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A novel 1-D densely connected feature selection convolutional 
neural network for heart sounds classification
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Background: Heart sound auscultation, due to it being a non-invasive, convenient, and relatively low-cost 
technique, remains the dominant method for detection of cardiovascular disease. 
Methods: In this paper, we present a method for identifying abnormal heart sounds based on a novel Dense 
Feature Selection Convolution Network framework (Dense-FSNet). The Dense-FSNet is comprised of 
multiple, circular dense connectivity modules, called Clique Blocks. These Clique Blocks can allow low-
level and high-level features to stimulate each other for cyclic updates, which subsequently enhances the 
information flow among layers. Inspired by the channel-wise attention mechanism from Squeeze-and-
Excitation Networks (SENet), we adopted squeeze-and-excitation block to avoid the progressive growth of 
parameters. The effect of the model was assessed using the accuracy, specificity, sensitivity, and area under 
the curve (AUC) values. To improve model performance, in addition to the structures mentioned above, we 
incorporated a multi-scale attention mechanism into our framework. 
Results: Using this attention mechanism, our model was able to achieve adaptively spatial feature fusion 
by adjusting a hyper-feature that contains higher level visual information and lower-level features including 
edge details and context information. It is worth noting that data balance technology was also used in the 
process of building the model, and notable results have been achieved. 
Conclusions: Experience using the PhysioNet/CinC 2016 dataset shows that our proposed Dense-FSNet 
models achieve state of the art levels in the classification and detection of abnormal heart sounds.
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Introduction

It is well known that early diagnosis of congenital heart 
disease (CHD) is directly related to the preservation 
of human health. Pathological/organic damage of the 
human cardiovascular system can be reflected in heart-

related signals, for example in echocardiogram (ECG) 
and phonocardiogram (PCG) signals. Heart murmurs are 
important features associated to many of congenital heart 
disease, including regurgitation, stenosis of heart valves, 
left to right shunt lesions at the atrial, ventricular, or great 
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arterial levels. Cardiac auscultation could differentiate 
normal heart sounds from abnormal pathological murmurs, 
therefore, it remains the most effective screening methods 
for congenital heart disease. Serious cardiac pathology may 
exist without symptoms so that many patients miss the 
optimal time for surgery when they are diagnosed. The 
main advantages for early recognizing a cardiac disease 
are that newborns will be seen and assessed earlier and in 
better clinical conditions. Then, based on the results of 
auscultation, the doctor decides whether to recommend 
further examinations, including echocardiogram, magnetic 
resonance, etc., to facilitate the diagnosis. In fact, clinically, 
it also needs to rely on the professional medical knowledge 
and skilled auscultation ability of doctors to determine 
heart health status or disease type of the patient. However, 
this usually requires a lot of time to train an advanced and 
skilled cardiovascular diagnostics specialist, which results 
in a severe shortage of cardiovascular specialists in lower-
level hospitals and remote areas. Therefore, the need for 
objective and automatic auxiliary identification tools based 
on heart sound signals is particularly urgent.

R e s e a r c h  o n  t h e  a u t o m a t i c  i d e n t i f i c a t i o n  o f 
cardiovascular disease types based on heart sound signals 
began more than 50 years ago (1,2). However, the field still 
faces many challenges. For traditional machine learning, 
the ability to effectively clean the original PCG signal data, 
remove complex and diverse noise, and extract identifiable 
features has become particularly important. In general, 
heart sound recognition methods involve two categories: 
recording level methods and fundamental heart sounds 
level (FHSS level) methods. For the FHSS level method, 
firstly, a segment of recorded heart sound is divided 
into a series of FHSS (a complete cardiac cycle or its 
estimation), with feature extraction then used to construct 
the classification and recognition model. Considering the 
non-steady characteristic of the PCG signal and the strong 
correlation between each cardiac cycle which constitutes a 
heart sound record, our study used a fixed-step overlapping 
sliding window to obtain the estimation fragment of FHSS, 
also called heart sound patches. Using this framework, 
our model is capable of realizing the data expansion and 
diversity, which results in the trained model having a 
stronger robustness and generalization ability. In addition, 
our model achieves end-to-end training, which makes the 
inference process of the model more efficient.

