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Background: Despite decades of research, no precise mechanisms of Alzheimer’s disease (AD) development 
have been elucidated. This study aimed to investigate novel diagnostic biomarkers in both peripheral blood 
cells and hippocampus tissue, and the pathogenesis of memory impairment in AD.
Methods: mRNA microarray data, including hippocampus samples (GSE1297 and GSE5281) and 
peripheral blood mononuclear cells (PBMCs) (GSE63060 and GSE63061), associated with AD were 
obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) 
between AD and normal-aging samples were screened through a comprehensive analysis of multiple gene 
expression spectra after gene reannotation and batch normalization. The Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways were used to analyze hub genes and to discover 
potential biomarkers related to AD. Protein-protein interaction (PPI) network maps were constructed to 
visualize the correlation between possible genes. The CIBERSORT algorithm was built to explore the 
patterns of PBMC infiltration to investigate the role of inflammation in the pathogenesis of AD.
Results: The bioinformatics analysis indicated 1,261 DEGs in the hippocampal samples and 290 in PBMCs 
when comparing patients with AD with normal-aging individuals. We selected 28 genes co-expressed in 
the hippocampus and PBMCs. A functional analysis of differential genes revealed that they were primarily 
involved in neuronal death, immune response, and mitochondrial function. Further, immune cell infiltration 
patterns demonstrated that the levels of naive CD4+ T cells, resting natural killer cells, M0 macrophages, and 
activated mast cells were higher in the peripheral blood of patients with AD, while resting memory CD4+ T 
cells were significantly lower.
Conclusions: The key gene changes present in both the hippocampus and PBMCs highly suggest their 
utility as an AD biomarker. In addition, according to our present results, immune abnormalities may have an 
important role in AD pathophysiology. When patients display these peripheral blood immune abnormalities, 
they may be recognized as being at high risk of developing AD.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disease with primary clinical manifestations, including 
memory decline, cognitive impairment, and behavioral 
abnormalities (1). In 2018, AD was diagnosed in one 
individual every 3 seconds worldwide. Fifty million people 
are currently living with AD, and this number will be three 
times as high by the year 2050. The global cost of AD care 
in the year 2018 was $1 trillion, which is anticipated to rise 
to $2 trillion by 2030 (2). Considering the high morbidity 
and economic burden of AD, disentangling the etiology, 
and finding preventive measures are urgently needed.

Despite decades of research, no precise mechanisms 
of AD development have been elucidated. Hypotheses 
include the aggregation of amyloid-β proteins into senile 
plaques (3), abnormal phosphorylation of τ protein 
to form neurofibrillary tangles (4), and early loss of  
synapses (5). Early detection methods were based on 
biomarkers expressed in the brain tissue and cerebrospinal 
fluid, which present challenges due to the highly invasive 
collection process and high cost. Therefore, obtaining 
peripheral blood biomarkers, which is non-invasive and 
cost-effective, is more applicable. Trying to find common 
genes differentially expressed in the peripheral blood 
cells and brain tissue is one of the most interesting aspects 
of investigating AD. Various diagnostic methods for AD 
have been studied, including cognitive tests (6), structural 
magnetic resonance imaging (7), electroencephalogram (8), 
18F-fluorodeoxyglucose positron emission tomography (9), 
and cerebrospinal fluid biomarkers (10); however, each 
method has its own limitations. Therefore, we performed a 
bioinformatic analysis using human blood gene expression 
data from the Gene Expression Omnibus (GEO) database 
to explore more suitable detection methods.

In addition to the classical pathological hallmarks, 
neuroinflammation has recently been observed in AD (11). 
Neuroinflammation is not restricted to the microglia and 
astrocytes, which are the brain’s resident immune cells, 
but includes strong interactions with peripheral immune 
cells including neutrophils (12), macrophages (13), and 
lymphocytes (14). Specifically, T-lymphocytes have been 
detected in human AD post-mortem specimens (15). In this 
study, we addressed the role of gene expression in AD and 
focused on the possibility that peripheral immune cells serve as 
hematological signatures that could aid in both diagnosis and 
management. We present the following article in accordance 
with the MDAR reporting checklist (available at https://atm.

amegroups.com/article/view/10.21037/atm-21-4974/rc).

