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Background: Ovarian cancer (OV) is the leading cause of death in gynecological cancer. The dysregulation 
of N6-methyladenosine (m6A) modification is commonly found in cancers. However, there is a lack of 
research into m6A RNA methylation regulators in OV.
Methods: The RNA-Seq of 379 OV tissues and 88 healthy ovarian tissues was downloaded from The 
Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases, respectively. A 
Gene Ontology (GO) functional analysis was performed to verify the function of m6A RNA methylation 
regulators. Kaplan-Meier (K-M) curves and the log-rank (Mantel-Cox) test were used for the survival 
analysis. A Cox regression analysis was used to identify the genes related to overall survival (OS) and build 
the prediction model. 
Results: m6A RNA methylation regulators were dysregulated in OV tissues compared with normal tissues 
(P<0.05), and patients with a high expression of KIAA1429 and YTHDC2 had a poor prognosis (P<0.05). 
A prognostic model was constructed based on the m6A RNA methylation regulators. Based on the risk 
signature, the patients were classified into high- and low-risk groups. The low-risk group’s OS rate was 
significantly better than that of the high-risk group. The validity and accuracy of the prognostic model 
were verified by using TCGA and Gene Expression Omnibus (GEO) datasets, and the risk score from the 
prognostic model acted as an independent prognostic indicator in predicting the survival of OV patients. 
Conclusions: m6A RNA methylation regulators were dysregulated in OV tissues. More importantly, the 
prognostic model comprising the five selected m6A RNA methylation regulators could be a valuable tool for 

predicting the prognosis of OV patients.
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Introduction

Ovarian cancer (OV) is the leading cause of death in 
gynecological cancer since patients with early-stage OV 
are asymptomatic, and 75% will have reached an advanced 
stage (stage III or IV) by the time they are diagnosed (1).  
Although age-standardized rates are stable or falling in 
most high-income countries, they are rising in many 
low- and middle-income countries (2). According to the 
American Cancer Society, it was estimated that there were 
approximately 295,414 new cases and 184,799 deaths 
attributed to OV worldwide in 2018 (3).

Post-transcriptional modification of RNA is an important 
means of post-transcriptional processing of RNA, and it is 
an essential mechanism for post-transcriptional regulation 
of RNA (4). 

N6-methyladenosine (m6A) modification is the 
most prevalent internal methylation in mRNA, and it is 
deposited by m6A methyltransferases, removed by m6A 
demethylases (5). m6A modification play important role 
in gene expression regulation of basic cellular processes 
and multiple physiological functions, and among of them, 
the most important role is modulating the eukaryotic 
transcriptome to influence mRNA splicing, export, 
localization, translation, and stability (6,7). Aberrant 
m6A modification can cause cancer, but it is also have the 
potential to yield new therapies (8).

New research has found that methylated nucleosides, 
especially m6A modification, which determine the fate 
of mRNAs by the alternatives of cell differentiation and 
embryonic development, exist in the mRNA of Novikoff 
hepatoma cells (9,10). Moreover, evidence is emerging 
that m6A modification and its regulatory proteins also play 
critical roles in various cancers including urological tumors, 
clear cell renal cell carcinoma, glioma, gastric cancer, etc. In 
urological tumors, many m6A modification-related proteins 
are dysregulated and promote cancer development (11).  
In clear cell renal cell carcinoma, alterations of m6A 
RNA methylation regulators were found to be related 
to the clinicopathological characteristics and survival of 
patients (12), and m6A RNA methylation regulators are 
also critical regulators of glioma progression (13). Further, 
m6A modification was shown to influence the malignant 
phenotypes of gastric cancer by regulating the Wnt/PI3K-
Akt signaling pathway (14).

In ovarian cancer, m6A regulators are promising as 
potential molecular therapeutic targets for ovarian cancer (15). 
For example, YTHDF1 can promote tumorigenesis of ovarian 
cancer cells by regulating the translation of eIF3C via an m6A-

dependent way, thus affects the global protein translation in 
ovarian cancer (16). Moreover, Han et al. showed that WTAP 
was significantly increased in ovarian tissues, and the highly 
expression is associated with the regulation of the cell cycle and 
the target of MYC (17). 