In recent years, deep learning techniques have shown 
impressive performance in many fields, including in audio, 
image, and video recognition, such as object detection (3,4), 

image segmentation (5), edge detection (6), and speech 
recognition (7). An increasing number of researchers are 
devoted to building networks with better expressiveness. 
At present, there is a general trend of focus gradually 
shifting from feature engineering to network topology 
engineering. A particularly noteworthy trend is that the 
proposed convolutional neural network (CNN) structure 
is getting deeper and deeper. Chen et al. (8) used modified 
frequency slice wavelet transform (MFSWT) to convert 
the one-dimensional cardiac cycle signal based on logistic 
regression hidden semi-Markov model (LR-HSMM) 
algorithm (9) into a two-dimensional time-frequency 
image and then combined two CNN models using sample 
entropy (SampEn) to select proper model for classifying 
normal and abnormal heart sounds. This proposed 
method achieved classification accuracy of 0.93 using  
10-fold cross-validation on the PhysioNet/CinC Challenge 
2016 dataset. However, this method relies on heart 
sound segmentation which means it is influenced by the 
accuracy of heart sound segmentation. It is a challenging 
task due to the complexity of PCG signals easily being 
contaminated by internal physiological noise and external 
noise (10). Furthermore, this method depends on the 
SampEn threshold which determine the selection of proper 
CNN model for classification. Therefore, inappropriate 
SampEn threshold would affect model selection and 
thus the prediction accuracy. The original LeNet5 (11) 
contained 5 layers, and VGGNet (12) has been upgraded 
to include 19 layers. In recent years, the proposed highway  
networks (13) and residual networks (14) have surpassed 
100 layers, even reaching 1,000 layers. As the networks 
deepen, the performances of the models have been shown 
to significantly improve. However, further improvement 
of the network performance is directly hindered by the 
disappearance of gradients and degradation of network, 
which is due to the excessive depth of the network. The 
proposal of batch normalization (15), skip-layer connections 
between layers, has allowed, to a certain extent, solving 
of the problem of gradient disappearance and network 
degradation, making deeper network optimization 
possible. At the same time, a series of topologies for 
improving the flow of information have been proposed, 
such as deeply-supervised nets (16) and its variant (6),  
ResNet (14), inception-v4 (17) and so on, which allow 
further improvements of the performance of the deep CNN 
(DCNN).

There are an increasing number of researchers working 
on applying deep learning to the recognition of heart 
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tone signals, along with how to build a more effective 
network for heart sound signal recognition. The CNNs 
are particularly good at fusing spatial and channel-wise 
information in order to extract effective features, but 
only for local receptive field fusion extraction, especially 
in the shallow part of the network. Recent studies have 
demonstrated that the performance of the network can 
be improved by embedding some modules that capture 
spatial information. A representative example is the 
inception architectures (17,18), which embed multi-
scale processes in the modules to achieve competitive 
performance improvement. Based on recent developments 
of deep learning and the inherent characteristics of the 
PCG signals, the collected PCG signals have been shown 
to be susceptible to all kinds of noises from the external 
and internal environments; there are various types of heart 
murmurs, some of which are difficult even for experienced 
cardiovascular experts to judge by hearing only; the PCG 
signals are generally 10–20 s of heart sound recordings, 
which have obvious temporal and nonstationary properties. 
Thus, we proposed a dense feature selection convolution 
network (Dense-FSNet) which integrates Clique Blocks, 
SE block and SK-block performed on feature maps from 
convolution and inverse convolution operations, as a result 
of enhancing the information flow between low-level and 
high-level features, meanwhile extracting discriminative 
features from the fused multi-scale features for classification 
between normal and abnormal heart sounds. 

