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A transcriptomic analysis based on aberrant methylation levels 
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Background: This study aimed to identify potential novel therapeutic targets for nasopharyngeal 
carcinoma (NPC) by identifying aberrantly methylated-differentially expressed genes (DEGs) and pathways 
based on a comprehensive bioinformatics analysis.
Methods: Eight gene expression data sets and 2 methylation microarray data sets that included NPC 
and control groups from the Gene Expression Omnibus were identified. Meta-analyses of the DEGs 
were performed using the online analysis database “NetworkAnalyst”. Aberrantly methylated gene loci 
were obtained from the GEO2R. Aberrantly methylated DEGs were obtained from Venn diagrams. The 
enrichment analysis was carried out on the “Metascape” website, and the protein-protein interaction (PPI) 
network construction, network analysis, and visualization of the analysis results were carried out on the 
“String” website using “Cytoscape” software.
Results: In total, 544 hypomethylation high-expression genes and 164 hypermethylation low-expression 
genes were obtained. The enrichment and PPI network analyses suggested that several pathways and hub 
genes with abnormal gene expression accompanied by methylation change, including inositol-trisphosphate 
3-kinase B (ITPKB), G protein subunit beta 5 (GNB5), FYN proto-oncogene, Src family tyrosine kinase 
(FYN), LCK proto-oncogene, Src family tyrosine kinase (LCK), nuclear factor of activated T cells 1 (NFATC1), 
GNAS complex locus (GNAS), protein kinase C beta (PRKCB), zeta chain of T cell receptor associated 
protein kinase 70 (ZAP70), lysophosphatidic acid receptor 1 (LPAR1), protein kinase C epsilon (PRKCE), 
tumor protein p53 (TP53), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fibronectin 1 (FN1), 
cyclin D1 (CCND1), vascular endothelial growth factor A (VEGFA), HRas proto-oncogene, GTPase (HRAS), 
signal transducer and activator of transcription 3 (STAT3), fibroblast growth factor 2 (FGF2), amyloid 
beta precursor protein (APP), and matrix metallopeptidase 2 (MMP2), may be related to the occurrence of 
nasopharyngeal carcinoma .
Conclusions: The identification of novel and important pathways and hub genes and their roles in the 
occurrence and development of NPC will guide clinical research and the development of pharmaceutical 
targets.
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Introduction

Nasopharyngeal carcinoma (NPC) is a kind of epithelial 
malignant tumor, which is the most common type of 
otolaryngological cancer. According to statistics of the 
World Health Organization, NPC has obvious geographical 
distribution characteristics and an ethnic tendency (1). 
The incidence of NPC is very low on Africa, Europe, and 
America. However, the incidence of NPC is significantly 
increased in China and Southeast Asia (2). Indeed, China 
has the highest incidence of NPC worldwide (2). The 
rate of nasopharyngeal cancer in Guangdong, which has 
a high incidence of NPC is dozens times higher than the 
average rate of NPC in the world. Thus, NPC is also called 
“Guangdong cancer” (3).

NPC is prone to local invasion and distant metastasis, 
and has a poor prognosis (4). As the cancer occurs in the 
nasopharynx, and is constrained by its anatomical structure 
and physiological characteristics, radiotherapy is the first 
choice for the treatment of early lesions (5). In advanced 
and recurrent patients, as the sensitivity of cancer cells to 
radiotherapy is reduced after radiotherapy, chemotherapy and 
surgical resection are the preferred treatment strategies (5).

NPC is induced by multiple factors. Epstein-Barr virus 
(EBV) infection, heritage susceptibility, environmental 
carcinogens, and eating habits are potential reasons for 
the occurrence and development of NPC (6-8). EBV 
proliferates massively in the oropharyngeal region and 
infects the whole body through lymphocytes, and is closely 
related to the incidence of NPC (6). Additionally, NPC cells 
are often genetically susceptible to changes on chromosomes 
1, 3, 11, 12, and 17 (7). The people of Guangdong, China, 
like to eat salted fish and other products rich in nitrites, 
which are a potential cause of nasopharyngeal cancer (8).