Methods

Data acquisition

The microarray datasets used in this study were selected 
from the GEO database of the National Center for 
Biotechnology Information (http://www.ncbi.nlm.gov/
geo). For the selection of expression profiling datasets, the 
following search terms were used: {“Alzheimer disease” 
[MeSH Terms] OR Alzheimer’s disease [All Fields]} AND 
{“Homo sapiens” [porgn] AND “Expression profiling by 
array” [DataSet Type]}. These search criteria allowed for 
the identification of different mRNA expression datasets, 
of which only those with >20 samples (total of control 
and AD samples) were selected for further computational 
analyses. Among them, two databases of hippocampus 
samples (GSE1297 and GSE5281) (16) and two databases 
of peripheral blood mononuclear cells (PBMCs) (GSE63060 
and GSE63061) (17) were selected (Table 1).  This 
research did not involve a human subject trial. Instead, 
the data came exclusively from the GEO. The study was 
conducted in accordance with the Declaration of Helsinki  
(as revised in 2013).

Batch normalization and differential expression analysis

The multiple dataset analyses were based on different 
instruments with different handlers or in different 
groups. First, we integrated GSE1297 and GSE5281 
using R software with the “sva” package (version 4.0.3; R 
Foundation for Statistical Computing, Vienna, Austria). 
The combat approach was used to eliminate batch effects 
from different studies. Then, we used the “limma” package 
to identify differentially expressed genes (DEGs); value 
fold changes (FC) with |logFC| >2 and adjusted P value 
<0.05 as cutoff values, false discovery rate <0.05). The batch 
normalization of GSE63060 and GSE63061 used the same 
method. DEG pheatmaps were created using the trimmed 
mean of the M value normalization factors.

Enrichment analysis and protein-protein interaction (PPI)

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses of 
DEGs were used in the “clusterProfiler” package in R. 
GO information was screened with adjusted P value <0.05, 

https://atm.amegroups.com/article/view/10.21037/atm-21-4974/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-4974/rc


Annals of Translational Medicine, Vol 10, No 2 January 2022 Page 3 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(2):29 | https://dx.doi.org/10.21037/atm-21-4974

including the function of DEGs from three aspects: cellular 
component, molecular function (MF), and biological 
process (BP). The KEGG pathway terms with adjusted P 
value <0.05 were significantly enriched, depicting utilities 
of the biological system and high-level functions. STRING 
(version 11.0; https://string-db.org) is an online tool that 
provides visualization of PPI networks. Networks were 
performed based on gene expression, and the minimum 
required interaction score of 0.7 was considered statistically 
significant.

Exploring immune infiltration 

CIBERSORT (https://cibersort.stanford.edu/) is a versatile 
computer algorithm that quantifies immunological 
characteristics based on gene expression signatures. We 
downloaded a gene signature matrix from CIBERSORT 
that included 22 immune cell types. These cells are a 
recategorization of 10 major cell types, including naive 
and memory B, 7 kinds of T (CD8+ T; activated memory, 
native, and resting memory CD4+ T; and follicular helper, 
regulatory, and γδ T), 3 kinds of macrophages (M0, M1, and 
M2), resting and activated dendritic, resting and activated 
mast, resting and activated natural killer, monocytes, 
eosinophils, neutrophils, and plasma cells. Then, we 
predicted the proportions of the 22 types of infiltrating 
immune cells in the AD and normal-aging samples. The 
number of permutations was set at 100 to improve the 
deconvolution algorithm’s accuracy, and P<0.05 was 
regarded as statistically significant.