Our proposed network architecture focuses on the 
following points: (I) the stacking of 4 cyclic densely 
connected Clique Blocks (19) ensure the maximum 
information flow between network layers. Unlike DenseNet, 
each layer is both an input and an output to the other layers, 
so that the information flow between low-level and high-
level features is maximized in the module; (II) between 2 
neighboring Clique Blocks, we also introduce the Squeeze-
and-Excitation networks (SENet) (20) attention mechanism 
which is utilized for adaptively recalibrating channel-wise 
feature responses by modelling interdependencies between 
channels. During the process, by importing the attention 
mechanism, our model can strengthen the key features, 
whereas it weakens the irrelevant features, so as to alleviate 
the over-fitting drawback caused by over-parameterization 
of the deep network to a certain extent. Our SE Block can 
also be regarded as a kind of bypass connection, which can 
mitigate the effect of gradient disappearance; (III) through 
convolution and inverse convolution operations, the 
feature channel dimensions of shallow and deep modules 

are downscaled, and fusing features by element-wise-
sum operation to build a multi-scale hyper-feature, which 
improves the classification capability of the network; (IV) we 
adopt an SK-block to model the fused multi-scale features 
and adaptively calibrate the final multi-scale features from 
a global perspective. Due to the network structure of cyclic 
dense connection and property of dual feature filtering, we 
refer to our approach as dense feature selection convolution 
network (Dense-FSNet).

Herein, we have performed a comprehensive evaluation 
of our proposed method with the PhysioNet computing in 
cardiology (CinC) 2016 challenge database (21). This the 
largest database of heart sound classifications accessible 
today. Compared with previous studies, our method was 
able to achieve state-of-the art levels which means it 
could achieve the highest accuracy when testing on the 
same database, and we present a detailed description and 
comparative analysis in the Methods and Results section. 
We present the following article in accordance with the 
STARD reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-4962).

Methods

Related work

The PCG analysis process generally involves several 
steps including heart sound pre-processing, heart cycle 
segmentation, feature extraction, and heart sound 
classification. Among these features, the accuracy of 
cardiac cycle segmentation is crucial for the classification 
performance. Cardiac cycle segmentation methods can 
be broadly divided into the following categories: methods 
based on envelope, methods based on feature extraction, 
and methods based on machine learning. Currently, 
the best method, logistic regression-hidden semi-
Markov method (LR-HSMM) (9), is based on the hidden 
Markov model (HMM) theory. Although this method 
has achieved satisfactory results with publicly available 
datasets, it assumes that the cardiac cycle state conditions 
are independent, which does not fully reflect real-world 
conditions, along with requiring pre-processing with noise 
reduction to extract the heart sound features, which does 
not adapt well to the original heart sounds with more noise.

Traditionally, cardiac cycle segmentation and heart 
sound classification both involve feature extraction of the 
heart sound signal. Typically, three types of features are 
present in methods for heart sound feature extraction based 
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on artificial design: time, frequency, and time-frequency 
domain-based features. Although these methods are easy 
to understand and compute, important information can 
be lost during the process. Furthermore, due to the non-
stationary nature and diversity of heart sounds, it remains 
a challenge to extract more informative and discriminative 
feature representation from the original heart sound signals. 
The ultimate purpose of PCG analysis is to determine 
whether a heart sound has a pathological murmur, which 
is a heart sound classification problem. Methods used 
for heart sound classification include support vector 
machines (SVMs) (22,23), HMMs, k-nearest neighbors  
(KNNs) (22), neural networks (24-26), and other machine 
learning-based methods such as decision trees (27), Gaussian 
mixture models (GMMs) (28), and random forests (29). 
Whitaker et al. (23) extracted sparse coefficient matrices 
and time-domain features using SVM for heart sound type 
classification. Zhang et al. (30) used scaled spectrograms 
and partial least squares regression-based feature extraction 
in addition to support vector machine classifiers for heart 
disease detection. Hamidi et al. (22) used two different 
feature extraction methods, specifically Mel-frequency 
cepstrum coefficients (MFCCs) and fractal properties 
through pilling as features and used a KNN classifier based 
on Euclidean distance for classification. To further improve 
the classification performance, multi-classifier integration 
has also been introduced in several heart tone classification 
methods (24,31). Although the model-based integration 
approach may provide some improvement in classification 
accuracy, it also increases the computational complexity of 
the model, therefore making it more difficult to understand. 
Although traditional classifiers are simple to train and easy 
to deploy, they rely on handcrafted features that may not 
capture the most useful pattern of the PCGs.

