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Analysis of the tumor immune environment identifies an immune 
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Background: The tumor immune environment plays a critical role in lung cancer initiation and prognosis. 
Therefore, understanding how the tumor immune environment impacts the overall survival (OS) of patients 
with advanced lung cancer post immunotherapy is of great importance. In this article, we aimed to identify 
the immune components of lung cancer and develop an immune prognostic signature to predict OS.
Methods: Differentially expressed immune-related genes were calculated between tumor and normal tissues 
using expression data from The Cancer Genome Atlas (TCGA) database. Then univariate Cox regression 
analysis was conducted to select prognosis-related genes and the prognostic risk model was constructed by 
multivariate Cox regression analysis. Patient risk scores were calculated, and a clinical correlation analysis 
was performed within the risk model. In addition, immune cell infiltration patterns were identified to find 
the immune cell subtypes related to prognosis 
Results: A gene model consisting of 12 immune-related genes was used as our signature. The model 
showed that the high-risk group experienced a shorter survival time, with an area under the receiver 
operating characteristic (ROC) curve (AUC) of 0.733. High-risk immune genes, such as S100 calcium 
binding protein A16 (S100A16) and angiopoietin-like 4 (ANGPTL4), were associated with more malignant 
clinical manifestations. Further, we discovered that extensive infiltration of B cells, dendritic cells, and mast 
cells indicated a favorable prognosis.
Conclusions: The signature developed in this paper could be an effective model for estimating OS in lung 
cancer patients, and the immune cell infiltration analysis of the tumor immune microenvironment could shed 
light on more effective treatment in clinical practice.
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Introduction

Lung cancer is the leading cause of cancer-related morbidity 
and mortality, with non-small cell lung cancer (NSCLC) 
as the most prevalent form (1). Despite recent advances in 
lung cancer diagnosis and treatment, the survival time for 

patients with lung cancer is still short, and the majority 
of patients present with advanced disease (2). Predicting 
which patients are at high risk and investigating potential 
therapeutic targets are therefore necessary to promote the 
overall survival.

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-21-6043
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The immune system plays a key role in the monitoring 
and destruction of cancer cells; however, tumor cells can 
bypass this natural defense, and tolerance can form during 
disease progression (3). It has long been proposed that 
tumor immune environments are associated with tumor 
initiation and can influence therapeutic response (4).  
Tumor-reprogrammed immune cells are involved in 
both tumor-promoting and tumor-suppressing activities, 
which may predict clinical outcome (5). In this regard, 
immunotherapy focus on restoring the anti-tumor host 
immunity could promote occult cancerous cells destruction. 
Furthermore, patients who response to immunotherapeutic 
intervention would have better survival rates (6). Recently, 
immunotherapy has been recommended as the first-
line therapy for patients with advanced lung cancer (7). 
However, the majority of patients with lung cancer do not 
benefit from this treatment, and so a deeper understanding 
of tumor immune environments is needed.

Gene expression profiling can reflect the interactions 
between tumor and immune cells and provide clues for 
finding predictive biomarkers and new targets (8). To this 
end, we calculated differentially expressed genes between 
tumor and normal tissues to uncover potential important 
players in tumor immune environments. An immune-related 
gene signature was then established to predict the prognosis 
of patients with lung cancer. Additionally, we described 
immune cell infiltration patterns in NSCLC. In this study, 
we aimed to provide the comprehensive description of 
immune characteristics of lung cancer, offering reference 
information for improving NSCLC treatments. We present 
the following article in accordance with the TRIPOD 
reporting checklist (available at https://dx.doi.org/10.21037/
atm-21-6043).

Methods

Data acquisition and processing

The gene expression data of 497 lung adenocarcinoma 
tumor tissue samples and 54 normal lung tissue samples 
and the corresponding clinical information were acquired 
from The Cancer Genome Atlas (TCGA) database. A 
Wilcoxon test was used to analyze differentially expressed 
genes in the TCGA sample using the “limma” package in 
R (The R Foundation for Statistical Computing, Vienna, 
Austria). To identify differentially expressed genes in lung 
cancer, the cutoff threshold in TCGA was set as |log2 
fold change (FC)| ≥1.0, and the false discovery rate (FDR) 
was set at <0.01. Immune-related genes and transcription 

factors (TFs) were extracted from the above-mentioned 
differentially expressed genes and analyzed for differential 
expression using the “limma” package. The corresponding 
clinical information of the patients with lung cancer was 
collected and used for the subsequent analyses. The external 
validation cohort consisted of the expression data and the 
comparative clinical data of 45 patients with squamous cell 
carcinoma, acquired from the Gene Expression Omnibus 
(GEO) database (GSE50081, n=181). The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Co‑expression network construction and functional 
enrichment analyses

A network of immune-related genes and TFs was created 
using Cytoscape v3.7.1 (Cytoscape Consortium, San 
Diego, CA, USA). Upregulated genes were represented 
by red circles, downregulated genes were represented by 
green ellipses, and TFs were represented by triangles. To 
identify the biological function of differentially expressed 
immune-related genes, we used the “clusterProfiler” 
package in R to perform Gene Ontology (GO) analyses. 
The functional enrichment of upregulated immune-related 
genes was represented by red bar graphs, and the functional 
enrichment of downregulated immune-related genes was 
represented by blue bar graphs. 