The occurrence of cancer is accompanied by a series of 
complex molecular changes in cells. DNA methylation is 
a common epigenetic modification, most of which occurs 
at the fifth carbon atom of cytosine-phosphate-guanine 
in a specific gene region (9). It is involved in important 
biological processes such as gene expression, embryonic 
development, gene imprinting and X chromosome 
inactivation. In addition, it affects cell susceptibility, tumor 

phenotype, and tumor malignancy (10). Studies have shown 
that plasma EBV DNA methylation map of patients with 
nasopharyngeal carcinoma has important potential for 
the diagnosis of nasopharyngeal carcinoma (11). SHISA3 
hypermethylation silences the gene expression and leads 
to poor prognosis of nasopharyngeal carcinoma (12), while 
ARNTL hypermethylation leads to significant down-
regulation of its mRNA and protein in nasopharyngeal 
carcinoma cell lines and tissues (13). These studies show 
that DNA methylation patterns and abnormal gene 
expression often occur in nasopharyngeal carcinoma, 
aberrant methylation and differentially expressed genes 
can be used as potential biomarkers for cancer treatment 
and prediction. Nearly 80% of methylation levels were 
negatively correlated with gene expression levels, and a few 
were positively correlated (14). It was generally consistent 
with the view that the increase of methylation level in 
tumors was related to transcriptional silencing.

With the continuous development of modern omics 
technology, and bioinformatics, a large number of studies 
on the pathogenesis of NPC have emerged, and scholars at 
home and abroad have reported relevant research results 
one after another (15). The pathogenesis of NPC and the 
mechanism of drug resistance have been explained at the 
molecular level (16,17). In this study, we integrated NPC 
gene expression and methylation data sets published on 
the Gene Expression Omnibus (GEO) database. Under 
the search terms set in this study, the most comprehensive 
gene expression and methylation data available for NPC 
were included. Integrating multiple data sets from multiple 
experiments not only increases the sample size, but also 
improves the robustness of the results, which is of great 
significance to the in-depth exploration of the molecular 
changes in NPC. The identification of important 
expression pathways and potential oncogenes in NPC will 
provide new directions and ideas for clinicians, and assist 
in the identification of diagnostic markers and therapeutic 
targets.

We present the following article in accordance with 
the STREGA reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-6628/rc).
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Methods

Data sources, filtering and selection

The flow chart of the research process is shown in Figure 1. 
Human microarray and high-throughput sequencing gene 
expression NPC data sets were retrieved from the National 
Center for Biotechnology Information’s GEO database 
(http://www.ncbi.nlm.nih.gov/geo/) by searching for 
“Nasopharyngeal carcinoma”, “Series”, “Homo sapiens”, 
“Expression profiling by array”, “Expression profiling by 
high-throughput sequencing”, and “Methylation profiling 
by array”. The GEO data sets were then filtered according 
to the criteria below: (I) the gene expression profile had 
been exclusively derived from the human nasopharyngeal 
tissue of patient and healthy control groups and probed 
using a human-based genome array platform; (II) 
experiments containing long non-coding ribonucleic acid 
(RNA), microRNA, small RNA, and single-cell RNA 
sequencing were excluded from this study; (III) each study 

and control group had at least 3 samples. After filtering 
based on the above-mentioned conditions, 10 data sets 
(i.e., GSE12452, GSE13597, GSE40290, GSE53819, 
GSE64634, GSE118719, GSE68799, GSE134886, 
GSE52068, and GSE62336) of human nasopharyngeal 
tissue were obtained using the getGEO function of the 
GeoQuery package in R software (version 3.6.1) for further 
analysis. All the retrieved data sets were microarray data 
sets except for GSE118719, GSE68799, and GSE134886, 
which were high-throughput sequencing gene expression 
data sets. GSE12452, GSE13597, GSE40290, GSE53819, 
GSE64634, GSE118719, GSE68799, and GSE134886 
were gene expression data sets, while GSE52068 and 
GSE62336 were deoxyribonucleic acid (DNA) methylation 
data sets. Raw gene expression data, study design tables, 
and annotation tables of each data set were obtained 
from the GEO database. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Filtering datasets from GEO database