In recent years, deep learning (DL) technology 
has rapidly developed. As one of the branches of DL, 
CNN technology has made remarkable achievements in 
many fields such as image, language, natural language 
processing (NLP), and so on by virtue of the strong feature 
representation power. In addition, the large open dataset of 
heart sounds PhysioNet/CinC 2016 (21) set the stage for 
the development of a DL-based classification method for 
heart sounds. Potes et al. (24) integrated AdaBoost’s variant 
classifier with CNN and subsequently won first place in the 
PhysioNet/CinC 2016 competition. Noman et al. proposed 
an ECNN method (26) that integrated one dimensional 
(1D) and 2D convolution. The 1D CNN can learn features 
directly from the original heart sound signal, while 2D 

CNN learns 2D time-frequency features based on MFCCs. 
Although these deep learning-based methods have been 
shown to achieve good classification performance, they lack 
a fine-grained architectural design and redundant model 
parameters, which are not sufficiently expressive to learn 
the complex patterns of PCGs. Xiao et al. (25) designed 
a 1D CNN architecture that was able to achieve good 
classification results without cardiac cycle segmentation. 
The CNN architecture exploits attentional mechanisms 
at both the spatial and channel levels to maintain a low 
number of parameters and obtain the distinguishing 
features. Inspired by CliqueNet (19), we have designed a 
new CNN architecture which was able to not only increase 
the CNN information flow, but also introduce a spatial 
attention mechanism. On the basis of integrating CNN 
multi-scale features, we were able to adaptively correct the 
weights of features at different scales, enabling the model to 
obtain a strong feature expression, and achieving excellent 
performance in PhysioNet/CinC 2016. 

Data description

The heart sound signal public dataset PhysioNet/CinC 
2016 (21) was used to construct and evaluate our model. 
The dataset contains 3,240 heart sound recordings, of which 
2,939 are in the development set (2,425 and 514 positive 
abnormal heart sound recordings, respectively), and 301 
heart sound recordings are in the independent test set. It 
should be noted that the dataset is composed of 6 different 
sources (which we denote as datasets a, b, c, d, e, and f). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Pre-processing

While deep CNNs have their own powerful expressive 
capabilities, as a result the networks require large amounts 
of data to drive the training of the models. Lack of data may 
result in a high risk of over-fitting. In addition, the multiple 
sources and significant imbalance of both the positive 
and negative sample distributions of the data set may also 
contribute to the training model focusing on categories with 
a large number of samples and “underestimating” categories 
with a small number of samples. Subsequently, this may 
affect the generalization ability of the model to test data. To 
solve this problem, we used an overlapping sliding intercept 
method (Figure 1) to amplify the data proportionally 
according to the data distribution. 
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Firstly, the PCG signals were down-sampled to  
1,000 Hz, with the bands below 25 Hz and above 400 Hz 
respectively removed using a Butterworth band-pass filter. 
This resulted in the removal of both the low- and high-
frequency noise in order to improve the signal-to-noise 
ratio. The development set was then processed as follows: 
analysis of the sample distribution of each sub-data set 
and determination that subset f was very different from 
the other 5 data sets and the sample size was very small, 
subset f was therefore treated as an outlier sample removal. 
Furthermore, in order to construct the final training set, 
each data subset was randomly sampled equally in another 
category according to the lesser amount of data (which was 
random 200 times). For each PCG signal, a series of heart 
sound patches were obtained by sliding the signal with a 
fixed window size and a fixed step size. This process was also 
used as the input for subsequent model training. As detailed 
in the Methods and Experiments section, a sliding window 
with a window size of 800 and a step size of 200 was used to 
obtain our patch data set. By using this approach, we were 
able to greatly increase both the sample size and diversity 
of the samples in order to make the model more robust to 
acquisition.