Statistical analysis

All analyses were performed using R v.4.0.3 (https://www.

R-project.org). All data were expressed as means ± standard 
deviations (SDs). The Wilcoxon rank-sum test was used for 
comparison between two groups. All tests were two-sided, 
and P<0.05 was considered statistically significant.

Results

A total of 576 samples, comprising 54 hippocampal tissue 
expression samples and 522 PBMC expression samples, 
were included in the current study. Among the hippocampus 
tissue expression subset, 9 normal-aging individuals and 
22 patients with AD were obtained from GSE1297, and 
13 normal-aging individuals and 10 patients with AD 
were obtained from GSE5281. For PBMCs, 104 normal-
aging individuals and 145 patients with AD were obtained 
from GSE1297, and 134 normal-aging individuals and 139 
patients with AD were obtained from GSE5281 (Table 1). 
In the hippocampus tissue expression subset, the mean age 
of the 22 normal-aging individuals was 81.95±9.12 years, 
of whom 7 (31.82%) were female; the mean age for the 
32 patients with AD was 83.63±8.19 years, of whom 20 
(62.5%) were female. In the PBMC subset, the mean age 
at onset of the 238 normal-aging individuals in the was  
74.02±6.32 years, of whom 143 (60.08%) were female; 
the mean age at onset for the 284 patients with AD was 
76.62±6.73 years, of whom 184 (64.79%) were female  
(Table S1).

After batch normalization, the DEG analysis was 
performed using R. A total of 1,261 DEGs were found 
in the hippocampus tissue subset by matching GSE1297 
and GSE5281, including 120 upregulated and 1,141 
downregulated DEGs (Figure 1A). A total of 290 DEGs 
were found in the PBMC subset by matching GSE63060 
and GSE63061, including 4 upregulated and 286 

Table 1 GEO microarray datasets

GEO ID Platform Normal-aging sample AD sample Resource

GSE1297 GPL96 [HG-U133A] Affymetrix Human 
Genome U133A Array

9 22 Hippocampus

GSE5281 GPL570 [HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array

13 10 Hippocampus

GSE63060 GPL6947 Illumina HumanHT-12 V3.0 
Expression BeadChip

104 145 Peripheral blood

GSE63061 GPL10558 Illumina HumanHT-12 V4.0 
Expression BeadChip

134 139 Peripheral blood

GEO, Gene Expression Omnibus; ID, identification; AD, Alzheimer’s disease. 

https://www.R-project.org
https://www.R-project.org
https://cdn.amegroups.cn/static/public/ATM-21-4974-Supplementary.pdf
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Figure 1 Analysis of differential expressed genes. Volcano plots of differential expressed genes in (A) hippocampus tissue and (B) PBMCs. 
The red dots represent the upregulated genes based on an adjusted P<0.05 and logFC >2; the green dots represent the downregulated genes 
based on an adjusted P<0.05 and logFC <2; and the black spots represent genes with no significant difference in expression. Heatmap of 
differential expressed genes in (C) hippocampus tissue and (D) PBMCs. The red color represents the upregulated genes; the green color 
represents the downregulated genes; and the black color represents genes without change. FC, fold changes; adj.P.V, adjusted P value; GEO, 
Gene Expression Omnibus; AD, Alzheimer’s disease; PBMCs, peripheral blood mononuclear cells. 

downregulated DEGs (Figure 1B). The DEGs identified in 
each subset are shown in Figure 1C,1D. The results showed 
28 differential mRNA expressions among both hippocampus 
tissue and peripheral blood sets (Figure 2, Table S2). 

To explore the potential biological functions and 
signaling pathways of DEGs in patients with AD, we further 
enriched and analyzed the two subsets. GO enrichment 
analysis is useful for uncovering the significantly integrated 
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Figure 2 Differential expression of the 28 common genes between AD and normal tissues in the (A) hippocampus tissue and (B) PBMCs. *, 
P<0.05; **, P<0.01; ***, P<0.001. AD, Alzheimer’s disease; PBMCs, peripheral blood mononuclear cells.

