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Introduction

Rheumatoid arthritis (RA) is a chronic systemic disease 
characterized by synovial hyperplasia and inflammatory 
cell infiltration (1). The basic pathological features of RA 
are proliferation and invasion of synovium, formation of 
invasive pannus, and destruction of bone and cartilage (2,3). 
Currently, approximately 1.0% of the global population 

have RA (4,5). It might cause many other health problems 
such as cardiopathy, nephropathy, vasculopathy, pulmonary, 
and cutaneous disorders, eventually leading to death (6). 
Clinically, therapeutic drugs such as non-steroidal drugs, 
glucocorticoids, antirheumatic drugs, and biological agents 
have notable side-effects, which cause many other physical 
diseases (7-9).
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Traditional Chinese medical herbs have a wide range of 
sources and many natural substances with little side-effect. 
The total glucosides of peony (PG) is a bioactive constituent 
isolated from Paeonia lactiflora Pall. About 90% of the 
ingredients in PG are paeoniflorin (10). It has numerous 
benefits for human health, including anti-inflammatory 
and anti-analgesic (11), immunoregulatory actions (12), 
and antioxidant properties (13). Accumulating evidence has 
indicated that PG dramatically ameliorates various diseases 
such as Sjögren’s syndrome (14), diabetic nephropathy (15), 
autoimmune uveitis (16), oral lichen planus (17), prostate 
cancer (18), and RA (19). In China, PG was recognized as 
a disease-modifying drug for RA by the China Food and 
Drug Administration in 1998.

Nuclear factor-kappa B (NF-κB) is an important 
transcriptional protein that regulates multiple inflammatory 
factors and can be found in almost all animal cells. Both 
NF-κB and nuclear translocation of signal transducer and 
activator of transcription 3 (STAT3) play important roles 
in the pathogenesis of RA-associated inflammation (20). 
Wang et al. reported that PG suppressed the dissociation 
of IκBα and reduced the levels of interleukin (IL)-6 and 
tumor necrosis factor-α (TNF-α) in oral lichen planus (17). 
Besides, PG has been reported to promote macrophage 
proliferation by activating the JAK2/STAT3 pathway 
in diabetic nephropathy rats (21). Nevertheless, as an 
important drug of RA, the deeper molecular mechanisms of 
PG are still unclassified.

In this study, we explored the deep molecular mechanisms 
of PG in RA. This is the first time that PG can attenuate 
inflammatory response both in vitro and in vivo. Our 
findings indicated that PG mitigates RA by suppressing the 
excessive proliferation of synovial cells, cartilage injury, and 
inflammation via deactivating the NF-κB/STAT3 pathway.

We present the following article in accordance with 
the ARRIVE reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-6187/rc).

Methods

Cell culture and treatment

The human RA synovial fibroblasts MH7A was purchased 
from Riken (Saitama, Japan) and grew in Roswell Park 
Memorial Institute (RPMI) 1640 (Gibco, Waltham, MA, 
USA) supplemented with 10% fetal bovine serum (FBS; 
Gibco, Waltham, MA, USA), 100 μg/mL streptomycin 
and 100 U/mL penicillin (Invitrogen, Carlsbad, CA, 

USA). Lyophilized bovine type II collagen (C II) powder 
was dissolved in acetic acid (0.05 M) at a concentration 
of 2.0 mg/mL. Then, cells were induced by Collagen II 
(C II, Sigma-Aldrich Co. St. Louis, MO, USA) for 24 h. 
PG (purity >98%) were purchased from Nantong Feiyu 
Biological Technology Co., Ltd. (Nantong, Jiangsu, China), 
which chemical formula was illustrated in Figure 1A.  
The stock solution of PG (1 mg/mL) was diluted with 
RPMI 1640 until the final concentrations were 10, 20, and  
50 μg/mL, respectively (22). The MH7A cells were grouped 
as follows: the control group: MH7A cells without any 
treatment; collagen induced RA model group (RA); RA + 
PG (10, 20, 50 μg/mL): collagen induced RA MH7A cells 
were treated by 10, 20, and 50 μg/mL PG, respectively for 
24 h at 37 ℃ in an atmosphere of 5% CO2.

