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Background: Avian influenza A H7N9 progresses rapidly and has a high case fatality rate. However, few 
models are available to predict the survival of individual patients with H7N9 infection in real-time. This 
study set out to construct a dynamic model for individual prognosis prediction based on multiple longitudinal 
measurements taken during hospitalization. 
Methods: The clinical and laboratory characteristics of 96 patients with H7N9 who were admitted to 
hospitals in Jiangsu between January 2016 and May 2017 were retrospectively investigated. A random forest 
model was applied to longitudinal data to select the biomarkers associated with prognostic outcome. Finally, 
a multivariate joint model was used to describe the time-varying effects of the biomarkers and calculate 
individual survival probabilities. 
Results: The random forest selected a set of significant biomarkers that had the lowest classification 
error rates in the feature selection phase, including C-reactive protein (CRP), blood urea nitrogen (BUN), 
procalcitonin (PCT), base excess (BE), lymphocyte count (LYMPH), white blood cell count (WBC), and 
creatine phosphokinase (CPK). The multivariate joint model was used to describe the effects of these 
biomarkers and characterize the dynamic progression of the prognosis. Combined with the covariates, the 
joint model displayed a good performance in discriminating survival outcomes in patients within a fixed time 
window of 3 days. During hospitalization, the areas under the curve were stable at 0.75. 
Conclusions: Our study has established a novel model that is able to identify significant indicators 
associated with the prognostic outcomes of patients with H7N9, characterize the time-to-event process, and 
predict individual-level daily survival probabilities after admission.
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Introduction

In March 2013, the first case of human avian influenza A 
(H7N9) was reported by the World Health Organization (1).  
Ongoing epidemics meant that by March 28, 2018, this 
infectious disease had resulted in 1,625 confirmed cases and 
623 deaths worldwide (2).

In the early stages, H7N9 infection clinically manifests 
as fever and cough with sputum production. The infection 
progresses rapidly in patients, leading to severe respiratory 
illness or multisystem organ failure (3). The overall fatality 
rate is high, with approximately 40% of diagnoses resulting 
in death (2). Timely diagnosis and effective treatment are 
crucial to decreasing the case fatality rate.

Previous studies have found that biomarkers, such as the 
oxygenation index (OI), neutrophil (NEUT), C-reactive 
protein (CRP), white blood cell count (WBC), cytokines, 
plasma angiotensin II, and human leukocyte antigen-DR 
(HLA-DR) levels of CD14+ cells, play an essential role 
in H7N9 progression and are independent predictors of 
survival outcome (4-10). However, measurements in these 
studies were collected at specific time points, either at 
baseline, at the end of follow-up, or when values peaked 
during follow-up. Taking measurements in this way fails to 
consider the dynamic process of laboratory examinations 
during hospitalization and may have led to biased 
estimations.

Dynamic risk prediction uses longitudinal data, which 
increases the accuracy of the predictions (7). With a 
dynamic risk prediction model, it is possible to predict 
the conditional survival probability of individuals, as the 
model considers changes in risk over time, allowing for the 
selection of appropriate treatments. 

The present study analyzed the clinical data of 96 
patients with H7N9 infection from Jiangsu, with the aims 
of developing a dynamic risk prediction model based on 
the data and identifying predictors associated with H7N9 
progression. A random forest incorporating demographic 
data, baseline characteristics, and laboratory measurements 
was used to screen for candidate features. A joint model was 
then constructed to characterize the time-varying effects of 
those features and to predict the time-to-event duration in 
patients with H7N9. 

The following article is presented in accordance with the 
STROBE (Strengthening the Reporting of OBservational 
studies in Epidemiology) reporting checklist (available at https://
atm.amegroups.com/article/view/10.21037/atm-21-4126/rc). 