DEGs. Results of the three most significant BP terms, 
including biological process, cellular component, and MF, 
in hippocampus tissue are shown in Figure 3. As for BP 
terms, neutrophil activation involved in immune response 
was the most significant term, followed by gliogenesis, 

neutrophil degranulation, glial cell differentiation, and glial 
cell development. Regarding cellular components (CC), 
the DEGs were enriched mainly in the collagen-containing 
extracellular matrix, external side of plasma membrane, 
vesicle lumen, secretory granule lumen, and cytoplasmic 
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Figure 3 Enrichment of hippocampus differential expressed genes are identified in the ontology categories. BP, biological process; CC, 
cellular components; MF, molecular function.

vesicle lumen. Besides the enrichment levels of MF, the BPs 
were primarily associated with immune receptor activity, 
carbohydrate binding, and actin binding. In PBMCs  
(Figure 4), the top three BP terms were neutrophil 
degranulation, neutrophil activation involved in immune 
response, and T cell activation. As for cellular component 
terms, the DEGs were enriched mainly in the mitochondrial 
matrix, cytoplasmic vesicle lumen, and vesicle lumen. 
Regarding MF, the DEGs were enriched mainly in protein 
serine/threonine kinase activity and ubiquitin-like protein 

ligase binding. KEGG analysis showed the possible 
signaling pathways of DEGs. We also analyzed the KEGG 
pathways with an adjusted P value <0.05 that were enriched 
in hippocampal tissue and PBMC subsets. The KEGG 
pathways are shown in Figure S1. Although the biological 
function enrichment of the hippocampus was not identical 
to PBMCs after screening, there was a close association 
between the death of neurons, immune response, and 
mitochondrial function in the hippocampus and PBMCs.

In addition to gene set enrichment analysis, we 
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performed PPI network analysis through the hub DEGs 
using the STRING interactome database. We performed 
a zero-order interaction analysis to simplify the network 
to a more manageable size. As a result, we detected a PPI 
network, including 668 nodes and 3,121 edges in the 
hippocampal tissue subset and 142 nodes and 389 edges in 
the PBMC subset (Figure 5). Figure S2 shows the top 40 
hub genes, ranked according to the link in the PPI network 
(the number of nodes they connect to). According to the 
enrichment analyses, patients with AD demonstrated 
close associations with the immune response. Therefore, 
we further explored the immune cell infiltration patterns 
of PBMCs to investigate the role of inflammation in the 
pathogenesis of AD. As shown in Figure 6, fractions of 

some immune cells varied significantly between normal-
aging individuals and patients with AD. In all, four immune 
cells in the patients with AD group showed significantly 
higher infiltration levels, including naive CD4+ T cells, 
resting natural killer cells, M0 macrophages, and activated 
mast cells, while resting memory CD4+ T cells were 
significantly lower in the patients with AD group. Although 
the proportions of the six immune cells were significantly 
different between the two groups (including native B cells, 
follicular helper T cells, γδ T cells, resting dendritic cells, 
resting mast cells, and eosinophils) at a false detection 
rate <0.05, they were significantly lower in all samples. 
Importantly, it was difficult to identify if they truly matched 
the patients with AD group.