Although m6A modification has been reported to play 
an important role in tumors, the relationship between 
m6A RNA methylation modulator signatures and OV 
prognosis remains to be verified. To confirm the precise 
m6A regulation pattern in OV, we systematically analyzed 
the expression of m6A RNA methylation regulators and 
constructed a prognostic model based on The Cancer 
Genome Atlas (TCGA) and the Genotype-Tissue 
Expression (GTEx) databases.

We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-6462/rc).

Methods

Patient information 

The clinical data of OV patients were downloaded from 
TCGA database (https://portal.gdc.cancer.gov/). There are 
379 OV patients with RNA-Seq profiles and clinical data in 
TCGA database. The RNA-Seq profiles of 379 OV tissues 
and 88 healthy ovarian tissues were extracted from the 
University of California Santa Cruz (UCSC) database (http://
xena.ucsc.edu/). Gene Expression Omnibus (GEO) datasets, 
including GSE66957 and GSE63885, were downloaded 
from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/). The data from TCGA and GEO were downloaded on 
September 27, 2021. The study setting, eligibility criteria for 
participants, and treatments received were all obtained from 
TCGA. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

m6A RNA methylation modulator selection 

A total of 13 genes are recognized as vital m6A methylation 
modulators, including METTL3, METTL14, WTAP, 
KIAA1429 ,  RBM15 ,  ZC3H13 ,  YTHDC1 ,  YTHDC2 , 
YTHDF1, YTHDF2, HNRNPC, ALKBH5, and FTO (18). 

RNA isolation and quantitative real‑time PCR (qRT‑PCR)

For tissue RNA isolation, 1 mL AG RNAex Pro Reagent 
(Accurate Biotechnology Co.) was added to 50 mg of tissue 
and total RNA samples were extracted according to the 

https://atm.amegroups.com/article/view/10.21037/atm-21-6462/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-6462/rc
https://portal.gdc.cancer.gov/
http://xena.ucsc.edu/
http://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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manufacturer’s instructions. Purified RNA was quantified 
resort to NanoVue (GE Healthcare Life Sciences). cDNAs 
were synthesized from total RNAs by using RT reagent Kit 
(Takara Co., LTD, Japan) and ReverTra Ace qPCR RT Kit 
(Toyobo Co., LTD, Japan) (19).

qRT-PCR of GAPDH, KIAA1429, HNRNPC, YTHDC2, 
ZC3H13 and WTAP was performed with the SYBR qPCR 
Mix (Toyobo Co., LTD, Japan). 10 μL reaction system 
was adopted according to the manufacturer’s instructions 
and amplified for 40 cycles. The expression levels were 
normalized by GAPDH. Relative expression was calculated 
using the method of 2−∆∆Ct (20). Primer names and primer 
sequences are listed in the following tables (Table 1). 

Bioinformatics analysis 

A Gene Ontology (GO) functional enrichment analysis was 
performed to verify the function of the 13 m6A methylation 
modulators. Next, heatmap and violin plots were used to 
visualize the expression of the 13 regulators in 379 tumor 
tissues and 88 normal tissues. Spearman’s analysis was 
conducted to explore the correlations among these regulator 
genes, and a Kaplan-Meier (K-M) analysis was adopted 
to confirm the prognostic regulators. We performed a 
univariate Cox analysis to explore the prognostic role of 
m6A methylation regulators in OV patients. Then, a lasso 
regression analysis was used to construct the prognostic 
model. Five genes were identified as powerful prognostic 

factors. The risk score of each patient was calculated using 
the following formula: Risk score = 0.15987 × expression of 
KIAA1429 − 0.11282 × expression of HNRNPC + 0.069938 
× expression of YTHDC2 + 0.109001 × expression of 
ZC3H13 + 0.123254 × expression of WTAP.

Statistical analysis 

Unpaired t-tests were used to confirm the differential 
expression of the m6A RNA methylation modulators. 
The median risk score was set as the cut-off value to 
divide patients into high- or low-risk groups. The log-
rank (Mantel-Cox) test was used for the survival analysis. 
Differences were considered statistically significant when 
the P value was <0.05.

Results

Confirmation of the function of m6A RNA methylation 
regulators 

The level of m6A methylation is determined by the dynamic 
interplay between methyl transferases (‘writers’), binding 
proteins (‘readers’), and demethylases (‘erasers’). Writers 
of m6A include methyl transferase Like 3 (METTL3) (21), 
METTL14 (22,23), Wilms Tumor 1 Associated Protein 
(WTAP) (24), KIAA1429 (25), RNA Binding Motif Protein 
15 (RBM15) (22), and ZC3H13 (26). Readers of m6A 
contain YTHDC1 (13,27), YTHDC2 (28), YTHDF1 (13), 
YTHDF2 (29), and HNRNPC (30). Erasers of m6A include 
ALKBH5 (31) and FTO (32). 