Cell growth

Cell growth was evaluated via Cell Counting Kit-8 assay 
(CCK-8; Dojindo, Japan) according to the manufacturer’s 
protocols. Cells were inoculated into a 96-well plate at a 
concentration of 6×104/well and were cultured for 24 h  
(37 ℃, 5% CO2). Subsequently, the medium was replaced 
with fresh medium containing PG with different 
concentrations (0, 10, 20, and 50 μg/mL) and cultured 
at 37 ℃ for 24 h. The absorbance of each well at 450 nm 
was determined using a multifunctional microplate reader 
Varioskan LUX (Thermo Scientific, Waltham, MA, USA). 
All experiments were conducted in triplicate.

Apoptosis detection

The RA-cells were treated with different concentrations of 
PG (0, 10, 20, and 50 μg/mL) and then cultured at a density 
of 1×106 cells/mL for 24 h. After washing the cells twice 
with cold-phosphate buffered saline (PBS), which were 
resuspended in a 1× binding buffer and then mixed with 
Annexin V-FITC and PI solution (Sigma-Aldrich, Louis, 
MO, USA) for 15 min at room temperature in darkness. 
Cells were finally examined by a flow cytometer (Thermo 
Scientific, Waltham, MA, USA).

Western blot assay

The MH7A cells were induced by C II and treated with 
different concentrations of PG for 24 h (0, 10, 20, 50 μg/mL).  
The MH7A cells and cartilage tissues were ground by 
liquid nitrogen and lysed in a lysis buffer (Beyotime, 

https://atm.amegroups.com/article/view/10.21037/atm-21-6187/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-6187/rc
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Figure 1 PG slowed down the growth of MH7A cells. MH7A cells were induced by C II for 24 h, and grouped as below: Control group, 
MH7A cells without any treatment; RA models, MH7A cells were induced by C II; RA + PG (10 μg/mL), RA models were treated with PG 
at 10 μg/mL; RA + PG (20 μg/mL), RA models were treated with PG at 20 μg/mL; RA + PG (50 μg/mL): RA models were treated with PG 
at 50 μg/mL. (A) The chemical structure of PG. (B) Cell growth was monitored by CCK-8 assay. (C) The protein expression of Ki67 and 
PCNA were measured by WB in each group. GAPDH served as an internal control. Results are from 3 independent experiments and data is 
expressed as mean ± SD. *, P<0.05 vs. control; #, P<0.05, ##, P<0.05 vs. RA models. RA, rheumatoid arthritis; PG, total glucosides of peony; 
CCK-8, Cell Counting Kit-8.
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Shanghai, China). The concentrations of proteins were 
determined using a bicinchoninic acid (BCA) Protein 
Assay Kit (Beyotime, Shanghai, China). A total of 20 μg  
protein was isolated by 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), and then 
transferred to polyvinylidene fluoride membranes (PVDF; 
Sigma-Aldrich Co. St. Louis, MO, USA). Post blocking 
with 5% non-fat milk at room temperature for 1 h, the 
samples were inoculated with primary antibodies including 
Ki-67 (sc-23900, 1:1,000, Santa Cruz Biotechnology,; 
SCB, Santa Cruz, CA, USA), proliferating cell nuclear 
ant igen (PCNA; sc-71858,  1 :1 ,000,  SCB,  USA) , 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH; sc-
66163, 1:1,000, SCB, USA), Bax (CAS# ab182733, 1:2,000, 
Abcam, Cambridge, UK), Bcl-2 (#ab692, 1:500, Abcam), 
NF-κB p65 (#8242, 1:1,000, Cell Signaling Technology; 
CST, Danvers, MA, USA), p-p65 (#3033, 1:1,000, CST, 
USA), STAT3 (#9139, 1:1,000, CST, USA), and p-STAT3 
(#9145, 1:2,000, CST, USA), overnight at 4 ℃. The next 
day, membranes were incubated with a secondary antibody 
for 1.5 h at room temperature. The target protein bands 
were visualized using an Ultra High Sensitivity ECL 
Substrate Kit (Abcam). 