Figure 4 Enrichment of PBMCs differential expressed genes are identified in the ontology categories. BP, biological process; CC, cellular 
components; MF, molecular function; PBMCs, peripheral blood mononuclear cells.
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Figure 5 PPI network. PPI network and modules of intersecting differential expressed genes of (A) hippocampus samples and (B) PBMCs. 
PPI, protein-protein interaction; PBMCs, peripheral blood mononuclear cells.
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Discussion

With the development of microarrays and high-throughput 
sequencing technologies, a bioinformatic analysis of AD 
has been recently investigated; however, most of the 
current research is based on invasive methods and a single 
array, leading to poor acceptance and a lack of multiple 
cohorts for joint research. In our current study, we used 
both the hippocampus and PBMCs from AD and normal-
aging samples to identify blood biomarkers that predicted 
brain tissue biomarkers to diagnose AD without brain 
biopsy or a cerebrospinal fluid analysis. By using GO and 
KEGG analyses, we found that DEGs from the AD and 
normal-aging samples were related to neuronal death, 
mitochondrial function, and most importantly, immune 
response. We further explored the immune cell infiltration 
patterns of PBMCs to investigate the role of inflammation 
in the pathogenesis of AD.

Various prior methods have shown that peripheral blood 
gene expression can be used for the diagnosis of multiple 
brain disorders despite the effects of the blood-brain barrier 
(18,19). Moradi et al. (20) used a linear discriminant analysis 
method to study blood gene expression profiles that shows 
peripheral blood genes have a potential application value 

to classify healthy and AD; however the study did not 
mention the association between peripheral blood genes 
and brain tissue genes. Voyle et al. (21) applied a pathway-
based interpretation of gene expression to diagnosis AD, 
but the model only performed similarly to a model based on 
demographic information. Our study used a novel approach 
by extracting data from the hippocampus and PBMCs of 
patients with AD and normal-aging samples, and 28 genes 
were obtained in the intersection between the two groups of 
DEGs, to link peripheral blood and brain tissue. 

RAB5B  is among the important GTPases of the 
RAB protein family (22,23). We found that RAB5B 
was significantly downregulated in the hippocampus in 
GSE1297 and GSE5281, and the expression of RAB5B 
was also downregulated in PBMCs in GSE63060 and 
GSE63061. N-methyl-D-aspartate (NMDA) receptors 
have an important role in nerve cell death associated 
with act ivat ion of  surface  receptors  sens i t ive  to  
glutamate (24). Previous studies showed that NMDA 
receptors are internalized by a clathrin-dependent 
mechanism (25,26). A decrease in RAB5B could lead to 
abnormal internalization of NMDA receptors and induce 
excitatory toxicity mediated by the receptor (27,28). 

Figure 6 Comparison of immune cell infiltration between normal aging individuals samples and patients with AD. The blue represents the 
fractions of immune cells in normal-aging individuals, and the red represents that in patients with AD. AD, Alzheimer’s disease. 
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Considering the dysregulation of the NMDA pathway, 
RAB5B may be a potential target in AD.

It has been argued that the pathogenesis of AD is 
associated with abnormal mitochondria that produce 
excessive neuronal oxidative stress in the surrounding 
cytoplasm, causing damage to susceptible neurons (29-31).  
PCBP2, the RPS gene family, and the RAB gene family 
(32-34) have been implicated in mitochondrial dysfunction 
and oxidative damage in the pathogenesis of AD in past 
research, which is consistent with our present results. 
Consistent with our study, Lunnon et al. (35) also validated 
mitochondrial dysfunction and inflammatory changes 
occurring very early in AD. These results will provide a 
reference for further investigation of early treatment and 
detection methods.