Methods

Study population and design

For this study, patients with H7N9 infection were recruited 
from hospitals in Suzhou, Wuxi, Huai’an, and Taizhou in 
Jiangsu, China, between January 2016 and May 2017. The 
epidemiological investigation of patients was performed 
based on a demographic and epidemiological survey on 
human infections with the H7N9 virus. Demographic and 
clinical data for each laboratory-confirmed patient were 
collected by epidemiological field investigation teams 
from the Jiangsu Provincial Center for Disease Control 
and Prevention (Jiangsu CDC). Patients’ demographic 
data included the age, sex, body mass index (BMI), and 
history of chronic diseases. Clinical data were obtained 
from the healthcare facilities and included status at illness 
onset (including symptoms and initial lung infection on 
admission and at the time of onset), H7N9 diagnosis and 
treatment, laboratory testing during hospitalization (such as 
routine blood tests, blood biochemistry tests, and blood gas 
analysis), and clinical outcomes (death or recovery). All the 
data in this study were acquired from questionnaires and 
official case investigation reports. The accuracy of the data 
was further verified before their inclusion in an electronic 
database.

Confirmation and outcome

For patients with severe bilateral pneumonia, leukopenia, 
and lymphocytopenia whose upper respiratory tract 
specimens (pharyngeal swabs) or deep respiratory tract 
specimens (sputum or bronchoalveolar lavage fluid) tested 
positive for the nucleic acid of the H7N9 virus, specimens 
were collected for quantitative PCR. If the H7N9 virus 
strain could be isolated from the specimens, H7N9 
infection was confirmed. Death during hospitalization was 
the primary endpoint for this study. Recovery and discharge 
from hospital were considered as the censored outcome. 
The follow-up time was defined as the interval from 
hospital admission to either death or discharge.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The ethics 
review committee of the Jiangsu Provincial Center for 
Disease Control and Prevention confirmed that this work 

https://atm.amegroups.com/article/view/10.21037/atm-21-4126/rc
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was routinely performed by infectious disease surveillance 
personnel and did not require ethical review. All data in this 
study were de-identified, and no patient informed consent 
was required due to the study’s retrospective nature.

Statistical analysis

Normally distributed continuous variables were expressed 
as the mean and standard deviation (mean ± SD), while 
abnormally distributed continuous variables were shown 
as the median and interquartile range (median, IQR). 
Comparisons between continuous variables were made using 
Wilcoxon rank-sum and t-tests. Categorical variables were 
described by frequency (%) and compared between survivors 
and non-survivors when appropriate using a Chi-square 
or Fisher’s exact test. The K-nearest neighboring method 
(KNN) was used to impute the missing laboratory values 
during hospitalization using the R package DMwR2 (available 
at https://mirrors.tuna.tsinghua.edu.cn/CRAN/) (11).

Feature selection

For each patient, abnormal percentages and the proportion 
of abnormal times to total measurement times during 
hospitalization were calculated for each of the biomarkers. 
The significance of baseline characteristics and the 
abnormal percentages of biomarkers during hospitalization 
were calculated using a random forest, which is an 
ensemble and decision-driven learning method (12). The 
Gini importance of each predictor was obtained from the 
random forest, and then the sliding windows sequential 
forward feature selection (SWSFS) algorithm was used to 
determine the number of significant biomarkers (7). With 
the demographic and baseline characteristics frozen in 
the model, the SWSFS algorithm added the biomarkers 
one by one to the random forest model in the order of 
their Gini importance. The error rates from 300 random 
forests, which included identical predictors, were averaged 
to plot the average classification error rate. The average 
classification error rate measured the performance of each 
model consisting of a different number of biomarkers and 
identified a subset of indicators with the lowest classification 
error rates for further analysis.

Time-dependent coefficients for biomarkers

This study aimed to examine whether the effects of the 
biomarkers varied during the course of hospitalization. 

Therefore, the time-varying effects of the biomarkers were 
estimated to validate the establishment of 

( )t cβ = 	 [1]

a constant, in the Cox model equation: 

( ) ( ) ( )t X
ot t eβλ λ= 	 [2]

Joint model construction

Joint modeling is used to investigate how a marker (such as a 
biomarker) that is repeatedly measured in time is associated 
with the time to an event of intewrest (13). The joint model 
in this study consisted of two sub-models: a linear mixed 
model that obtained the trajectory of predictors and a Cox 
regression model with a penalized spline risk function that 
estimated the hazard ratio. Parameters were obtained from 
the respective posterior distributions under the multivariate 
joint model using the JMbayes package in R (available 
at https://mirrors.tuna.tsinghua.edu.cn/CRAN/web/
packages/JMbayes/index.html) (14). Also, a multivariate 
joint model was used to estimate the survival probability 
distribution for each patient (15). Covariates, adjusted in 
the joint model, included baseline age, sex, BMI, previous 
cardiovascular disease history, and the presence or absence 
of complications. 