Animal models

A protocol was prepared before the study without 
registration. All animal experiments were conducted in 
accordance with the National Institutes of Health (NIH) 
Guide for the Care and Use of Laboratory Animals (23)  
and were performed under a project l icense (No. 
hx201810062) granted by ethics board of Wuhan Huaxia 
Institute of Technology. A total of 50 female Wistar 
rats (170–260 g, 10 weeks old) were obtained from the 
Wuhan University Center for Animal Experiment/A3 
Laboratory and placed in a controlled environment with 
free access to food and water. Rats were injected with  
0.1 mL of complete Freund’s complete adjuvant (FCA; 
Sigma-Aldrich Co. LLC, Shanghai, China) in the right 
hind paw. Post successful modeling, rats were divided 
into 5 groups (n=10): Control group (Ctrl), without any 
treatment; RA, rheumatoid arthritis model; RA + PG  
(25 mg/kg), RA models were treated with PG at 25 mg/kg; 
RA + PG (50 mg/kg), RA models were treated with PG at 
50 mg/kg; RA + PG (100 mg/kg): RA models were treated 
with PG at 100 mg/kg (22). The mice were sacrificed for 
the subsequent experiments.
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Histological analysis

Synovial tissues were fixed in 4% formaldehyde and 
decalcified in 20% ethylenediamine tetra acetic acid 
(EDTA) for 24 h. Then, the 4 μm tissues were dehydrated, 
integrated into paraffin, and stained with hematoxylin-
eos in  (H&E) and Safranin  O,  respect ive ly.  The 
morphologic changes of H&E- and Safranin O-stained 
sections were visualized by a light microscope (Nikon, 
Tokyo, Japan). 

Enzyme-linked immunosorbent assays 

Inflammatory cytokines including IL-6, TNF-α, and IL-1β 
and immunomodulatory factor IL-10 were detected by an 
enzyme-linked immunosorbent assay kits (ELISA; Cloud-
Clone, Wuhan, China) according to the manufacturer’s 
protocols. The optical density (OD) values at 450 nm were 
measured using a microplate reader (Thermo Scientific, 
USA). 

Statistical analysis

Data are expressed as the means ± standard deviation (SD) 
and repeated in at least triplicate. The different groups 
were statistically compared using one-way analysis of 
variance (ANOVA) followed by Bonferroni’s post hoc 
test using SPSS 23.0 (IBM, Armonk, NY, USA). P<0.05 
was considered to indicate a statistically significant  
difference.

Results

PG slowed down the growth of MH7A cells

In order to study the effect of PG on MH7A cells, cell 
growth was firstly measured. As shown in Figure 1B, cell 
growth was notably accelerated in the C II-induced RA 
group compared to the control. However, adding PG 
strongly suppressed cell growth compared with the C II-
induced RA group. The effect was enhanced with increase 
of PG (e.g., 50 μg/mL). Cell proliferation-related proteins 
were monitored by western blot. As shown in Figure 1C, 
the levels of Ki67 and PCNA were notably elevated in the 
C II-induced RA group compared to the control. However, 
PG treatment strongly decreased the levels of Ki67 and 
PCNA dose-dependently. These results indicated that 
PG counteracted the accelerating effect of cell growth in 
MH7A cells.

PG induced apoptosis in MH7A cells

Resistance to apoptosis is a hallmark of RA-fibroblast-
like synoviocytes (FLS). Consequently, we monitored the 
effect of different concentrations of PG (0, 10, 20, and  
50 μg/mL) on RA-MH7A cell apoptosis after treatment for 
24 h (Figure 2A,2B). Furthermore, western blot analysis 
was used to detect apoptosis-related proteins in the 4 
groups (Figure 2C-2E). The results revealed that the levels 
of caspase-3 and Bcl-2 protein were notably elevated in 
the C II-induced RA group compared to the control, while 
the levels of Bax were notably suppressed. PG treatment 
strongly decreased the levels of caspase-3 and Bcl-2 with 
increase of Bax dose-dependently. Besides, the ratio of 
Bax/Bcl-2 was also promoted in MH7A cells treated with 
PG compared with C II-induced RA group. These results 
demonstrated that PG induced apoptosis by regulating the 
expression of apoptosis-related proteins in MH7A cells.