In addition, through the PPI network, we found 
that some other hub genes are closely related to AD 
occurrence. RPS27A, the gene with the largest number 
of connecting nodes in hippocampal tissue, has not only 
been shown to be a bridge gene for the progression of 
AD pathology, but has been widely studied in multiple 
neurodegenerative diseases (36). APOB has 52 node genes 
and has been widely used in studies of AD. For example, 
Di Paolo et al. (37) revealed APOB as a new link between 
cholesterol and AD and may underlie AD pathogenesis 
common to both late-onset AD and early-onset AD. 
VAMP8 was considered the most core gene in peripheral 
blood consistent with the results of a previous neuronal 
models study showing that VAMP8 could increase tau  
secretion (38). Neuroinflammation mediated by microglia 
and astrocytes, as well as by peripheral immune cells, 
has been described as an important contributor to AD 
(39,40). CD44, an inflammation-related gene identified 
as a binding partner in cell adhesion and migration of 
immune cells (41,42), may contribute to AD pathology. 
In our current study, expression of CD44 was significantly 
downregulated in the hippocampus following changes in 
PBMCs. Consistent with our results, Uberti et al. (43)  
reported that CD44  was abnormally expressed in 
lymphocytes of patients with AD compared with healthy 
participants, which may be driving the immune response 
into infected tissues, including the central nervous system. 
Previous studies have also shown that the expression 
patterns of the CD44 gene family are different between 
patients with AD and matched non-AD controls in 
postmortem hippocampal samples (44). Some CD44 splice 
variants were localized to neuritic plaques and astrocytes, 
while some were localized in neuroblastoma cells and 

primary neurons. In addition, CD44 levels were increased 
in the frontal cortex of patients with severe AD who died 
with an antemortem clinical diagnosis compared with that 
of those with mild cognitive impairment (45). Considering 
the significant changes in CD44 expression and role of 
CD44 protein, CD44 may be a therapeutic target in AD.

Current research suggests that there are strong 
inflammatory reactions mediated by resident brain cells 
and through peripheral immune cells, which infiltrate the 
brain at various stages of disease progression (40). As the 
immune environment in the peripheral blood changes, 
brain tissue metabolism, signaling, and BPs also change. 
We believe that adverse indicators in PBMCs are a signal 
of early pathological changes in AD. If long-term immune 
system abnormalities are found in elderly people, especially 
in CD4+ T cells, natural killer cells, macrophages, and mast 
cells, early cognitive screening and intervention for AD are 
warranted; however, our current study did not determine 
abnormal cut-off values, and large-sample data comparing 
normal-aging individuals and patients with AD are necessary 
for future studies. Although immune abnormalities do not 
necessarily lead to AD, we speculate that elderly people 
with long-term immune system abnormalities have a much 
higher risk of AD than the general older adult population. 
Treatment of early inflammatory reactions may delay the 
onset and progression of AD.

According to this study, key genes are potential 
biomarkers to predict and to diagnose AD. Thus, AD could 
be diagnosed by testing the patient’s peripheral blood, 
without brain tissue biopsy or cerebrospinal fluid testing. 
These genes suggest that AD onset may be associated with 
the immune pathway; therefore, we must further explore 
the effects of immunity on AD. We recommend routine 
blood testing for older adults annually. If peripheral blood 
immune cell abnormalities are found over time, patients 
should have cognitive examinations or early interventions. 
This study may provide noninvasive methods for early 
identification of AD or possible targets for future AD 
treatment.

Conclusions

In conclusion, our current study found that the expression 
of several key genes changes in both the hippocampus and 
PBMCs of patients with AD, strongly suggesting their utility 
as disease biomarkers. In addition, immune abnormalities 
may have an important role in AD pathophysiology. When 
patients exhibit long-term peripheral blood immune 



Annals of Translational Medicine, Vol 10, No 2 January 2022 Page 11 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(2):29 | https://dx.doi.org/10.21037/atm-21-4974

abnormalities, they may be recognized as being at high risk 
for AD, leading to closer observed medical treatment.
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Table S1 Aggregate demographics

Clinical factors

Hippocampus tissue subset PBMCs subset

Normal-aging 
sample

AD sample adj.P.V
Normal-aging 

sample
AD sample adj.P.V

Age (year) 81.95±9.12 83.63±8.19 0.75 74.02±6.32 74.62±6.73 0.19

Gender (F/M) 7/15 20/12 0.11 143/95 184/100 0.27

PBMCs, peripheral blood mononuclear cells; AD, Alzheimer’s disease; adj.P.V, adjusted P value; F/M, female/male. 

