from a high-dimensional space into a low-
dimensional one. This modified module was much easier to 
visualize and interpret. NonLoss made it possible to acquire 
faint signals of gene expression and capture miniscule 
variations between cells or different conditions. When a 
composite of weak evidence was aggregated, the significant 
biological functions could be revealed. Furthermore, only 
the major sample IScores of the function module that were 
different between conditions were considered significant. 
In this way, we were able to obtain more reliable function 
modules with directionality. 

Conclusions

NonLoss was able to capture subtle gene expression 
disturbance in a functional gene-set. This is an optimization 
that was introduced in scRNA-seq data analysis, which 
enables biofunctional discovery to optimize DE analysis 
as a whole rather than as several independent genes. This 
methodology can more objectively and accurately be used 
to find important pathways or functions in various diseases 
and cell conditions. The GOs terms and KEGG pathways 
as well as self-defined function modules can be used as 
functional features with NonLoss. To the best of our 
knowledge, we are the first to propose this type of analytical 
method for DBM identification, based on whole single 
RNA sequencing data. Our tool was programmed in Python 
and is user-friendly, powerful, and easily accessible.
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Supplementary

Table S1 Blood transcriptional modules (BTM) identified by NonLoss and the overlap comparison to MAST method

BTM Module DIS log(FDR) MAST

type I interferon response (M127) 1.78 29.68 No

suppression of MAPK signaling (M56) 1.57 29.68 Yes

AP-1 transcription factor network (M20) 1.50 38.37 Yes

signaling in T cells (I) (M35.0) 1.26 29.68 No

complement activation (I) (M112.0) 1.07 29.68 No

enriched in B cells (V) (M47.4) 1.07 29.68 No

spliceosome (M250) 0.94 29.68 Yes

phosphatidylinositol signaling system (M101) 0.87 29.68 No

myeloid, dendritic cell activation via NFkB (II) (M43.1) 0.72 29.68 No

enriched for TF motif TNCATNTCCYR (M232) 0.71 29.68 No

enriched in T cells (II) (M223) 0.68 29.68 No

proteasome (M226) 0.63 29.68 Yes

cell cycle and growth arrest (M31) 0.62 29.68 Yes

leukocyte activation and migration (M45) 0.56 29.68 No

transcription elongation, RNA polymerase II (M234) 0.56 29.68 Yes

respiratory electron transport chain (mitochondrion) (M238) 0.54 29.68 Yes

myeloid, dendritic cell activation via NFkB (I) (M43.0) 0.54 29.68 No

translation initiation factor 3 complex (M245) 0.53 29.68 Yes

respiratory electron transport chain (mitochondrion) (M219) 0.52 29.68 Yes

respiratory electron transport chain (mitochondrion) (M216) 0.49 29.68 Yes

cell cycle, ATP binding (M144) 0.47 29.68 Yes

leukocyte differentiation (M160) 0.44 29.68 No

T cell differentiation (Th2) (M19) 0.43 38.37 No

mitotic cell cycle in stimulated CD4 T cells (M4.9) 0.42 38.37 No

BTM, Blood transcriptional modules; DIS, difference of IScore; FDR, false discovery rate.
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Figure S1 Heatmap shows IScore difference of GO BP category between Tumor and Normal mucosa. Furthermore, 28/386 (7.2%) BP GO 
terms were identified as DBMs by setting DIS threshold to 0.5. IScore, integrated scores; DBMs, differential biological modules; GO, Gene 
Ontology; BP, biological process; DIS, difference of IScore.
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Figure S2 The violin plot shows gene expression patterns in non-stimulated (Unstim) and cytokine-stimulated (Stim) MAST cell. The 
genes displayed in the graph are annotated in “type I interferon response (M127)”, “suppression of MAPK signaling (M56)”, “AP-1 
transcription factor network (M20)” and “signaling in T cells (I) (M35.0)”. The letter (E) indicates FPKM value.
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Figure S3 The venn diagram shows the number of DBMs overlap between scRNA-seq and Bulk RNA-seq data which were collected at 
different time points. DBMs identified by NonLoss between any pair of time points using bulk RNA-seq and single cell RNA-seq data 
respectively. (A) Calculated by cells of DM and cells collected 24h after serum switch. (B) Calculated by cells of DM and cells collected 48h 
after serum switch. (C) Calculated by cells of DM and cells collected 72h after serum switch. 
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