PG attenuated inflammation in MH7A cells

To determine the effect of PG on inflammatory response, 
ELISA assays were used to detect IL-6 (Figure 3A), IL-
10 (Figure 3B), TNF-α (Figure 3C), and IL-1β (Figure 3D) 
production in RA-MH7A at the protein levels. RA-MH7A 
were divided into 5 groups which were treated with various 
concentrations of PG (0, 10, 20, and 50 μg/mL) for 2 h. As 
Figure 3 illustrates, the levels of IL-6, TNF-α, and IL-1β 
were significantly increased in RA group compared to the 
control, while IL-10 was decreased. On the contrary, PG 
counteracted the increase of IL-6, TNF-α, and IL-1β levels. 
IL-10 level was markedly enhanced compared to the RA 
group (Figure 3A-3D). 

PG restored the histological injuries in cartilage tissues

The H&E staining (Figure 4A) revealed that compared with 
the control group, the structure of the lesion site in the RA 
model group became loose, with a large number of synovial 
cells proliferating and destroying the cartilage margins. 
Safranin O staining (Figure 4B) showed that in the control 
group, the cartilage area was dyed red and the bone area 
was dyed blue. Nevertheless, the red of the cartilage area 
disappeared, and the cartilage tissue was severely damaged 
in the FCA-induced RA group. Treatment with PG dose-
dependently ameliorated pathological injuries in cartilage 
region (Figure 4A,4B). The results from Safranin O staining 
were consistent with H&E staining. Taken together, PG 
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Figure 2 PG induced apoptotic in MH7A cells. MH7A cells were induced by C II for 24 h, and grouped as below: Ctrl group, MH7A cells 
without any treatment; RA models, MH7A cells were induced by C II; RA + PG (10 μg/mL), RA models were treated with PG at 10 μg/mL; 
RA + PG (20 μg/mL), RA models were treated with PG at 20 μg/mL; RA + PG (50 μg/mL): RA models were treated with PG at 50 μg/mL. (A) 
Flow cytometry was used to detect cell apoptosis following a 24 h treatment of cells with different concentrations of PG. (B) The percentage 
of apoptotic cells in each group. (C) The protein expression of caspase-3, Bcl-2, and Bax were measured by WB in each group. (D,E) The 
bar graph displayed the quantification of caspase-3 and the ratio of Bax/Bcl-2 in all groups. GAPDH served as an internal control. Results 
were from three independent experiments and data was expressed as mean ± SD. *, P<0.05 vs. control; #, P<0.05, ##, P<0.05 vs. RA group. 
RA, rheumatoid arthritis; PG, total glucosides of peony; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; WB, western blot.
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restored the histological injuries in cartilage tissues.

PG restored the histological injuries by reducing the levels 
of inflammatory cytokines in vivo

The cytokines IL-6 (Figure 5A), IL-10 (Figure 5B), 
TNF-α (Figure 5C), and IL-1β (Figure 5D) were identified 
using ELISA assays. The results showed that the levels 
of IL-6, TNF-α, and IL-1β were significantly increased 
in FCA-induced RA group compared to the control, 

while IL-10 was decreased. The result of IL-10 was 
consistent with the report by Daien et al. (24) and Bankó 
et al. (25). However, PG counteracted the increase of 
IL-6, TNF-α, and IL-1β levels. On the contrary, IL-
10 level was markedly enhanced compared to the FCA-
induced RA group (Figure 5A-5D). Increase of IL-10 
indicated that PG promoted B cells to develop adaptive 
immunity (26,27). All these results indicated that PG 
restored the histological injuries by reducing the levels of 
inflammatory cytokines in vivo.