Prognostic model construction 

We used the “survival” package in R to perform a univariate 
Cox regression analysis for all differentially expressed 
immune-related genes and screened for significant candidate 
genes. Subsequently, based on the screened candidate genes, 
a prognostic model containing 12 immune-related genes 
was constructed, combining the effects of each gene. The 
coefficients of each gene were determined by multivariable 
Cox regression model. The risk score for each patient was 
determined using the following formula: risk score = Exp1 × 
Coe1 + Exp2 × Coe2 +……+ Expi × Coei.

According to the median value of the risk score, the 
patients with lung cancer were classified into high-risk 
and low-risk groups. Kaplan-Meier analysis was used to 
construct a survival curve. Then, a logrank test was applied 
to compare the overall survival (OS) of the 2 subgroups. 
Subsequently, a receiver operating characteristic (ROC) 
curve was drawn to evaluate the performance of the 
prognostic model using the “survivalROC” package in R. 

https://dx.doi.org/10.21037/atm-21-6043
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The correlation between the immune-related genes that 
constituted the prognostic model and various clinical factors 
were analyzed using the “beeswarm” package in R.

Quantitative real‑time polymerase chain reaction  
(qRT‑PCR)

Total RNA was extracted using TRIZOL (Invitrogen Inc., 
USA), and subjected to qRT-PCR using the following 
primers: VIPR1 (TCATCCGAATCCTGCTTCAGA; 
A G G C G A A C A T G A T G T A G T G T A C T ) , 
S 1 0 0 A 1 6  ( AT G T C A G A C T G C TA C A C G G A G ; 
G T T C T T G A C C A G G C T G T A C T T A G ) , 
G A P D H  ( G G C T C AT G A C C A C A G T C C AT ; 
GACGGACACATTGGGGGTAG). Gene expression was 
normalized to the level of GAPDH within each sample 
using the relative ∆∆Ct method.

Unsupervised clustering and analysis of immune cell‑
related genes

The abundance of tumor infiltrating immune cells was 
calculated using the CIBERSORT website (https://
cibersort.stanford.edu/). Based on the abundance of 
immune cell infiltration provided by CIBERSORT, we 
used the “ConsensusClusterPlus” package in R to perform 
unsupervised clustering of the patients with lung cancer. 
We then visualized programmed cell death protein 1 (PD-1)  
infiltration between the 2 cluster subgroups with the 
“ggplot2” and “ggpubr” packages in R.

Statistical analysis

We used Kaplan-Meier analysis to construct survival curves 
using the “survival” and “survminer” packages in R and 
a log rank test to evaluate the significance of differences 
between the 2 subgroups. Wilcoxon signed-rank tests were 
performed to explore quantitative variables. Significance was 
defined as P<0.05. All statistical analyses were performed 
using R version 4.0.3.

Results

Differentially expressed immune genes and TFs in lung 
cancer

We used data from the TCGA dataset to calculate 
differentially expressed immune genes between tumor 

and normal tissues. A total of 489 differentially expressed 
genes were identified, in which 321 genes were upregulated 
in tumor tissues (Figure 1A,1B). Differentially expressed 
TFs were then selected (Figure 1C,1D), and a network 
of TFs and genes was constructed (Figure 1E). Among 
TFs, regulatory molecules enhancer of zeste homolog 2  
(EZH2) (9) and transcription factor 21 (TCF21) (10) are 
involved in the immunosuppressive microenvironment, 
and chromobox homolog (CBX7) (11) is associated 
with lung carcinogenesis. GO analysis was carried out 
to explore the potential functions of these differentially 
expressed genes (Figure 2). For upregulated genes in 
tumors, immunoglobulin complex, humoral immune 
response, complement activation, and lymphocyte-mediated 
immunity were the most populated subcategories, indicating 
that the immune system plays a key role in tumor progress. 
For downregulated genes, signaling receptor activator 
activity, receptor ligand activity, and cell chemotaxis were 
the most abundant activities, indicating that homeostasis-
related terms are disrupted in the tumor microenvironment 
and potentially robust immunity may be suppressed. 
Our enrichment analysis results were consistent with 
pathological changes in lung cancer.