We conducted a GO functional analysis to verify the 
function of the m6A RNA methylation regulators. Our 
results showed that the primary biological processes 
involved in these genes are RNA modification, methylation, 
metabolic process, and splicing. Moreover, these genes 
are involved in the formation of nuclear speck and 
methyltransferase complex (Figure 1A,1B, Table 2), and 
their molecular functions are catalytic activity and mRNA 
binding (Figure 1A, Table 2).

The most significant biological processes in which 
m6A RNA methylation regulators are involved are RNA 
modification, regulation of mRNA metabolic process, and 
RNA splicing (Figure 1B). Among the genes related to m6A 
methylation, METTL3, METTL14, WTAP, and ZC3H13 
participate in multiple RNA biological processes. However, 
YTHDF2, HNRNPC, YTHDC1, and FTO are only involved 
in RNA modification and the mRNA metabolic process 

Table 1 The forward and reverse primer sequence of the genes

Primer name Primer sequence

GAPDH Forward: CAACGTGTCAGTGGTGGACCTG

GAPDH Reverse: GTGTCGCTGTTGAAGTCAGAGGAG

KIAA1429 Forward: GGAATGGACACGTTTATTCGAG

KIAA1429 Reverse: GATAGAGCACAGGAGCATATGT

ZC3H13 Forward: GATCAGTTAAAGCGTGGAGAAC

ZC3H13 Reverse: CTCTCTGTCGTGTTCATATCGA

WTAP Forward: CTGACAAACGGACCAAGTAATG

WTAP Reverse: AAAGTCATCTTCGGTTGTGTTG

YTHDC2 Forward: GAGAATTGGGCTGTCGTTAAAG

YTHDC2 Reverse: TGAAGCAGGATGAAATCGTACT

HNRNPC Forward: CGTGTACCTCCTCCTCCTCCTATTG

HNRNPC Reverse: CCCCGCTGTCCACTCTTAGAATTG
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Figure 1 GO functional analysis of m6A RNA methylation regulators. (A) Bar plot; (B) bubble plot; (C,D) circle plots. GO, Gene Ontology; 
m6A, N6-methyladenosine. BP, biological process; CC, cellular component; MF, molecular function.
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(Figure 1C,1D).

Dysregulation of m6A RNA methylation regulators in OV 
tissues 

There are 379 OV tissues with RNA-Seq in TCGA database 
and 88 normal ovarian tissues with RNA-Seq in the GTEx 
database. The expression of m6A RNA methylation regulators 
was detected in OV tissues and healthy ovarian tissues, and 
all were dysregulated in OV tissues compared with normal 
ovarian tissues (Figure 2A,2B, P<0.05). ZC3H13, ALKBH5, 
RBM15, YTHDF1, and YTHDF2 were upregulated in OV 

tissues, and the remainder were downregulated (Figure 2B, 
P<0.05).

A co-expression analysis was performed to confirm if co-
expression existed in the m6A RNA methylation regulators 
in OV tissues. The results showed the existence of positive 
and negative co-expressions. METTL3 (‘writers’) and 
HNRNPC proteins (‘readers’) have the most positive co-
expression with an R value of 0.84, and YTHDF1 (‘readers’) 
and FTO (‘erasers’) have the strongest negative co-
expression with an R value of −0.82 (Figure 2C). 

Further, K-M analysis was applied to confirm the 
relationship between these genes’ expression and patients’ 
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Table 2 GO functional analysis of m6A RNA methylation regulators

Ontology ID Description P value Count Gene ID

BP GO:1903311 Regulation of mRNA 
metabolic process

6.82E-09 7 HNRNPC, RBM15, METTL14, METTL3, WTAP, 
YTHDC1, YTHDF2

BP GO:0009451 RNA modification 5.22E-10 7 RBM15, METTL14, METTL3, ZC3H13, WTAP, 
FTO, ALKBH5