Assessment of accuracy

The performance of the joint model at different time points 
during hospitalization was determined based on the time-
dependent area under the receiver-operator characteristic 
curve (AUC) (13). A time-dependent AUC aligns individuals 
to a common start time ( )v  and compares them at a fixed 
follow-up window ( )t∆ . The time-dependent AUC at v
with the fixed window of t∆  is defined as the probability of 
concordance by which the model assigns a higher survival 
probability to the participant who did not have the event of 
interest within the fixed follow-up window ( ),v v t+ ∆  (16,17). 
Further, a 3-fold internal cross-validation procedure was 
performed 10 times for the AUC estimations to ensure the 
stability of the predictions. In this study, the calculation of 
the time-dependent AUCs was performed on days 6 to 15 
of hospitalization, with a prediction window of 3 days. 

All statistical analyses were performed using R software 
(version 4.0.2) (available at https://cran.r-project.org/
mirrors.html). A P value of less than 0.05 was considered to 
be statistically significant.

https://mirrors.tuna.tsinghua.edu.cn/CRAN/
https://mirrors.tuna.tsinghua.edu.cn/CRAN/web/packages/JMbayes/index.html
https://mirrors.tuna.tsinghua.edu.cn/CRAN/web/packages/JMbayes/index.html
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Results

Baseline characteristics of the study population

The study population included 96 patients who were 
admitted to hospitals in Jiangsu between January 2016 and 
May 2017, and were laboratory confirmed as being infected 
with the H7N9 virus. The median follow-up time was 
22 days. Of the 96 patients, 54 (56.25%) patients died of 
H7N9 during hospitalization, while the other 42 patients 
(43.75%) recovered and were discharged. The median 
age of the participants was 57.0 (IQR, 45.75–65.25) years. 
There were more males (74.0%) than females (26.0%) in 
the research population (Table 1). Comorbidities, including 
cardiovascular disease (33/96, 34.38%), metabolic diseases 
(14/94, 14.89%), and diabetes (12/96, 12.50%) were present 
in 44.21% of the cohort (Table 1). The most common 
symptom upon admission was cough (88.54%), followed by 
weakness (41.67%), muscle ache (18.75%), and pharyngalgia 
(15.62%) (Table 1). The baseline laboratory measurements 
and comparisons between survivors and non-survivors are 
presented in Table 2. All patients received antibiotics and 
antiviral treatments (Table S1). The use of corticosteroids 
and invasive mechanical ventilation showed no significant 
difference between survivors and non-survivors. Of the 
associated complications, respiratory failure displayed the 
highest prevalence (65.96%), followed by acute respiratory 
distress syndrome (48.94%), hepatic insufficiency (38.30%), 
toxic shock (29.03%), renal insufficiency (25.53%), and 
heart failure (12.09%). With the exception of hepatic 
insufficiency, the rates of complications were significantly 
higher in non-survivors than in survivors (Table S1).

Feature selection

In this study, 22 biomarkers were measured repeatedly 
during hospitalization. Among the biomarkers, lactic 
acid and the OI had high missing rates (26% and 43%, 
respectively), and were therefore excluded from further 
analyses. A total of 59 patients with complete clinical 
covariate data and abnormal biomarker percentages were 
included in the random forest model for feature selection. 
Details of the abnormal biomarker percentages are given 
in online available: https://cdn.amegroups.cn/static/public/
atm-21-4126-01.pdf. The SWSFS algorithm identified 7 
top biomarkers that exhibited minimal classification error 
rates: CRP, blood urea nitrogen (BUN), procalcitonin 
(PCT), base excess (BE), lymphocyte count (LYMPH), 
WBC, and creatine phosphokinase (CPK) (Figure 1).