Fu et al. PG ameliorates RA via the NF-κB/STAT3 pathwayPage 6 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(2):51 | https://dx.doi.org/10.21037/atm-21-6187

RA +
 P

G (5
0 μ

g/
m

L)

RA +
 P

G (5
0 μ

g/
m

L)

RA +
 P

G (5
0 μ

g/
m

L)

RA +
 P

G (5
0 μ

g/
m

L)

RA +
 P

G (1
0 μ

g/
m

L)

RA +
 P

G (1
0 μ

g/
m

L)

RA +
 P

G (1
0 μ

g/
m

L)

RA +
 P

G (1
0 μ

g/
m

L)

RA +
 P

G (2
0 μ

g/
m

L)

RA +
 P

G (2
0 μ

g/
m

L)

RA +
 P

G (2
0 μ

g/
m

L)

RA +
 P

G (2
0 μ

g/
m

L)RA RA RA RA
Ctrl Ctrl Ctrl Ctrl

*

*

*

*#

#

#
#

#
#

#

#
##

##

##

##

150 

100 

50 

0

80

60

40

20

0

200

150

100

50

0

400

300

200

100

0

IL
-6

, p
g/

m
L

IL
-1

0,
 p

g/
m

L

TN
F-

α ,
 p

g/
m

L

IF
-1

β ,
 p

g/
m

L

B C DA

Ctrl	 RA	 RA + PG (25 mg/kg)	 RA + PG (50 mg/kg)	 RA + PG (100 mg/kg)

S
af

ra
ni

n 
O

	
H

E

A

B

20 μm

20 μm

Figure 4 PG restored the histological injuries in cartilage tissues. Rats were injected with 0.1 mL of FCA in the right hind paw and grouped 
as below: Ctrl, without any treatment; RA, rheumatoid arthritis model; RA + PG (25 mg/kg), RA models were treated with PG at 25 mg/kg; 
RA + PG (50 mg/kg), RA models were treated with PG at 50 mg/kg; RA + PG (100 mg/kg): RA models were treated with PG at 100 mg/kg.  
Histological change was monitored by H&E staining (A) and Safranin O staining (B) in each group (Manifestation ×200). Ctrl, control 
group; RA, rheumatoid arthritis; PG, total glucosides of peony; FCA, Freund’s complete adjuvant; H&E, hematoxylin and eosin.

Figure 3 PG attenuated inflammation in RA-MH7A. MH7A cells were induced by C II for 24 h, and grouped as below: Ctrl group, MH7A 
cells without any treatment; RA models, MH7A cells were induced by C II; RA + PG (10 μg/mL), RA models were treated with PG at  
10 μg/mL; RA + PG (20 μg/mL), RA models were treated with PG at 20 μg/mL; RA + PG (50 μg/mL): RA models were treated with 
PG at 50 μg/mL. The levels of (A) IL-6, (B) IL-10, (C) TNF-α, and (D) IL-β were detected by ELISA in each group. Results are from 3 
independent experiments and data is expressed as mean ± SD. *, P<0.05 vs. control; #, P<0.05, ##, P<0.05 vs. RA group. Ctrl, control group; 
RA, rheumatoid arthritis; PG, total glucosides of peony; FCA, Freund’s complete adjuvant; IL-6, interleukin-6; IL-10, interleukin-10; 
TNF-α; tumor necrosis factor-α; ELISA, enzyme-linked immunosorbent assay. 

PG ameliorated RA by inactivation of the NF-κB/STAT3 
pathway in vivo

We further investigated the molecular mechanism. 
Expression of relative proteins were measured by western 
blot assay. As shown in Figure 6A, phosphorylation of NF-
κB and STAT3 was elevated in the FCA-induced RA group, 
compared with the control group. The PG treatment dose-
dependently reduced the protein expression of p-p65 and 

p-STAT3. The results illustrated that PG restrained the 
phosphorylation of NF-κB and STAT3. Even a high dose 
of PG had a significant inhibitory effect on phosphorylation 
of p65 and STAT3, which was further verified after adding 
their agonist (Figure 6B, 30 mg/kg Betulinic acid, NF-κB 
agonist; Figure 6C, 1 mg/kg Colivelin, STAT3 agonist). 
Taken together, these results indicated that PG ameliorated 
RA by deactivation of the NF-κB/STAT3 pathway in vivo.