Gene expression datasets

Meta-analysis (“NetworkAnalyst”)

Data upload

Up-regulation

Quality check

Down-regulation Hypermethylation Hypomethylation

Meta-anaysis Sig. Gene

Venn diagram

Enrichment analysis PPI network analysis

Differential methylation analysis (“GEO2R”)

Methylation datasets

Figure 1 Flow chart of research method. GEO, Gene Expression Omnibus; PPI, protein-protein interaction.
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Data processing and meta-analysis of the gene expression 
data sets

NetworkAnalyst (https://www.networkanalyst.ca/) is an 
online tool for analyzing gene expression data (18-21). Eight 
gene expression data sets were uploaded to the “Multiple 
Gene Expression Tables” module on the homepage of the 
website for the meta-analysis. All probe/gene IDs were first 
converted into the Entrez ID format. The NetworkAnalyst 
online site has a library of 47 human, mouse, and rat on-
chip data probe identifiers (IDs). The probe platforms for 
the 8 gene expression data sets were Affymetrix Human 
Genome U133plus2 (HGU133plus2), Affymetrix Human 
Genome U133 (chip hgu133a), Ensemble Transcript ID, 
Agilent Human Genome Whole Microarray (4x44k/4112), 
Affymetrix Human Genome U133plus2 (HGU133plus2), 
Official Gene Symbol, Ensembl Gene ID, and Ensembl 
Gene ID. Variance stabilization normalization and log2 
counts per million methods were adopted to standardize 
the data sets. The Limma method was used to analyze 
the differential expression of the 8 gene expression data 
sets. The cut-off P values were adjusted using Benjamini-
Hochberg’s rate of error discovery [i.e., the false discovery 
rate (FDR)]. A P value of 0.05 was considered statistically 
significant. After the data preparation was completed, a 
total of 5,208 features were matched with a total sample 
size of 217. The groups were divided into “Ctrl” and 
“NPC” groups. The combat method was used to adjust the 
batch effects of the data. A principal component analysis 
was conducted, and density plots of the gene counts were 
generated, using the merged data. The meta-analysis was 
conducted after a data quality check. A random model 
of combining effect sizes was used to combine data sets 
from multiple studies. The significance level was set to 
0.05. For the 2 DNA methylation data sets (GSE52068 
and GSE62336), we used GEO2R to identify differential 
methylation sites. GEO2R performs comparisons on 
original submitter-supplied processed data tables using the 
GEOquery and limma R packages from the Bioconductor 
project. The significance level was set to 0.05.

Aberrantly methylated DEGs

Studies have shown that the pathogenesis of NPC is 
often accompanied by methylation variation, and DNA 
methylation often inhibits gene expression (22). We 
took the intersections of the downregulated genes from 

the meta-analysis and the hypermethylated genes from 
GEO2R and drew a Venn map on the “Bioinformatics & 
Evolutionary Genomics” website (http://bioinformatics.
psb.ugent.be/webtools/Venn/). Similarly, we also took the 
intersections of upregulated genes from the meta-analysis 
and the hypomethylated genes from GEO2R and drew a 
Venn map on the same website mentioned above.

Enrichment analysis

A functional enrichment analysis was performed for the 
aberrantly methylated differentially expressed genes (DEGs) 
on the website “Metascape” (23). For these genes, the 
pathway and process enrichment analysis was performed 
using the following ontology sources: Gene Ontology 
(GO) Biological Processes, GO Cellular Components, GO 
Molecular Functions, the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) Pathway, and Reactome Gene Sets. 
The criteria for selecting the items were: (I) P value is less 
than 0.01; (II) the minimum count threshold is 3; (III) the 
minimum enrichment factor threshold is 1.5. In order to 
further capture the relationship between terms, we select a 
subset of enriched terms and present it as a network graph, 
in which terms with similarity index greater than 0.3 are 
connected by edges. We selected the terms with the best P 
value from 20 clusters, and restrict each cluster to no more 
than 15 terms, with a total of no more than 250 terms.