Proposed CNN

As shown in Figure 2, the backbone network of our proposed 
Dense-FSNet consists of a stack of 4 cyclically densely 
connected Clique Blocks. Behind the first 3 Clique Blocks, 
channel-wise feature adaptive activation processing via SE 
block was performed, with the model ending proposed. 
Subsequently, the multi-scale attention mechanism adaptively 
activates and then fuses features from different scales of the 
model to form the final classification features. 

Clique blocks

Inspired by CliqueNet (19), we successfully built the Clique 

Blocks. This algorithm uses a bi-directional circular dense 
network module, an architecture inspired by the long-short 
term memory (LSTM) and attention mechanism in which 
each layer is both an input and an output of the other layers. 
By using this architecture, our model is better able to focus 
on features relevant to the training task by multiplexing 
the feature maps of the convolutional output. In addition, 
this forward and backward connection between the 
convolutional layers can greatly enhance the information 
flow in the deep network to take full advantage of the 
spatiotemporal information contained in the data. Each 
module of the Clique Block can be divided into two phases. 
The first stage is propagated similar to DenseNet, which 
in this context can be viewed as the initialization process. 
In this stage, the output of the front layer takes the input 
of the back layer, and the data flows from the front layer to 
the back layer according to the diagram of the upper sub-
figure. In the second stage, the input of each convolutional 
operation includes not only the output features of all 
previous layers, but also those of subsequent layers. The 
second stage of the convolutional feedback structure uses 
higher level visual information to refine the features of 
the previous stage in order to achieve spatial focus. In this 
stage, the output data flow of each updated layer flows again 
to the last layer according to the diagram of the lower sub-
figure, and the output of the last layer takes the output of 
the whole Clique Block.

Squeeze-and-excitation block

It is known that the core of DCNN is based on convolutional 
operations, which are essentially the fusion of spatial and 
channel dimensional information of local receptive fields. 
Our proposed Dense FSNet backbone module, Clique Block, 
greatly enhances feature multiplexing and information flow 
in the network through cyclic dense connections. However, 
it is also prone to over-parameterization, which may lead 
to model overfitting. While, the SENet proposed by Hu  

Figure 1 The overlapping sliding of heart sounds.

0 500 1000 1500 2000 2500 3000 3500 4000
Time, ms

A
m

pl
itu

de
, m

0.50

0.25

0.00

–0.25

–0.50



Zhou et al. 1-D convolutional model for heart sounds classification

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(24):1752 | https://dx.doi.org/10.21037/atm-21-4962

Page 6 of 12

et al. (20) could improve the representational capacity of a 
network by enabling it to preform dynamic channel wise 
feature recalibration. Firstly, the module performs a GAP 
(global average pooling) operation on the input feature map 
X, thus aggregating the global spatial information for the 
channel representation, which can also be considered as the 
statistics of each channel feature. In order to simplify the 
operation, the bottleneck structure was constructed with 
two FC layers. The sigmoid activation function is used to 
obtain the activation weights of each channel feature. The 
final output of this module is the result of the Scale operation 
on the input and activation weights of the module, which 
enables adaptive correction of each channel feature, and can 
also be understood as channel-wise feature filtering.

Multi-scale attention mechanism

It is widely accepted that the features extracted from CNN 
networks become increasingly abstract as the network 
deepens, and it becomes progressively more important 
to combine the low-level visual features with the high-

level semantic features to build a more effective network 
framework for different business scenarios. Our proposed 
Dense-FSNet goes through four cyclic densely connected 
modules that output 1/3, 1/6, 1/12, and 1/24 features relative 
to the input, compared to other studies that construct multi-
scale hyper-features via element-wise sum or concatenate 
operations. The Multi-Scale Attention Mechanism module 
(Figure 2) is able to not only construct hyper-features, but 
also adaptively adjust the proportional weights of various 
scale features in the hyper-feature according to the different 
stimuli received by the neuron. In turn, these can be used 
to globally analyze the Multi-Scale Attention Mechanism. 
The 4 feature groups of different scales exported by Base-
Net are unified to 120×125 dimensions by a convolutional 

layer with a kernel size of 3, corresponding to 1 2 3 4, , ,
1 1 1 1d d d d

M M M M  
respectively, noting the hyper-feature as M:

1 2 3 4
1 1 1 1d d d dM M M M M= + + + 	 [1]

The hyper-feature then goes through a global average 

Figure 2 The network architecture of Dense-FSNet. Dense-FSNet, Dense Feature Selection Convolution Network framework.
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pooling layer (GAP) in order to generate the statistics v of 
the feature, where C∈R :

( ) ( )1

1 L
c GP c ci

v F M M i
L =

= = ∑ 	 [2]

The bottleneck structure is constructed through the FC 
layer, with the number of channels first halved to C/2 and 
then boosted to C. Finally, the adaptive activation vectors  
[α β γ δ] for each multi-scale feature are generated through 
the softmax layer. The activation vector is then multiplied 
with the set of features of each scale to obtain a new 
adaptively corrected hyper-feature i.e., Ffinal for the final PCG 
signal classification identification.

1 2 3 41 1 1 1

1
final d d d dF M M M Mα β γ δ

α β γ δ

= + + +

= + + +
	 [3]

Statistical analysis

The experimental design used here was divided into 
two main parts in order to: (I) compare the training and 
testing performance of our proposed model algorithm 
and the current algorithm with better results (1-3) on the 
same dataset, and (II) conduct a screening comparison 
experiment on the main hyper parameters of our proposed 
model framework. Through systematic comparative 
analysis, we found that our proposed Dense-FSNet 
achieved a significant improvement in the recognition of 
abnormal heart sounds when compared to other algorithms. 
In order to verify the robustness of the model, a 10-fold 
cross validation experiment was also conducted. Finally, a 
1D Grad-Cam was used to visualize the activation of the 
predictions to help us understand the model and enhance 
the interpretability of the results, as shown in the Results 
section.

The model training process is patch-based, so a patch-
bag for testing was also generated, and then voted to 
determine the final category (the threshold is set to 0.5, i.e., 
if more than half of the patches are abnormal, the segment 
is considered abnormal and vice versa). The effect of the 
model was assessed using the accuracy, specificity, sensitivity, 
and area under the curve (AUC) values, as follows: 

TP TNAccuracy
TP FP TN FN

+
=

+ + +
	 [4]

TPSensitivity
TP FN

=
+ 	 [5]

TNSpecificity
TN FP

=
+ 	 [6]

Where true positive (TP): positive samples predicted 
to be positive; false positive (FP): negative samples that 
are predicted to be positive; false negative (FN): positive 
samples that are predicted to be negative; true negative (TN): 
negative samples that are predicted to be negative.

Results

Evaluation on the test set

The heart sound public dataset PhysioNet/CinC 2016 
independent test set contains a total of 301 heart sound 
recordings, of which 151 are abnormal heart sounds and 
150 are normal heart sounds. In order to better compare 
and analyze the performance of our proposed Dense-
FSNet in heart sound signal recognition, we conducted 
systematic experiments to compare it with several current 
cutting-edge algorithms, including the fusion model of 
AdaBoost and CNN proposed by PhysioNetCinC 2016 
challenge winner Cristhian Potes (24). These models 
achieved accuracy, specificity, and sensitivity of 0.827, 
0.69, and 0.97 respectively on an independent test set. Bin  
Xiao (25) proposed a 1-D convolutional model for end-to-
end training prediction, which achieved accuracy, specificity, 
and sensitivity of 0.814, 0.74, and 0.89 respectively. 
Similarly, Noman et al. (26) proposed the ECNN model 
based on the eigen gram of heart sound signals, which 
achieved accuracy, sensitivity, and specificity of 0.811, 
0.810, and 0.810, respectively. When compared to other 
algorithms, our proposed Dense-FSNet model achieved an 
accuracy, specificity and sensitivity of 0.867, 0.94 and 0.79 
respectively, which is 4.01% higher than that of Cristhian 
Potes (24) and 5.61% and 5.31% higher than that of  
ECNN (26) and Bin Xiao (25), respectively. The accuracy 
for each algorithm is presented in Table 1. In conclusion, 
our model has significant performance advantages.