Annals of Translational Medicine, Vol 10, No 2 January 2022 Page 7 of 11

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(2):51 | https://dx.doi.org/10.21037/atm-21-6187

RA +
 P

G (1
00

 m
g/

kg
)

RA +
 P

G (1
00

 m
g/

kg
)

RA +
 P

G (1
00

 m
g/

kg
)

RA +
 P

G (1
00

 m
g/

kg
)

RA +
 P

G (2
5 m

g/
kg

)

RA +
 P

G (2
5 m

g/
kg

)

RA +
 P

G (2
5 m

g/
kg

)

RA +
 P

G (2
5 m

g/
kg

)

RA +
 P

G (5
0 m

g/
kg

)

RA +
 P

G (5
0 m

g/
kg

)

RA +
 P

G (5
0 m

g/
kg

)

RA +
 P

G (5
0 m

g/
kg

)
RA RA RA RA

Ctrl Ctrl Ctrl Ctrl

*

*

*

*
#

#

#

#

#

#

#

###

##

##

##

300

200

100

0

80

60

40

20

0

80

60

40

20

0

150

100

50

0

IL
-6

, p
g/

m
L

IL
-1

0,
 p

g/
m

L

TN
F-

α ,
 p

g/
m

L

IF
-1

β ,
 p

g/
m

L

B C DA

Figure 5 PG restored the histological injuries by reducing the levels of inflammatory cytokines in vivo. Rats were injected with 0.1 mL of 
FCA in the right hind paw and grouped as below: Ctrl, without any treatment; RA, Rheumatoid arthritis model; RA + PG (25 mg/kg), RA 
models were treated with PG at 25 mg/kg; RA + PG (50 mg/kg), RA models were treated with PG at 50 mg/kg; RA + PG (100 mg/kg): RA 
models were treated with PG at 100 mg/kg. The levels of (A) IL-6, (B) IL-10, (C) TNF-α, and (D) IL-β were detected by ELISA in each 
group. Results are from 3 independent experiments and data is expressed as mean ± SD. *, P<0.05 vs. control; #, P<0.05, ##, P<0.05 vs. RA 
group. Ctrl, control group; RA, rheumatoid arthritis; PG, total glucosides of peony; FCA, Freund’s complete adjuvant; IL-6, interleukin-6; 
IL-10, interleukin-10; TNF-α; tumor necrosis factor-α; ELISA, enzyme-linked immunosorbent assay.

Discussion

As an autoimmune disease, RA is marked by infiltration of 
inflammatory cells and proliferation of synovial fibroblasts. 
On average, RA reduces patient lifespan by up to 12 years 
due to the limited efficacy of treatment (28,29). Various 
therapies such as non-steroidal drugs, glucocorticoids, 
antirheumatic drugs, and biological agents are available; 
however, RA patients who are treated long-term with 
biologic agents are still at risk of infections and other 
therioma (7-9).

Chinese medicinal herbs contain a variety of natural 
substances, the isolated extracts from which have a wide 
range of biological activity, and minimal side-effects. The 
bioactive ingredient extracted from root of Paeonia lactiflora 
Pall, known as PG, was recognized as a disease-modifying 
drug for RA in 1998. Previous studies (30) have shown that 
PG markedly intercepts the progression of adjuvant arthritis 
by mediating cyclic adenosine 5’-monophosphate (cAMP) 
and inhibiting IL-1, TNF-α, IL-6, and prostaglandin 
E2 (PGE2). The occurrence of RA is accompanied by 
the release of cytokines such as TNF-α, IL-8, IL-6, and 
IL-1. RA-FLS is involved in RA initiation through the 
production of pro-inflammatory cytokines (31). Another 
study revealed that PG reduced the proinflammatory 
cytokine production in oral lichen planus and inhibited 
cell  proliferation diabetic nephropathy rats  (17).  

Consistent with previous reports, our results firstly 
showed that PG suppressed inflammation both in vitro 
and in vivo by suppressing the activity of NF-κB/STAT3 
signaling pathway, and restored the histological injuries by 
regulating inflammatory cytokines in FCA-induced RA rats. 
Furthermore, cell death certainly contributes, at least in 
part, to the reduction in pro-inflammatory cytokines.