Protein-protein interaction (PPI) network analysis

The “String” website was used to analyze the PPI network 
of each of the aberrantly methylated DEGs (24). The active 
interaction sources included text mining, experiments, 
databases, co-expression, neighborhood, gene fusion, and 
co-occurrence. The minimum required interaction score 
was a medium confidence level of 0.400, and unrelated 
gene nodes in the network were hidden. The preliminary 
network results were obtained and exported to -tab 
separated values format for further analysis. The local PPI 
analysis software “Cytoscape” was then used to retouch the 
network and for further analysis (25,26). “MCODE” and 
“cytohubba” modules were carried out to identify the key 
network nodes and hub genes, for which the degree cut-off 
value was set as 2, the node cut-off score was set as 0.2, the 
k-core was set as 2, the max depth was set as 100, and the 
Maximal Clique Centrality (MCC) algorithm was used.

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Statistical analysis

Most of the statistical methods used in this study were based 
on the above-mentioned bioinformatics online or local 
analysis tools. The Limma package was used to identify 
the DEGs. Benjamin Hochberg’s FDR was used to adjust 
the cut-off P value, and to combine effect sizes, a random-
effects model was used to combine the data sets from 
multiple studies. In all the statistical analyses, P value less 
than 0.05 was considered statistically significant

Results

Data information included in this study

Ten data sets (i.e., GSE12452, GSE13597, GSE40290, 
GSE53819,  GSE64634,  GSE118719,  GSE68799, 
GSE134886, GSE52068, and GSE62336) from human 
nasopharyngeal tissue were obtained for further analysis 
after filtering in accordance with the conditions mentioned 
in the “Methods” section above. In total, 315 samples were 
included in our study. The study type, accession number, 
PubMed Unique Identifier (PMID), Platform, sample 
source, and sample size of these data sets are set out in Table 1.

Gene expression data processing and meta-analysis

To check the distribution of the data and whether there 
were abnormal values before the enrichment and PPI 
network analyses, we used a 2-dimensional principal 
component analysis and density plots of the gene counts to 
check the data, and the results showed that there was good 
differentiation between the NPC group and the normal 
control group (see Figure 2).

First, in relation to the meta-analysis, 8 data sets 
were analyzed by DEGs, respectively. The numbers of 
the GSE12452, GSE13597, GSE40290, GSE53819, 
GSE64634, GSE118719, GSE68799, and GSE134886 
DEG data sets were 4,968, 1, 640, 6,227, 99, 7,968, 2,617, 
and 0, respectively. Second, the “Multiple Gene Expression 
Tables” of the “NetworkAnalyst” were used to integrate 
and analyze the 8 groups of data. In total, 1,488 DEGs were 
identified by combining the effect sizes using the random-
effects model method. 721 genes were downregulated and 
767 genes were upregulated. The top 50 genes with P 
values are set out in Table 2. The boxplot of representative 
differential genes is shown in Figure 3, and all the genes are 
specified in https://cdn.amegroups.cn/static/public/atm-21-
6628-1.xlsx.

Table 1 Data information downloaded from the GEO public database

Study type Accession PMID Platform Source
Samples

NPC Ctrl

Expression profiling by array GSE12452 17119049; 16912175; 
22880099

Affymetrix Nasopharyngeal tissue 31 10

Expression profiling by array GSE13597 19142888 Affymetrix Nasopharyngeal tissue 25 3

Expression profiling by array GSE40290 NA Capitalbio Nasopharyngeal tissue 25 8

Expression profiling by array GSE53819 24763226 Agilent Nasopharyngeal tissue 18 18

Expression profiling by array GSE64634 26246469 Affymetrix Nasopharyngeal tissue 12 4

Expression profiling by high-throughput 
sequencing

GSE118719 30477559 Illumina Nasopharyngeal tissue 7 4

Expression profiling by high-throughput 
sequencing

GSE68799 NA Illumina Nasopharyngeal tissue 42 4

Expression profiling by high-throughput 
sequencing

GSE134886 33931030 HiSeq Nasopharyngeal tissue 3 3

Methylation profiling by array GSE52068 26443805; 28146149 Illumina Nasopharyngeal tissue 24 24

Methylation profiling by array GSE62336 25924914 Illumina Nasopharyngeal tissue 25 25

Total 212 103

GEO, Gene Expression Omnibus.
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Figure 2 Distribution of gene expression data in NPC group and control group. (A) 2-dimensional principal component analysis; (B) density 
plot of gene counts. NPC, nasopharyngeal carcinoma.