In order to compare and analyze more intuitively, we also 
analyzed the changes in the accuracy of 1D-convolution, 
ECNN, and Dense-FSNet with increasing number of 
iterations during the training process. According to Figure 3,  
the model of 1D-covnlution and ECNN performance 
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stabilized after 20 epochs of iterations, whereas Dense-

FSNet continued to improve by 20 epochs before 

converging and achieving the best results.
The results of receiver operating characteristic 

(ROC) statistical analysis for Dense-FSNet, ECNN, 
and 1D-convolution are shown in Figure 4. The AUC 
value of our proposed algorithm is the highest, reaching 
0.93, whereas the other 2 algorithms are 0.88 and 0.91, 
respectively.

Super-parameter selection

The algorithmic framework proposed in this study, Dense-
FSNet, has several key hyperparameters that need to be 
adjusted. One of key hyperparameters is the window size 
and step size when performing sliding window to get heart 
sound patches. In this paper, we use a fixed size step size 
[200], and the grid search method was used to select the 
window size. We found that when the window size is 800, 
the performance of the model is basically optimal, and 
further increasing the window size does not improve or even 
leads to performance degradation. Further analysis revealed 
that since our data down-sampled to 1,000 Hz, 800 sample 
points covered one cardiac cycle of most PCG signals, 
which also supported the rationality of the window size of 
800. We also compared and analyzed whether adding the 
Multi-Scale Attention Mechanism module to our proposed 
Base-Net had an impact on the predictive performance 
of the model. The results showed that adding the Multi-
Scale Attention Mechanism module was able to significantly 
improve the performance of the model. It is noteworthy 
that due to the multi-source nature of the PhysioNet/CinC 
2016 dataset and the extreme imbalance of positive and 
negative samples, it becomes crucial to make a reasonable 
data balance during the model training process. Detailed 
comparison results can be found in Table 2.

Cross validation result

To better validate the robustness of the comparison 
algorithms, we performed a 10-fold cross validation analysis 
of 1D-convolution (25), ECNN (26), and our proposed 
Dense-FSNet on the PhysioNet/CinC 2016 dataset. The 
development set was divided into 10 equal parts, each 
time using 9 training and 1 testing, and finally averaged. 
From the experimental results, as Table 3 showed, the 
accuracy, sensitivity, and specificity of 1D-convolution 
cross validation were 0.93, 0.86, and 0.95, respectively; 
the accuracy, sensitivity, and specificity of ECNN cross 
validation were 0.9191, 0.933, and 0.87, respectively; the 
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ECNN, and 1-DConv on an independent test set. Dense-FSNet, 
Dense Feature Selection Convolution Network framework; 
ECNN, Ensemble Convolutional Neural Network.

Table 1 The performance of each algorithm on an independent 
test set

Method Accuracy Sensitivity Specificity

1-D-covnlution (25) 0.814 0.740 0.890

ECNN (26) 0.811 0.810 0.810

Cristhian Potes (24) 0.827 0.970 0.690

Dense-FSNet (our model) 0.867 0.940 0.790

ECNN, Ensemble Convolutional Neural Network.
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Dense-FSNet proposed in this paper was still able to 
achieve the highest accuracy, sensitivity, and specificity in 
the cross-validation session. The accuracy, sensitivity and 
specificity were determined to be 0.9509, 0.885, and 0.97, 
respectively, which once again supports the superiority of 
our proposed algorithm in the heart tone signal recognition 
project.