Time-varying effects

The time-varying effects of the 7 selected biomarkers 
were described in Bayesian P-splines after adjusting for 
age, sex, BMI, previous cardiovascular disease history, and 
presence of complications. WBC, CRP, CPK, and BUN 
were significantly associated with the risk of death during 
hospitalization (Figure 2): WBC and CRP were associated 
with an increased risk of death, whereas CPK and BUN were 
associated with a decrease in the risk of death over time.

Joint model estimates and assessment

The multivariate joint model was constructed using all  
7 selected biomarkers combined with 5 baseline covariates: 
age, sex, BMI, previous cardiovascular disease history, 
and presence of complications. With a 3-day prediction 
window, the accuracy of the joint model at day 6 to 15 of 
hospitalization was shown by the time-dependent AUCs 
with 3-fold internal cross-validation (Figure 3). A stable 
trend was observed in the AUCs, which ranged from 0.66 
to 0.80, remaining stable at about 0.75, and reaching 0.80 
when the longitudinal data were collected in the first 9 days 
of hospitalization and used to predict the time to event for 
the patients in the following 3 days. 

Individualized predictions

Survival probabilities for each participant were predicted 
using the posterior means for the fixed and random 
effects from the linear mixed model. Specifically, the 
longitudinal measurements collected during the first two-
thirds of a patient’s hospitalization were considered as 
prior information and were used to predict the survival 
probability in the final third of the patient’s hospitalization. 
The dynamic survival predictions of two patients (one 
survivor and one non-survivor) in the final third of 
hospitalization are shown in Figure 4A,4B. The predicted 
longitudinal measurements during hospitalization were 
characterized using smooth curves (Figure 4C-4I). Certain 
biomarkers showed clear differences, especially in the later 
period. For instance, the expression levels of PCT and 
BUN decreased in the surviving patient but increased in the 
patient who died.

Discussion

H7N9 is a severe disease that can lead to comorbidities, such 

https://cdn.amegroups.cn/static/public/ATM-21-4126-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-4126-Supplementary.pdf
https://cdn.amegroups.cn/static/public/atm-21-4126-01.pdf
https://cdn.amegroups.cn/static/public/atm-21-4126-01.pdf
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Table 1 Demographic and baseline characteristics of patients with H7N9 infection

Baseline characteristics
No. (%)

P value
Total (N=96) Survivor (N=42) Non-survivor (N=54)

Age, median (IQR) 57.0 (45.75–65.25) 53.5 (41.25–60.0) 60.0 (47.25–68.0)

Mean ± SD 55.49±15.07 52.14±14.45 58.09±15.16 0.053

Range 21–91 21–89 25–91

≤39 years 16 (16.7%) 9 (21.4%) 7 (12.9%)

40–49 years 16 (16.7%) 8 (19.1%) 8 (14.8%)

50–59 years 24 (25.0%) 13 (30.9%) 11 (20.4%)

60–69 years 25 (26.0%) 8 (19.1%) 17 (31.5%)

≥70 years 15 (15.6%) 4 (9.5%) 11 (20.4%)

Sex 0.095

Female 25 (26.0%) 15 (35.7%) 10 (18.5%)

Male 71 (74.0%) 27 (64.3%) 44 (81.5%)

BMI (mean ± SD) 24.24±4.28 23.73±3.93 24.63±4.53 0.297

Smoking status 0.999

Yes 13 (13.6%) 5 (11.9%) 8 (14.8%)

No 56 (58.3%) 20 (47.6%) 36 (66.7%)

Missing 27 (28.1%) 17 (40.5%) 10 (18.5%)

Drinking status 0.461

Yes 8 (8.3%) 4 (9.6%) 4 (7.4%)

No 53 (55.2%) 19 (45.2%) 34 (63.0%)

Missing 35 (36.5%) 19 (45.2%) 16 (29.6%)