Aberrantly methylated gene loci

A total of 21,717 differentially methylated loci were 
identified in the GSE62336 data set, of which 5,800 
were hypermethylated and 15,917 were hypomethylated. 
Additionally, a total of 30,426 differentially methylated loci 
were identified in the GSE52068 data set, of which 17,128 
were hypermethylated and 13,298 were hypomethylated. 
The volcano map of differentially methylated genes is 
shown in Figure 4.

Aberrantly methylated DEGs

The Venn diagram analysis integrated the DEGs from 
the meta-analysis and the differential methylation genes. 
In practical terms, a total of 164 hypermethylation low-
expression genes were obtained by overlapping the 
hypermethylation genes from GSE52068, GSE62336, and 
the 721 downregulated genes from the meta-analysis, and 
544 hypomethylation high-expression genes were obtained 
by overlapping the hypomethylation genes from GSE52068, 
GSE62336, and the 767 upregulated genes from the meta-
analysis. The Venn diagrams are shown in Figure 5.

Enrichment pathway and process

T h e  e n r i c h m e n t  r e s u l t s  s h o w e d  t h a t  t h e  1 6 4 
hypermethylation low-expression genes were enriched in 
the biological processes of cellular response to nitrogen 
compounds, regulation of ion transmembrane transport, 
actin filament-based process, response to drugs, positive 

regulation of cell death, myelination, cellular calcium ion 
homeostasis, and regulation of small GTPase-mediated 
signal transduction. In relation to the cellular components, 
the genes were mainly enriched in the extrinsic components 
of the plasma membrane, sarcomere, and perinuclear 
region of cytoplasm. In relation to molecular function, the 
genes were mainly enriched in enzyme activator activity 
and hormone receptor binding. In relation to the KEGG 
pathway, the genes were mainly enriched in the calcium 
signaling pathway, the mitogen-activated protein kinase 
signaling pathway, and inositol phosphate metabolism. 
Finally, the genes in the Reactome Gene Sets were 
mainly enriched in G protein-coupled receptor (GPCR) 
downstream signaling, transmission across chemical 
synapses, neural cell adhesion molecule (NCAM) signaling 
for neurite out-growth, and PI5P, PP2A and IER3 regulate 
PI3K/AKT signaling (see Figure 6A).

The  enr i chment  re su l t s  showed  tha t  the  544 
hypomethylation high-expression genes were enriched in 
the biological processes of extracellular matrix organization, 
epithelium morphogenesis, developmental growth, 
embryonic morphogenesis, response to wounding, cell-
substrate adhesion, the cell surface receptor signaling 
pathway involved in cell-cell signaling, gland development, 
the regulation of cell projection organization, growth-
factor responses, blood vessel development, skeletal system 
development, and embryo development ending in birth or 
egg hatching. In relation to the cellular components, the 
genes were mainly enriched in focal adhesion. In relation to 
molecular function, the genes were mainly enriched in cell 
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Table 2 The top 50 DEGs for which the P values were obtained 
from the meta-analysis