Synovial hyperplasia is characterized by increased 
proliferation and decreased apoptosis of RA-FLS, which 
contribute to chronic inflammation of synovial and 
destruction of articular cartilage (32). In previous reports, 
several drugs have been shown to inhibit fibroblast-like 
synovial cell proliferation in arthritis (33,34). Similar to 
other drugs, PG has been shown to remarkably impede 
the proliferation of synoviocytes in collagen-induced 
arthritis (30). In this study, PG inhibited RA-MH7A cell 
proliferation with a concentration-dependent pattern. In 
addition, down-regulation of Bcl-2 protein expression and 
up-regulation of Bax protein expression indicated that 
PG could induce apoptosis through the mitochondrial 
pathway, which activates caspase-3 and caspase-9, leading to 
intracellular apoptosis pathways.

The protein complex NF-κB is an essential nuclear 
transcription factor that can affect cell survival, mutation, 
and proliferation. It can be triggered by serum, insulin, 
growth factor, radiation, chemotherapy drugs, and other 
stimulators. It has been confirmed that the NF-κB signaling 
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Figure 6 PG ameliorated RA by inactivation of the NF-κB/STAT3 pathway in vivo. Rats were injected with 0.1 mL of FCA in the right hind 
paw and grouped as below: Ctrl, without any treatment; RA, Rheumatoid arthritis model; RA + PG (25 mg/kg), RA models were treated 
with PG at 25 mg/kg; RA + PG (50 mg/kg), RA models were treated with PG at 50 mg/kg; RA + PG (100 mg/kg): RA models were treated 
with PG at 100 mg/kg. (A) Phosphorylation of p65 and STAT3 was monitored by WB. After adding NF-κB agonist Betulinic acid (B) and 
STAT3 agonist Colivelin (C), phosphorylation of p65 and STAT3 was monitored by WB. GAPDH served as an internal control. Results are 
from 3 independent experiments and data are expressed as mean ± SD. *, P<0.05 vs. control; #, P<0.05, ##, P<0.05 vs. RA group. Ctrl, Control 
group; RA, rheumatoid arthritis; PG, total glucosides of peony; FCA, Freund’s complete adjuvant; NF-κB, nuclear factor-kappa B; STAT3, 
signal transducer and activator of transcription; WB, western blot; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

pathway plays a major role in tumorigenesis, development, 
invasion, and metastasis (35). The subunit NF-κB p65 is a 
key member in NF-κB family. The NF-κB heterodimers 

are phosphorylated and translocated into the nucleus, 
where they bind to genes at the binding site and initiate 
transcription of proinflammatory genes (36). Therefore, 
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regulating NF-κB activity is a plausible treatment for 
inflammatory diseases. In different cell types and tissues, 
STAT3 is widely expressed and plays a key role in regulating 
cell proliferation, survival, and inflammation (37). Wang 
et al. reported that PG suppressed the dissociation of IκBα 
and reduced the levels of IL-6 and TNF-α in oral lichen 
planus (17). Besides, PG has been reported to promote 
macrophage proliferation by activating the JAK2/STAT3 
pathway in diabetic nephropathy rats (21). Similarly, in 
the present study, we found that PG dose-dependently 
decreased the phosphorylation level of NF-κB p65, and the 
reduction of NF-κB p65 further decreased IL-6 level and 
STAT3 phosphorylation, which ultimately alleviated FCA-
induced cartilage tissue injury.

In conclusion, our study revealed a novel mechanism 
of PG protection against RA. In this study, we showed 
that PG (10, 20, and 50 μg/mL) significantly suppressed 
cell growth in MH7A cells in a dose-dependent manner. 
Besides, PG markedly restored the histological injuries of 
cartilage tissue by regulating inflammatory cytokines and 
immunomodulatory factors in FCA-induced RA rats via 
the NF-κB/STAT3 pathway. Our findings indicate that 
PG mitigates RA by suppressing the excessive proliferation 
of synovial cells, cartilage injury, and inflammation via 
deactivation of the NF-κB/STAT3 pathway. Nonetheless, 
these results need to be verified through animal studies and 
additional mechanisms by which on further RA treatment 
and prognosis in future studies.
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