Any comorbidity 42/95 (44.21%) 14/41 (34.15%) 28 (51.85%) 0.130

Chronic lung disease 6/94 (6.38%) 2 (4.76%) 4/52 (7.69%) 0.688

Chronic kidney disease 5/95 (5.26%) 1/41 (2.44%) 4 (7.41%) 0.386

Chronic liver disease 3 (3.12%) 1 (2.38%) 2 (3.70%) 0.999

Cardiovascular disease 33 (34.38%) 9 (21.43%) 24 (44.44%) 0.032

Metabolic diseases 14/94 (14.89%) 5/41 (12.20%) 9/53 (16.98%) 0.723

Diabetes 12 (12.50%) 5 (11.90%) 7 (12.96%) 0.999

Signs and symptoms

Cough 85 (88.54%) 39 (92.86%) 46 (85.19%) 0.338

Pharyngalgia 15 (15.62%) 7 (16.67%) 8 (14.81%) 0.999

Weak 40 (41.67%) 19 (45.24%) 21 (38.89%) 0.676

Muscle ache 18 (18.75%) 8 (19.05%) 10 (18.52%) 0.999

Data are presented as median (IQR), mean ± SD, n (%), or n/N (%), where N is the total number of patients with available data. The P 
value for differences between survivors and non-survivors was tested using a t-test (continuous) or a Chi-square test (categorical). IQR, 
interquartile range; SD, standard deviation; BMI, body mass index.
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as severe hypoxemia, tachypnea, and respiratory failure (3). 
Although H7N9 infection is curable, its mortality rate is 
still high (7). Therefore, an accurate risk prediction model 
for prognosis is needed to decrease the case fatality rate. 
Some studies have focused on the development of prediction 
models for survival probabilities using clinical data (4,6). 
However, no studies have collected repeated laboratory test 
measurements during hospitalization for their predictions, 
the accuracy of which has, consequently, not been optimum.

In this study, the random forest machine learning 

technique was used to identify biomarkers that may 
predict survival progression for patients with H7N9. 
Bayesian P-splines were used to show the time-varying 
effects of these potential predictors. Further, a dynamic 
risk prediction model was developed to provide simple 
and precise personalized predictions of H7N9 survival, 
which may assist in individualized medical supervision and 
treatment decisions.

The multivariate joint model of our study had certain 
advantages. This dynamic model contained the baseline 