EntrezID Name CombinedES Pval

5955 RCN2 1.6706 1.35E-09

11068 CYB561D2 –1.2929 2.06E-09

25800 SLC39A6 1.3176 2.35E-09

27122 DKK3 1.2715 2.35E-09

7375 USP4 –1.2787 5.14E-09

1112 FOXN3 –1.5158 5.26E-09

25888 ZNF473 1.2064 1.81E-08

1054 CEBPG 1.1895 2.19E-08

10947 AP3M2 1.176 3.72E-08

2288 FKBP4 1.3345 6.40E-08

22911 WDR47 1.1418 7.89E-08

4350 MPG –1.1404 7.89E-08

10651 MTX2 1.136 8.91E-08

6591 SNAI2 1.1299 8.91E-08

9208 LRRFIP1 –1.1225 1.48E-07

9378 NRXN1 1.3541 1.57E-07

53616 ADAM22 1.3295 1.68E-07

11060 WWP2 –1.2219 1.81E-07

931 MS4A1 –1.5446 1.81E-07

9450 LY86 –1.4976 2.52E-07

6039 RNASE6 –1.1407 2.52E-07

5525 PPP2R5A –1.416 3.99E-07

3685 ITGAV 1.9058 3.99E-07

23345 SYNE1 –1.3434 3.99E-07

9258 MFHAS1 1.057 3.99E-07

4430 MYO1B 1.4312 3.99E-07

7351 UCP2 –1.3914 4.25E-07

6770 STAR 1.351 5.81E-07

1462 VCAN 1.2441 5.81E-07

25864 ABHD14A –1.3261 6.04E-07

933 CD22 –1.8081 6.21E-07

23231 SEL1L3 –1.1697 7.54E-07

1535 CYBA –1.0378 7.79E-07

23550 PSD4 –1.4916 7.95E-07

Table 2 (continued)

Table 2 (continued)

EntrezID Name CombinedES Pval

7130 TNFAIP6 1.8405 8.52E-07

640 BLK –1.9199 8.52E-07

8508 NIPSNAP1 1.0292 8.87E-07

4232 MEST 1.0322 9.96E-07

930 CD19 –1.5597 1.02E-06

2690 GHR 1.0108 1.32E-06

54677 CROT 1.0081 1.40E-06

10520 ZNF211 –1.008 1.71E-06

55884 WSB2 0.99518 1.98E-06

8050 PDHX 0.99695 2.07E-06

7480 WNT10B 0.99621 2.08E-06

4902 NRTN 0.99854 2.19E-06

81628 TSC22D4 –0.99859 2.26E-06

23221 RHOBTB2 –1.1857 2.37E-06

8850 KAT2B –0.98947 2.37E-06

191 AHCY 1.4157 2.51E-06

DEGs, differentially expressed genes.

adhesion molecule binding and integrin binding. In relation 
to the KEGG pathway, the genes were mainly enriched 
in pathways in cancer. Finally, the genes in the Reactome 
Gene Sets were mainly enriched in signaling by receptor 
tyrosine kinases, cytokine signaling in the immune system, 
and apoptosis (see Figure 6B).

To further pick out modules that are momentous, 
accumulative hypergeometric p values and enrichment 
factors of all the statistically significant enriched terms were 
calculated. Then, the remaining significant terms were 
hierarchically clustered into a tree according to the kappa 
statistical similarities among their gene members, The tree 
convert into term clusters according to the Kappa score 
threshold of 0.3. And select a subset of representative terms 
from the cluster to present the network graph. Figure 7 shows 
the network plots that capture the relationships between 
the terms. Each term is represented by a circular node, the 
larger the node, the more genes the term has entered, and 
the colors of the node indicate different clusters. Terms with 
a similarity score higher than 0.3 are connected by an edge. 
The thicker the edges, the higher the similarity score.
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Figure 3 Boxplots of representative differentially expressed genes (i.e., RCN2, CYB561D2, SLC39A6, DKK3, USP4, and FOXN3). NPC, 
nasopharyngeal carcinoma.
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Figure 4 Volcano map of differentially expressed methylation genes. (A) GSE52068; (B) GSE62336; Blue represents significant 
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PPI network construction

The two groups of aberrantly methylated DEGs were 
imported into the “String” website, and 164/544 nodes 
were correctly identified in the network, with a total of 
187/3,134 pairs of interactions. The average node level 
was 2.28/11.5. The average local clustering coefficient was 
0.283/0.35. The expected number of edges was 130/2,294. 