BP GO:0008380 RNA splicing 1.72E-07 7 HNRNPC, RBM15, METTL14, METTL3, ZC3H13, 
WTAP, YTHDC1

BP GO:0001510 RNA methylation 4.46E-08 5 RBM15, METTL14, METTL3, ZC3H13, WTAP

BP GO:0080009 mRNA methylation 6.82E-09 4 METTL14, METTL3, ZC3H13, WTAP

BP GO:0016556 mRNA modification 3.72E-08 4 METTL14, METTL3, ZC3H13, WTAP

CC GO:0016607 Nuclear speck 8.66E-09 7 RBM15, METTL3, ZC3H13, WTAP, YTHDC1, FTO, 
ALKBH5

CC GO:0034708 Methyltransferase complex 3.02E-08 5 RBM15, METTL14, METTL3, ZC3H13, WTAP

MF GO:0140098 Catalytic activity, acting on 
RNA

8.92E-05 5 METTL14, YTHDC2, METTL3, FTO, ALKBH5

MF GO:0003729 mRNA binding 0.002685 4 HNRNPC, RBM15, METTL14, METTL3

GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function.

survival. Patients were divided into two groups according to 
the median value of the gene’s expression, and K-M curves 
were drawn to compare the OS time of the two patient 
groups. We found that a high expression of KIAA1429 
and YTHDC2 predicted a poor prognosis in OV patients 
(P<0.05, Figure 2D,2E).

Construction of the prognostic model based on m6A RNA 
methylation regulators 

A univariate Cox survival analysis was conducted to confirm 
the prognostic m6A RNA methylation regulators. We found 
five genes (KIAA1429, YTHDC2, ZC3H13, WTAP, and 
FTO) were highly expressed and were identified as high-risk 
factors for the poor prognosis of OV patients (Figure 3A). 

We also used a lasso regression algorithm to select genes 
and construct the prognostic model. According to the lasso 
regression analysis results, five genes (KIAA1429, YTHDC2, 
ZC3H13, WTAP, and FTO) were selected to construct 
the prognostic model for predicting the prognosis of OV 
patients (Figure 3B,3C, Table 3). 

A prognostic risk score formula was constructed 
according to the prognostic model. It was based on the 
linear combination of each gene’s expression multiplied by 
the coefficients from the results of the regression analysis as 
follows: Risk score = 0.15987 × expression of KIAA1429 − 

0.11282 × expression of HNRNPC + 0.069938 × expression 
of YTHDC2 + 0.109001 × expression of ZC3H13 + 0.123254 
× expression of WTAP. According to the risk score formula, 
each OV patient had a specific risk score value, and the 
patients were divided into two groups according to the 
median value of the risk score (Figure 3D). 

Further, we compared the expression of the five m6A 
RNA methylation regulators in different clinicopathological 
parameters, including the two risk score groups. We found a 
significant difference between the high- and low-risk groups 
in OV patients’ survival status (P<0.05, Figure 3E).

The risk score was closely related to the prognosis of OV 
patients

A K-M analysis was conducted to validate the risk score 
derived from the m6A RNA methylation regulators. 
Patients with a high-risk score had a poorer prognosis 
than patients with a low-risk score (P<0.05, Figure 4A). 
Moreover, a three-dimensional heat map of survival time, 
risk score, and vital status showed more deaths among 
patients with a high-risk score (Figure 4B).

Next, we analyzed the effect of the risk score on the 
prognosis of patients with different clinicopathological 
parameters. As shown in the K-M plot curves, the risk score 
was a stable prognostic marker for OV patients of different 
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Figure 2 The m6A RNA methylation regulators dysregulated in OV tissues. (A,B) The expression of m6A RNA methylation regulators in 
OV tissues versus healthy ovarian tissues; (C) the correlation between the m6A RNA methylation regulators; (D,E) the K-M plot curves of 
KIAA1429 and YTHDC2. ***P<0.0001. m6A, N6-methyladenosine; OV, ovarian cancer.
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ages (<65 or ≥65 years, Figure 4C,4D). Similarly, when we 
used the risk score to predict patients’ outcomes in other 
clinicopathological variables, we found that patients with a 
high-risk score who had grade 3 (G3) tumors, with tumor, 
and were White had a shorter survival time (Figure 4E-4G). 
ROC curve of the risk model derived from the five m6A 
RNA methylation regulators showed that the risk model 
has good accuracy and specificity. (Figure 4H). Further, 
we found that the m6A RNA methylation regulators were 

dysregulated in different stratified clinicopathological 
parameters. Results showed that WTAP was upregulated in 
the higher age group (P<0.05, Figure 4I). Additionally, all 
five m6A RNA methylation regulators showed significant 
differences between the low- and high-risk groups (P<0.05, 
Figure 4J). HNRNPC was downregulated in the high-risk 
group, whereas the other four genes were upregulated in 
the high-risk group (P<0.05, Figure 4J).