Table 2 Baseline laboratory results for patients infected with H7N9

Biomarker Survivors (N=42) Non-survivors (N=54) P value

ALT, U/L 45.00 (32.22, 68.25) 38.00 (28.05, 57.50) 0.323

AST, U/L 77.00 (55.00, 110.00) 85.00 (57.00, 127.00) 0.580

BE, mmol/L −0.44 (−2.41, 1.22) −2.45 (−5.08, 0.85) 0.076

BUN, μmol/L 5.60 (3.64, 6.92) 6.60 (5.03, 10.50) 0.009

PCO2, mmHg 32.00 (28.25, 34.82) 32.05 (28.58, 37.48) 0.277

CPK, U/dL 197.50 (91.00, 492.70) 420.20 (179.00, 702.00) 0.069

CRP, mg/L 66.80 (31.65, 106.59) 94.40 (36.40, 141.00) 0.043

FiO2 0.49 (0.35, 0.60) 0.75 (0.53, 1.00) <0.001

Lac, mmol/L 1.50 (1.00, 1.89) 1.85 (1.20, 2.70) 0.027

LDH, U/L 766.5 (520.0, 1,072.0) 726.0 (528.0, 1,230.0) 0.831

PCT, ng/mL 0.27 (0.16, 0.80) 1.10 (0.34, 3.04) 0.002

PH 7.46 (7.43, 7.49) 7.44 (7.40, 7.47) 0.014

PaO2, mmHg 65.75 (55.08, 77.25) 53.95 (44.55, 62.20) 0.003

SCr, μmol/L 66.00 (53.20, 89.30) 84.30 (61.30, 113.43) 0.060

SaO2, % 94.10 (90.07, 97.10) 87.10 (79.65, 95.00) 0.001

MONO, ×109 per L 0.13 (0.06, 0.28) 0.19 (0.10, 0.34) 0.325

RR, per min 24.00 (20.00, 28.00) 25.00 (20.00, 30.00) 0.512

LYMPH, ×109 per L 0.52 (0.34, 0.71) 0.41 (0.23, 0.59) 0.017

WBC, ×109 per L 3.76 (2.91, 6.38) 4.86 (2.71, 7.66) 0.306

Hr, per min 90.00 (82.00, 98.00) 96 (82.50, 111.25) 0.131

OI 167.56 (119.40, 206.96) 70.86 (52.80, 99.84) <0.001

NEUT, ×109 per L 3.00 (2.25, 5.50) 4.18 (2.23, 7.11) 0.091

Data are presented as median (IQR), and P values were calculated using a Wilcoxon rank sum test. ALT, alanine aminotransferase; 
AST, aspartate aminotransferase; BE, base excess; BUN, blood urea nitrogen; PCO2, partial pressure of carbon dioxide; CPK, creatine 
phosphokinase; CRP, C-reactive protein; FiO2, fraction of inspired oxygen; Lac, blood lactic acid; LDH, lactate dehydrogenase; PCT, 
procalcitonin; PH, potential of hydrogen; PaO2, arterial oxygen partial pressure; SCr, serum creatinine; SaO2, oxygen saturation; MONO, 
monocyte count; RR, respiratory rate; LYMPH, lymphocyte count; WBC, white blood cell count; Hr, heart rate; OI, oxygenation index; 
NEUT, neutrophils; IQR, interquartile range.
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Figure 1 Classification error rate of the random forest using the 
SWSFS algorithm. The x-axis shows the number of biomarkers 
included in the random forest; the y-axis shows the corresponding 
classification error rate. The circle, with 7 features and an error 
rate of 13.9%, represents the minimum in this curve. SWSFS, 
sliding windows sequential forward feature selection.

Figure 3 Time-dependent AUCs of multivariate joint modeling 
at 6 to 15 days of hospitalization with a 3-day prediction window. 
The x-axis shows the start time for prediction. The y-axis shows 
the point estimates of the time-dependent AUC at different 
time points with a fixed window of 3 days. AUC, area under the 
receiver-operator characteristic curve. 

Figure 2 The time-varying effects of biomarkers. The solid blue line represents point estimates of the β (t) in Eq. [2] of the Cox model. 
The shaded area represents 95% CI. (A) WBC, (B) CRP, (C) BE, (D) CPK, (E) BUN, (F) PCT, and (G) LYMPH. WBC, white blood cell 
count; CRP, C-reactive protein; BE, base excess; CPK, creatine phosphokinase; BUN, blood urea nitrogen; PCT, procalcitonin; LYMPH, 
lymphocyte count; CI, confidence interval.
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characteristics of the study participants and repeated 
measurements of their biomarkers, which increased the 
reliability of the predictions. The performance of our model 
was clinically satisfactory, and the AUC reached up to 0.8 
on day 9 of hospitalization, with a 3-day prediction window. 
The model was cost-efficient and showed high accuracy in 
predicting the prognosis of patients with H7N9 infection. 
Additionally, the multivariate joint model demonstrated 
better individualized identification than general forecasting 
models (7,18,19), because it considered the impact of 
time-dependent effects and repeated measurements. To 
facilitate the application of our dynamic prediction model, 

we developed an online tool, which can be accessed online 
(available at http://218.2.247.110:19040/H7N9/). With the 
relevant longitudinal data of patients, the tool was able to 
output survival probabilities within a specific time frame.