The P value of PPI enrichment was 1.59e-06/1.0e-16. 
After hiding the unrelated gene nodes in the network, the 
results were imported into “Sytoscape,” and the “MCODE” 
plug-in was used to identify more meaningful modules in 
the network. The parameters of the mcode were set to the 
default parameters. The top 3 modules of hypermethylation 
downregulated genes are illustrated in Figure 8A. The 
enrichment analysis revealed that their main functions 
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Figure 5 Venn diagrams of aberrantly methylated differentially expressed genes. (A) Hypermethylation and downregulated genes; (B) 
hypomethylation and upregulated genes.
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Figure 7 Network plot of enriched items. (A) Hypermethylation and downregulated genes; (B) hypomethylation and upregulated genes.

related to the T cell receptor signaling pathway, signal 
transduction, and carbon metabolism (see Table 3). The 
top 10 hub genes for hypermethylation low-expression 
were ITPKB, GNB5, FYN, LCK, NFATC1, GNAS, PRKCB, 
ZAP70, LPAR1, and PRKCE (see Figure 8B). In relation to 
the PPI network of hypomethylation upregulated genes, 
the functions of the top 3 modules were related to the 
regulation of protein metabolic process, cancer pathways, 
and protein-containing complexes (see Figure 8C and 
Table 3). The top 10 hub genes for hypomethylation high 
expression were TP53, GAPDH, FN1, CCND1, VEGFA, 
HRAS, STAT3, FGF2, APP, and MMP2 (see Figure 8D).

Discussion

The molecular mechanisms underlying the development 
and progression of and potential novel therapeutic targets 
for NPC need to be explored. DNA methylation is a form 
of DNA chemical modification that can change the genetic 
performance without changing the DNA sequence. A large 

number of studies have shown that DNA methylation 
plays an important role in chromatin structure, DNA 
conformation, DNA stability, and the interaction between 
DNA and protein, thus controlling the expression of target 
genes (27). Studies have also indicated that the pathological 
changes of NPC are often accompanied by methylation 
changes (28). With that in mind, in this study, based on the 
previous rich research results on the molecular level of NPC 
and the increasingly in-depth research with sequencing 
technology in recent years, we analyzed NPC gene 
expression and DNA methylation data sets from 10 groups 
of experiments. Aberrantly methylated DEGs and pathways 
were obtained for further enrichment and PPI network 
analyses.

For the enrichment analysis, we focused on the 
enrichment results from the Reactome Gene Sets, 
which had more detailed and specific significance than 
other enrichment databases. In relation to the 164 
hypermethylation low-expression genes, the enrichment 
results showed that these genes were enriched in GPCR 
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Figure 8 PPI network analysis. (A) Top 3 modules of hypermethylation low-expression genes; (B) PPI network and top 10 hub genes of 
hypermethylation low-expression genes; (C) top 3 modules of hypomethylation high-expression genes; (D) PPI network and top 10 hub 
genes of hypomethylation high-expression genes. PPI, protein-protein interaction.
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downstream signaling, transmission across chemical 
synapses, and NCAM signaling for neurite out-growth. 
This is reasonable, as studies have shown that the 
downstream regulators of GPCRs, such as the Hippo 
signaling pathway, are involved in the regulation of tumor 
size and tumorigenesis (29). As for transmission across 
chemical synapses and NCAM signaling for neurite out-
growth, there is no literature on the relationship between 
these two pathways and cancer, especially NPC. In relation 
to the 544 hypomethylation high-expression genes, the 
enrichment results showed that these genes were enriched 
in signaling by receptor tyrosine kinases, cytokine signaling 
in the immune system, and apoptosis. These results are 
credible, as receptor tyrosine kinases (RTKs) have been 
shown to play an important role in cell growth, movement, 
differentiation, and metabolism (30). Thus, an imbalance 
in RTK signaling leads to a variety of human diseases, 
including cancer (31). Additionally, cytokines are one of 
the most important effector and messenger molecules in 
the immune system. They are deeply involved in immune 
responses during infection and inflammation, and in the 
prevention or promotion of diseases, such as allergies and 
cancer. Thus, regulating the cytokine pathway is one of the 
most effective strategies for treating various diseases (32). It 
has also been reported that the signaling of tyrosine kinase 
is related to the radiation resistance of NPC (33). Many 
studies have shown that the apoptosis of NPC cells can be 
induced through the regulation of target genes (34,35).