Heart sound recognition heatmap

In order to better understand which heart sound segments 
are used to obtain the classification results when a particular 
model makes a decision, we elected to use Grad-CAM (32) to 
visualize the heart sound regions of interest to the model. Our 
results showed that when the model predicted normal heart 
sound, it tended to pay attention to the information of S1 and 
S2 regions of heart sound, whereas when the model predicted 
abnormal heart sound, it activated different regions according 
to the location of murmur (as shown in Figure 5). It should 
be noted that due to the complexity of the heart sounds, the 
regions activated by the model are difficult to understand 
for some samples, despite the general trend described above. 
Nonetheless, the use of Grad-CAM to visualize the regions 
of heart sounds that the model relies on making decision 

provides some medical interpretability to the model, which 
can be useful for subsequent model improvement. 

Discussion

In this study, we constructed a new deep CNN for the 
detection and identification of abnormal heart sounds 
that was capable of obtaining results significantly better 
than current models. The framework constructed, Dense-
FSNet, is able to enhance the information flow of the 
entire network through employment of the circular dense 
connection module Clique Block, which serves to fully 
improve the feature utilization efficiency and reduce feature 
redundancy. Subsequently, channel-wise feature adaptive 
correction was used to strengthen critical features and 
weaken irrelevant or minor features so as to prevent over-
parameterization of the model and to filter local features. 
At the end of the network, we also used the Multi-Scale 
Attention Mechanism in order to not only fuse the features 
from different scales of the network to obtain the Hyper 
Feature, but also use the Attention Mechanism to adaptively 
correct the weights of different scales to perform global 
feature filtering for the final heart sound recognition. 
Experimental evaluations on the dataset PhysioNet/CinC 
2016 showed that our proposed algorithm achieved better 
performance than the current state-of-the-art method, 
which demonstrates the potential and significance of 
building deep networks suitable for heart tone signal 
recognition. 

Dense-FSNet  suppl ied  95% ef fec t iveness  for 
discriminating heart  sound data as  innocent and 
pathological murmurs, which means that 95 patients out of 
100 were correctly diagnosed. When an innocent murmur 
is detected, it does not represent current or future illness, 
unless it is pathological. But a physician often needs to 

Table 2 Performance of Dense-FSNet under different hyperparameters

Window size Step size Multi-scale attention Data balance Acc. Sen. Spe.

600 200 Y Y 0.8432 0.93 0.75

1,000 200 Y Y 0.8638 0.95 0.78

1,200 200 Y Y 0.8505 0.93 0.77

800 200 Y Y 0.8671 0.94 0.79

800 200 Y N 0.8272 0.80 0.85

800 200 N Y 0.8472 0.92 0.77

Dense-FSNet, Dense Feature Selection Convolution Network framework.

Table 3 The results of the 10-fold cross-validation between models 
taken from previous literature and our model

Method Accuracy Sensitivity Specificity

1-D-convolution (23) 0.93 0.86 0.95

ECNN (24) 0.92 0.93 0.87

Dense-FSNet (our model) 0.95 0.89 0.97

Dense-FSNet, Dense Feature Selection Convolution Network 
framework; ECNN, Ensemble Convolutional Neural Network.
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order an echocardiogram for reassurance, whereas primary 
health care institutions or low-level hospitals are often not 
equipped with echocardiography equipment. This analysis 
of heart sounds provides information that can be very useful 
for a physician when deciding whether or not to release 
the patient or to send him/her for an echocardiogram. The 
limitation is that when pathological murmurs are detected 
by this method, it still needs to be combined with clinical 
history, physical examination and imaging examination to 
facilitate the diagnosis. Meanwhile, electrocardiograms 
are not routinely used to screen for or diagnose congenital 
heart disease unless the child has symptoms or disease 
associated with arrhythmia. We acknowledge that our 
framework is not only limited to the classification of one-
dimensional audio data like PCG, but may also be extended 
to other artificial intelligence (AI) domains, including image 
recognition, target detection, and speech recognition. 
Based on these results, we propose that additional research 
will combine LSTM and the idea of multi-model fusion to 
further investigate the application of deep learning in heart 
sound signal recognition, and also extend our proposed 
network model to other research directions. This combined 
innovation model may bring higher accuracy and sensitivity 
in the application of heart sound recognition. 
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