Immune signature for lung cancer prognosis

Nineteen significant prognostic immune genes were 
identified using a univariate Cox regression analysis with 
P<0.05 (Figure 3). Related genes then underwent a Cox 
proportional hazards regression to generate the best 
gene model. Finally, a gene model with 12 immune genes 
(Figure S1) was created. We calculated the risk score 
for each patient according to the coefficient value of the 
12 genes. Subsequently, the patients were divided into 
high-risk and low-risk groups based on the median risk 
score. A longer survival time was found in the low-risk 
patients when compared with that of the high-risk patients  
(Figure 4A), and the risk score distribution between the 
2 groups was shown in Figure 4B. To further evaluate the 
prognostic accuracy of the risk scores, time-dependent 
ROC curves were plotted (Figure 4C), yielding an area 
under the curve (AUC) of 0.733. To investigate the stability 
of our model, we assessed the prognostic value of the 
immune signature in the GEO database. The patients in 
the GEO cohort were similarly divided into a high-risk 
group (n=90) and a low-risk group (n=91). The survival of 
the patients in the low-risk group was significantly better 
than that of the patients in the high-risk group (P<0.001;  

https://cdn.amegroups.cn/static/public/ATM-21-6043-Supplementary.pdf
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Figure 1 A heat map (A) and a volcano map (B) of differentially expressed immune genes; a heat map (C) and a volcano map (D) of 
differentially expressed transcription factors; network of transcription factors and genes (E). FDR, false discovery rate.

Figure S2). Furthermore, we validated the representative 
genes expression in 8 matched pairs of primary lung tumors 
and the adjacent normal samples. Consistent with the 
previous findings, the protective gene vasoactive intestinal 
peptide receptor 1 (VIPR1) showed decreased expression 
level in tumors compared with adjacent normal samples, 
while the risky gene S100A16 expression was up-regulated 
in tumors (Figure S3). 

Association with clinicopathologic factors

A univariate Cox regression analysis was conducted using the 
risk score and various clinical characteristics. The analysis 
showed that clinical stage, degree of tissue involvement (T), 
lymphatic involvement (N), tumor metastasis (M), and risk 
score were correlated with the OS of patients (Figure 5A). 
A subsequent multivariate Cox regression analysis showed 
that only the risk score and the stage were associated with 

https://cdn.amegroups.cn/static/public/ATM-21-6043-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-6043-Supplementary.pdf
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Figure 2 GO and pathway analysis of differentially expressed immune genes. The blue mark indicates downregulated genes, while the red 
mark indicates upregulated genes. GO, Gene Ontology. 

Figure 3 A forest diagram of differentially expressed immune genes. The red mark indicates that the HR value of the immune gene is 
greater than 1, and the green mark indicates that the HR value is less than 1. HR, hazard ratio. 
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the OS of patients with lung cancer (P<0.05; Figure 5B), 
proving the accuracy of the risk score in predicting survival 
outcomes. In addition, we assessed the relationship between 
the genes in our model and clinicopathologic factors. We 
found that genes related to poor survival, such as S100A16 
and angiopoietin-like 4 (ANGPTL4), were significantly 
associated with T, N, and stage, and that the expression of 
higher-risk genes was correlated with more malignant lung 
cancer. In contrast, increased expression of the protective 

gene VIPR1 was correlated with a decreased degree of 
malignancy (N; Figure 6).

Immune cell infiltration patterns

To illustrate the immune cell infiltration patterns in tumors, 
we used a gene expression-based approach to estimate 
the abundances of specific cell types. As shown in Figure 
7A, most immune cell populations exhibited a positive 
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correlation without any anticorrelation, indicating the 
reliability of the gene sets. Unsupervised clustering showed 
that the tumor samples were predominantly separated into 
2 clusters; more memory B cells, mast cells, and activated 
dendritic cells were found in cluster A, while more CD8 
T cells, Treg T cells, resting natural killer (NK) cells, 
and M0 macrophages (an intermediate macrophages with 
differentiative ability) were found in cluster B (Figure 7B). 
The patients in cluster A had better OS compared with 
that of the patients in cluster B (Figure 7C) and lower PD-1 
expression (Figure 7D).