GEO datasets were used to verify the results from 
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Figure 3 Construction of the prognostic model based on m6A RNA methylation regulators. (A) The results and forest map of the univariate 
Cox survival analysis; (B,C) lasso regression analysis is used to screen the m6A RNA methylation regulators and confirm their regression 
coefficients in the prognostic model; (D) OV patients are divided into two groups according to the median value of the risk score; (E) the 
expression of the five m6A RNA methylation regulators in different clinicopathological parameters. **P<0.001. m6A, N6-methyladenosine; 
OV, ovarian cancer.

TCGA dataset and for further data mining. In dataset 
GSE66957, all five m6A RNA methylation regulators were 
downregulated in tumor tissues except ZC3H13, and the 
results are consistent with the results from TCGA dataset 

(Figures 2B,3E,5A). Moreover, the expression of m6A RNA 
methylation regulators were verified in clinical ovarian 
cancer tissues versus healthy ovarian tissues (Figure 5B).

Interestingly, in the stratified analysis in dataset 
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Table 3 The detailed information of the m6A RNA methylation regulators in the prognostic model

Gene HR HR.95L HR.95H P value Coef

KIAA1429 1.386533 0.986996 1.947802 0.059499 0.15987

HNRNPC 0.762738 0.495315 1.174543 0.218851 −0.11282

YTHDC2 1.281947 0.871357 1.886009 0.207342 0.069938

ZC3H13 1.234432 0.961737 1.584448 0.098201 0.109001

WTAP 1.228301 0.923129 1.634359 0.158219 0.123254

m6A, N6-methyladenosine; HR, hazard rate.

GSE63885, we found that four of the genes in our 
prognostic model were expressed differently in the stratified 
clinicopathological parameters. In the stratification 
analysis of chemotherapy resistance, HNRNPC, KIAA1429, 
YTHDC2, and WTAP were upregulated in the moderately 
sensitive and resistant groups (Figure 5C) .  In the 
stratification analysis of tumor size and stage, YTHDC2 
was more highly expressed in larger tumor sizes and stage 
4, implying that YTHDC2 may be a key m6A methylation 
gene in OV patients although this will require further 
verification (Figure 5D,5E).

Prognostic factors for OV patients

Univariate and multivariate Cox survival analyses were 
conducted to investigate the prognostic factors for OV 
patients. The univariate Cox survival analysis revealed that 
age, cancer status, and risk score were high-risk factors 
for the poor prognosis of OV patients (P<0.05, Figure 5F, 
Table 4). Moreover, they were all independent risk factors 
affecting the prognosis of OV patients (Figure 5G, Table 4).

Discussion

OV is one of the most lethal tumors for women, with a 
5-year survival rate below 45% (2). It is difficult to diagnose 
OV in the early stages because the patient is generally 
asymptomatic. Therefore, more than half of patients are in 
an advanced stage (stage 3 or 4) by the time of diagnosis (1). 
Moreover, the treatments for OV are limited, and the death 
rates are higher than the incidence rates because of the 
resistance to radiotherapy and chemotherapy, especially in 
advanced stages (33). Thus, new, effective therapies urgently 
need to be identified.

m6A, as the most abundant post-transcriptional 
modification of RNA, is reportedly associated with different 
metabolic processes in various RNAs (5,10). Recently, 

several studies have revealed that m6A is involved in the 
development of many cancers (34,35). In this study, we 
analyzed the expression of the genes involved in modifying 
m6A in OV and found that all are dysregulated in OV tissues 
compared with normal ovarian tissues (Figures 2A,2B,5A).  
Moreover, positive and negative co-expression were found 
among the genes related to m6A methylation modification 
(Figure 2C).

KIAA1429, one of the writers of m6A, has been reported 
to facilitate the migration and invasion of hepatocellular 
carcinoma by inhibiting ID2 via upregulation of the m6A 
modification of ID2 mRNA (36). Additionally, YTHDC2, 
the reader of m6A, is dysregulated in many kinds of cancers 
and is implicated in the metastasis of colon tumors (37), 
the growth of tumor cells (38), and the susceptibility of 
pancreatic cancer (39). However, there is a lack of research 
on KIAA1429 and YTHDC2 in OV. In our research, 
we identified for the first time that a high expression 
of KIAA1429 and YTHDC2 is associated with the poor 
prognosis of OV patients (Figure 2D,2E). 