Our study identified 7 significant predictors out of the 
20 observed biomarkers. Six of those 7 predictors were 
associated with the endpoint event, whereas 1 showed 
a protective effect on H7N9. A high WBC suggested 
inflammation. Studies have found that the WBC average 
and range during hospitalization increase in patients who 
die but decrease among survivors, suggesting that WBC 
indices could be used to differentiate survivor and non-
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survivor groups of patients with H7N9 (7). Increases in 2 
other inflammatory indicators, CRP and PCT, were also an 
indicator of H7N9 mortality (20-22). Similarly, WBC was 
associated with the risk of death (Figure 2A). These results 
emphasise the need to monitor these indicators during, and 
particularly in the later period of, hospitalization. Once 
an increase in the expression levels of these indicators 
is observed, a suitable treatment strategy should be 
implemented immediately. Previous studies reported that 
H7N9 infection may have resulted in transient cardiac 
injury and led to an increase in CPK expression, which 
significantly decreased after H7N9 viral tests were returned 
negative (23,24). Comparable to our research (Figure 2D), 
a recent study on 130 patients infected with H7N9 found 
that CPK was an important evaluation index for the severity 
of pneumonia in these patients and that increased CPK 
levels were related to a worse prognosis (25). Interestingly, 
we found that another significant factor, BUN, served as 
an important biomarker in predicting prognosis. Increased 
BUN levels are the hallmark of kidney damage and are 
associated with a more fulminant disease or more debilitated 
state (26,27). BUN might be used to differentiate survivor 
and non-survivor groups in patients with H7N9 in the 
early stage of hospitalization (Figure 2E). Since greater 
expressions of BUN predict a worse outcome, clinicians 
should be cautious when the BUN levels of a patient are 
high at admission. Further, previous findings have proposed 
LYMPH as a reference index for H7N9 infection diagnosis, 
with low LYMPH yielding a poor outcome (28), which is 
consistent with the findings of our study (Figure 2G). 

Our study had several strengths. First, random forest 
has the capacity to avoid overfitting and resisting noise 
interference to a certain extent. Also, random forest models 
can detect non-linear relationships between predictors 
and the outcome, which improves predictive competency. 
Second, dynamic laboratory changes in laboratory 
test results during hospitalization strongly impact the 
progression of the disease; measuring the biomarkers at 
a single time point provides only a limited reflection of 
their influence. Hence, our model measured longitudinal 
biomarkers multiple times, which effectively improved 
the prediction accuracy. Third, we adopted multivariate 
joint models to characterize the time-to-event process, and 
real-time prediction feedback of risk was available on an 
individual level. Nevertheless, several limitations need to 
be noted. First, missing information from the laboratory 
tests and consequent data imputation may have created bias. 
Second, unmeasured confounders and possible bias may 

have affected the prediction accuracy of the model. Third, 
the results of this study were not validated using external 
data. Therefore, findings may be generalized to the other 
studies with caution due to our limited sample size.

In conclusion, this study has characterized the time-
varying effects of significant biomarkers on the prognostic 
progression of H7N9 and has provided real-time 
predictions for individual patients. Our model may serve 
as a valuable tool for assisting in the treatment decision-
making process. Further, early identification of at-risk 
individuals and early intervention may reduce mortality and 
the incidence of other complications.
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Supplementary

Table S1 Treatments and complications in patients infected with H7N9

Characteristics
No. (%)

P value
Total (N=96) Survivor (N=42) Non-survivor (N=54)

Treatments

Antibiotics 96 (100%) 42 (100%) 54 (100%) 0.221

Antiviral treatment 95/95 (100%) 42 (100%) 53/53 (100%) 0.259

Corticosteroids 68/94 (72.34%) 31/41 (75.61%) 37/53 (69.81%) 0.696

Invasive mechanical ventilation 9/94 (9.57%) 1/40 (2.5%) 8 (14.81%) 0.073

Complications

ARDS 46/94 (48.94%) 12/41 (29.27%) 34/53 (64.15%) 0.002

Respiratory failure 62/94 (65.96%) 19/41 (46.34%) 43/53 (81.13%) <0.001

Heart failure 11/91 (12.09%) 0/41 (0%) 11/50 (22.00%) 0.001

Hepatic insufficiency 36/94 (38.30%) 14/41 (34.15%) 22/53 (41.51%) 0.607

Renal insufficiency 24/94 (25.53%) 3/41 (7.32%) 21/53 (39.62%) <0.001

Toxic shock 27/93 (29.03%) 0/41 (0%) 27/52 (51.92%) <0.001

Data are expressed as n (%), or n/N (%), where N is the total number of patients with available data. The P value for differences between 
survivors and non-survivors was tested using a Chi-square test or Fisher’s exact test. ARDS, acute respiratory distress syndrome.