Discussion

The immune environment plays a critical role in tumor 
initiation and therapeutic response (4). Lung cancer 
typically harbors extensive genomic alterations and is 
responsive to immunotherapy (12). Immune cells influence 
patient survival and the effectiveness of treatments. 
Previous studies have shown that levels of tumor-infiltrating 
lymphocytes are significantly correlated with prognosis in 

NSCLC (13). The neutrophil-to-lymphocyte ratio has also 
been recognized as an indicator of poor prognosis (14). 
Furthermore, research has found that lung cancer exhibits 
increased inflammatory gene transcripts and that circulating 
T cell subpopulations can predict immune responses (15). 
Traditional methods to assess immune cell infiltration 
mainly rely on immunohistochemistry, but the number of 
cell types and the characteristics of each immune cell are 
limited from section staining, confined by the quantity 
and quality of antibodies. The gene expression profile of 
bulk tumors provides more information in this regard. The 
immune environment, including immune cells and proteins 
expressed by immune-related genes, has a significant 
impact on predicting the clinical outcomes of cancers (16). 
Furthermore, gene expression profiling of lung cancer 
offers useful information for cancer diagnosis, prognosis 
as well as new therapy development (17). Research has 
shown that more than 3,000 protein-coding genes change in 
NSCLC after tumor resection, especially genes in pathways 
associated with the innate immune response suppression (18). 
In this study, we collected differentially expressed immune 
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genes between tumor and normal tissues and constructed a 
prediction model based on prognostic genes. In our model, 
the patients in the high-risk group had a poor prognosis with 
shorter survival time.

According to previous studies, the genes used in our risk 
prediction model are tightly associated with lung cancer 
prognosis. Some of the risk genes in our model participate 
in lung cancer progression. Higher S100A16 messenger 
RNA (mRNA) expression in lung cancer is significantly 
correlated with poor survival (19). Retinol binding protein 2 
(RBP2) performs an oncogenic function in lung tumorigenesis 
and progression (20) and induces epithelial-mesenchymal 
transition (21). Fibroblast growth factor 2 (FGF2) promotes 
lung cancer cell proliferation (22), and some clinical trials 
have evaluated the efficacy of its inhibitors on lung cancer 
treatment (23). In addition, interleukin 11 (IL11) acts on 
leukocytes to induce pro-tumorigenic and pro-metastatic 
neutrophils (24). In contrast, some of the tumor suppressor 
genes of our model, such as VIPR1, have been shown to 
have protective effects (25). Research has shown that VIPR1 
significantly inhibits the growth, migration, and invasion 
of lung cancer cells (26). Moreover, VIPR1 expression is 
decreased in metastatic lung cancer compared with that in 
non-metastatic lung cancer (27).

In our study, we described the immune cell infiltration 
patterns in lung cancer and classified patients into 2 groups 
based on immune cell population. The patients in cluster B 
had worse OS with more M0 macrophages and Treg cells. 
It has been reported that M0 macrophages are associated 
with decreased survival (28). Treg cells, as the most notable 
immunosuppressive cells, can help cancer cells escape 
from immunological surveillance, and therapies based on  
Treg blockade have benefited a group of patients with 
lung cancer (29). The patients in cluster A exhibited more 
infiltration of B cells, dendritic cells, and mast cells. Consistent 
with previous studies, the high infiltration of B cells, dendritic 
cells, and mast cells indicated a favorable prognosis (30). 
Furthermore, the expression of PD-1 was higher in cluster B. 
PD-1 is an inhibitory checkpoint molecule which can inhibit 
T cell activation. Immune checkpoint blockade therapy 
targeting PD-1 has yielded promising clinical responses in 
patients with lung cancer (31). Therefore, we propose that 
the patients in cluster B would be more likely to benefit from 
immunotherapy.

In recent years, increasing attention has been paid to 
tumor immune microenvironments, and immune prognostic 
signatures have been constructed for various cancer types. 
For NSCLC, a gene model consisting of 30 immune-related 

genes has been shown to have a strong association with 
recurrence and clinical stage (32). Immune-associated risk 
score prognostic models have also been established (33), with 
an AUC of 0.702 and 0.723, respectively. Our prognostic 
model showed a similar true positive rate compared with that 
of previous studies. In addition to an immune gene signature, 
we established a connection between genes and TFs and the 
related pathway. We also selected representative genes of 
different immune cells to identify immune cell infiltration 
patterns and pave a path to better targeting of prognosis-
related immune cell subsets. Our retrospective analysis 
provides comprehensive information about lung cancer 
immune environments, although further studies are required 
to confirm our findings. 

Conclusions

In summary, we constructed a risk score prognostic model 
based on 12 immune-related genes. The survival analysis 
revealed that a high-risk score was significantly associated 
with poor survival outcomes. In addition, we described 
the immune cell infiltration patterns and found that 
high infiltration of B cells, dendritic cells, and mast cells 
indicated a favorable prognosis.
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Supplementary

Figure S2 Independent validation of our model in the GEO 
dataset. GEO, Gene Expression Omnibus. 

Figure S1 A heat map of the 12 immune genes in our model. H, high-risk patients; L, low-risk patients. 

Figure S3 Representative genes expression in tumor and normal 
tissues. 
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