Next, the PPI network analysis examined the relationship 
among proteins encoded by these aberrantly methylated 
DEGs. The top 10 hub genes in the hypermethylation 

low-expression group were ITPKB, GNB5, FYN, LCK, 
NFATC1, GNAS, PRKCB, ZAP70, LPAR1, and PRKCE. 
The presence of ITPKB has been reported in lung cancer 
metastasis and acute and chronic graft-versus-host diseases, 
and has been used in tumor therapy interventions to 
overcome cisplatin resistance (36-38). ITPKB has not 
been examined in NPC, and it may be a potential novel 
target. FYN is a non-receptor tyrosine kinase, belonging 
to the sarcoma (Src) family of kinases. It is involved in the 
signal transduction pathways of the nervous system and in 
the development and activation of T lymphocytes under 
normal physiological conditions. FYN has been shown to 
contribute to the development and progression of several 
types of cancer by participating in the control of cell 
growth, death, morphogenesis, and cell metastasis (39). 
In addition, the top 10 hub genes in the hypomethylation 
high-expression group were TP53, GAPDH, FN1, CCND1, 
VEGFA, HRAS, STAT3, FGF2, APP, and MMP2. TP53, 
the star gene in cancer, also appeared in our results, which 
plays an important role in many cancers. GAPDH is a 
multifunctional enzyme, which plays a variety of regulatory 
roles in determining cell fate (40). To date, very little 
research has been conducted on the regulatory mechanism 
of GAPDH in NPC.

Regarding the relationship between the prognosis 
of nasopharyngeal carcinoma and methylation, studies 
have shown that nasopharyngeal carcinoma with high 
methylation levels is significantly associated with 
poorer survival (41). This is consistent with the fact 
that hypermethylation leads to low expression of tumor 
suppressor genes and hypomethylation leads to high 

Table 3 Analysis of top 3 module in PPI network

Group Module Category Description Genes Nodes FDR

Hyper-low 1 KEGG pathways T-cell receptor signaling 
pathway

ZAP70, LCK, FYN, NFATC1 4 0.00000013

2 Reactome 
pathways

Signal transduction PTH, PNOC, TACR1, P2RY1, 
VIPR1, LPAR1

6 0.0000745

3 KEGG pathways Carbon metabolism RPIA, HK1, ME3 3 0.00000351

Hypo-high 1 GO process Regulation of protein 
metabolic process

TNFRSF1A, KEAP1, CCND1, 
GAPDH, RNF114, CDK4…

36 0.000000000000000683

2 KEGG pathways Pathways in cancer LAMB1, KITLG, JAG1, LAMC1, 
CCND2, LRP6, FZD7…

17 0.00000000000000132

3 GO component Protein-containing 
complexes

DLD, COX6A1, ENO1, LRP1, 
CANX, DDB2, COX5B, NUP133…

36 0.0000000001

PPI, protein-protein interaction.
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expression of oncogenes.
In conclusion, our combined bioinformatics analysis of 

gene expression and gene methylation microarrays revealed 
a series of DEGs and pathways of abnormal methylation 
in NPC. The results may help to reveal the molecular 
mechanism underling the occurrence and development of 
NPC and provide new ideas for the targeted therapy of 
NPC. Hub genes, including ITPKB, GNB5, FYN, LCK, 
NFATC1, GNAS, PRKCB, ZAP70, LPAR1, PRKCEW, TP53, 
GAPDH, FN1, CCND1, VEGFA, HRAS, STAT3, FGF2, 
APP, and MMP2, are noteworthy. Under the search terms 
set in this study, the most comprehensive gene expression 
and methylation data available for NPC were included, and 
this study produced more reliable and accurate screening 
results than individual surveys by overlapping relevant data 
sets. A number of reliable online and local analysis software 
was used to identify pathways and key sites that might have 
been overlooked in previous studies. However, this study 
had some limitations. For example, due to the variable data 
information, we could not obtain all the clinical information 
of the data, and the effects of the Hub genes on prognosis 
and metastasis still needs to be further studied and verified.

Conclusions

In our data analysis, we identified novel important pathways 
and genes pivotal to the development of NPC. Our 
findings can guide clinical research and could lead to the 
development of drug targets that act on relevant pathways 
and genes.
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