Table S2 The intersection of differentially expressed mRNAs both in the hippocampal tissue and PBMCs subsets

Genes
Hippocampus tissue subset PBMCs subset

logFC AveExpr adj.P.V logFC AveExpr adj.P.V

PCBP2 −2.157742923 8.756046286 3.50E-09 −3.965449675 10.50021906 4.25E-274

DRAP1 −2.804162998 7.667614079 3.67E-09 −2.008593823 9.855112778 2.42E-251

FBXO7 −2.495573438 9.695486294 7.80E-09 −2.854018286 9.645257316 5.93E-194

KLF13 2.509947072 5.182725543 1.46E-08 −2.08603138 9.513846525 1.08E-240

GRINA −2.712044899 8.767941259 1.60E-08 −2.190410698 9.456578201 2.76E-155

RNF19B −3.246443675 6.550710249 1.88E-08 −2.156396538 8.468545389 7.73E-225

FCER1G −3.690456518 7.894259009 1.97E-08 −2.196807045 9.401705487 1.44E-222

RPS24 −3.105341944 11.59430613 2.03E-08 −2.115607254 8.676340138 1.74E-99

POGK −2.799570788 8.769718407 2.79E-08 −2.050167955 8.922346259 1.81E-254

TEF 2.135924292 5.767109286 2.93E-08 −2.615401924 7.529215964 7.14E-260

AIF1 −2.372450172 6.336726784 6.95E-08 −2.896363569 9.536721046 4.87E-222

RAB5B −2.42643852 9.326119243 7.76E-08 −2.125303327 10.62490522 1.04E-236

MSN −3.168395081 8.735672404 1.09E-07 −2.200166778 11.56857896 6.56E-213

OGDH −2.806232572 7.642909919 1.26E-07 −2.448148917 7.572173138 6.46E-266

CCNI −2.182047135 10.90291203 1.55E-07 −2.03949707 12.80834978 3.12E-226

SH3BGRL3 −2.301213792 8.047451139 1.66E-07 −2.154741525 11.77411539 2.29E-215

TAGLN2 −2.496177924 7.119488366 1.85E-07 −2.055735736 10.88027041 6.95E-188

PSME1 −2.184813157 8.910356857 2.05E-07 −4.016574297 10.80419745 6.25E-277

PGD −2.2737899 6.845323553 3.98E-07 −2.052847707 10.72744397 2.90E-190

CD44 −2.531618923 7.313031815 5.39E-07 −2.400502296 9.710477464 1.44E-261

MT2A −2.325411507 12.761293 8.01E-07 −2.201718294 10.36600918 2.25E-171

FCGR2A −2.790529135 6.603072332 8.39E-07 −2.0455743 11.48705693 2.69E-220

JUNB −2.481506907 7.944586079 9.35E-07 −2.223655258 8.070347732 6.36E-235

CD37 −2.425974289 5.940013457 1.10E-06 −2.056959607 10.11301371 6.95E-228

IFITM3 2.239904674 9.939671914 4.28E-06 2.031312845 11.65868492 1.17E-199

LAT2 −2.119131991 6.970485988 1.11E-05 −2.333870067 8.917631893 1.08E-242

CLDN15 −2.153699313 7.175878259 2.55E-05 −2.378769403 7.64515328 6.06E-263

KRT1 −2.084373117 5.82958944 4.07E-05 −2.279645478 8.767687692 3.24E-98

PBMCs, peripheral blood mononuclear cells; FC, fold changes; AveExpr, average expression; adj.P.V, adjusted P value. 
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Figure S1 KEGG pathways in the hippocampal tissue and peripheral blood mononuclear cells subsets. KEGG, Kyoto Encyclopedia of 
Genes and Genomes. 
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Figure S2 Bar graphs showing the top 40 hub genes, ranked according to their connectedness in the PPI network (the number of nodes they 
are connected with) in (A) hippocampus samples and (B) peripheral blood mononuclear cells. PPI, protein-protein interaction. 
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