Multiple dysregulated gene signatures from patients’ 
tumor tissues can provide better accuracy in predicting 
cancer prognosis than one specific gene and enable more 
effective and individualized treatment plans (40,41). In 
this study, we found that all of the genes related to m6A 
methylation were dysregulated in OV patients. Therefore, 
we were interested in knowing whether multigene 
signatures of m6A methylation could provide a more 
accurate prognosis prediction for OV patients. A Cox 
survival analysis and lasso regression analysis were used to 
construct the prognostic model for predicting OV patients’ 
prognosis (Figure 3B,3C). Finally, a risk score formula was 
constructed, where the risk score = 0.15987 × expression of 
KIAA1429 − 0.11282 × expression of HNRNPC + 0.069938 
× expression of YTHDC2 + 0.109001 × expression of 
ZC3H13 + 0.123254 × expression of WTAP. 

Moreover, K-M survival curves and a three-dimensional 
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Figure 4 Validation of the risk score derived from the five m6A RNA methylation regulators. (A) Kaplan-Meier plot of patients with low- 
and high-risk scores; (B) a three-dimensional heat map of survival time, risk score, and vital status; (C-G) Kaplan-Meier plots of patients 
with different clinicopathological parameters, including age, grade (G3), tumor size, and White race; (H) the ROC curve of the risk score 
derived from the five m6A RNA methylation regulators; (I,J) the expression of m6A RNA methylation regulators in different age and risk 
score groups. m6A, N6-methyladenosine; OS, overall survival; ROC, receiver operating characteristic.
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Figure 5 The GEO datasets used to verify the results from TCGA dataset and for further data mining. (A) Verification of the expression 
of m6A RNA methylation regulators in GEO dataset GSE66957; (B) verification of the expression of m6A RNA methylation regulators in 
clinical ovarian cancer tissues versus healthy ovarian tissues; (C) four m6A RNA methylation regulators from our prognostic model show 
different expressions in different drug sensitivity groups; (D,E) YTHDC2 is upregulated in patients with larger tumors and those in an 
advanced stage; (F,G) univariate and multivariate Cox survival analyses reveal the prognostic factors for OV patients. GEO, Gene Expression 
Omnibus; TGCA, The Cancer Genome Atlas; m6A, N6-methyladenosine; OV, ovarian cancer.

plot including patients’ risk score, survival time, and survival 
status were used to verify the accuracy and specificity of the 
prognostic model we constructed (Figure 4A-4G). There 
was a greater number of deaths in the high-risk score group, 
and multivariate Cox survival analysis revealed that the risk 
score acted as an independent risk factor in the prognosis 
of OV patients (Figure 5G, Table 4). The analysis from the 

GEO datasets was consistent with the results from TCGA 
dataset (Figures 2A,5A). Of the identified genes, YTHDC2 
was dysregulated in OV tissues and demonstrated a higher 
expression in larger tumor sizes and stage 4. This implies 
that YTHDC2 may be a key m6A methylation gene in 
OV, although this finding will require further verification 
(Figure 5D,5E). The accuracy and specificity of the model 
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constructed in this study will be improved by a larger 
sample of normal ovarian tissues, and the specific molecular 
mechanism of m6A needs to be further studied.

In the future, m6A modification could be used as 
diagnostic or prognostic targets for ovarian cancer. 
The upstream regulators of m6A modification, or their 
downstream targets, will provide new ideas and targets for 
the treatment of ovarian cancer. In general, the prospect 
of m6A modification research is helpful for the diagnosis, 
treatment and prognosis of ovarian cancer.

Conclusions

Collectively, this is the first study to combine TCGA and 
GTEx databases to explore the effect of m6A methylation 
genes on the prognosis of OV patients, which remedies 
the shortcoming of the small sample size of normal ovarian 
tissues in TCGA database. Moreover, we report for the 
first time that YTHDC2 (readers of m6A) and KIAA1429 
(writers of m6A) are associated with the prognosis of 
OV patients. The prognostic model we have constructed 
could be a valuable clinical tool to indicate the prognosis 
for OV patients, and further research on the genes in our 
prognostic model will provide a future direction for the 
theoretical research and clinical treatment of OV.
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