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Original Article

Cistanoside A promotes osteogenesis of primary osteoblasts 
by alleviating apoptosis and activating autophagy through 
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Background: As a phenylethanoid glycoside extracted from Cistanche deserticola, cistanoside A has 
been shown to have antioxidative effects. In recent years, it has been found to play an important role in 
osteoporosis. 
Methods: Primary osteoblasts were randomly divided into a cistanoside A (Cis A)-1 group (5 μM), a Cis 
A-2 group (10 μM), and a Cis A-3 group (20 μM) to screen the optimal dose. Then, cells were treated with 
Rapamycin (Rapa), 3-MA, Dickkopf-1 (DKK-1), 3MA + Cis A (10 μM), and DKK-1 + Cis A (10 μM). After 
a certain period of routine culture, Alkaline Phosphatase (ALP) and Alizarin Red S Staining were performed 
again and the cells were collected for subsequent experiments including immunofluorescence staining, 
western blotting, transmission electron microscopy, mitochondrial membrane measurement, and Annexin-V-
Fluorescein isothiocyanate (Annexin-V-FITC).
Results: The optimal Cis A dose that preserved osteoblast viability and activated osteogenesis was 10 μM. 
It appeared that Cis A (10 μM) decreased apoptosis and augmented autophagy via increasing microtubule-
associated protein light chain 3 (LC3)-I/II expressions as well as raising Wnt/β-catenin signal pathway 
activity. The addition of 3-MA further inhibited osteogenic differentiation and suppressed Wnt/β-catenin 
signal pathway activity to increase apoptosis while reducing autophagy levels. A combination of Cis A and 
DKK-1 resulted in higher levels of apoptosis but lower levels of autophagy. 
Conclusions: Cis A appears to be a potent inducer of autophagy and inhibitor of apoptosis in primary 
osteoblasts by working through the Wnt/β-catenin signal pathway, thereby resulting in enhanced osteogenic 
differentiation.
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Introduction

Osteoporosis is a chronic disease characterized by 
deterioration of the bone structure and low bone density (1).  
It is the product of imbalanced bone remodeling, namely 
the occurrence of excess bone resorption and reduced 
bone formation. The resultant abnormal bone structure 
and function leads to heightened bone fragility and risk 
of fracture (1). In terms of risks of osteoporosis, it is 
acknowledged age and hereditary, smoking, Vitamin D 
deficiency, Calcium shortage are the mainly factors (2). The 
latest research aimed at discovering new treatment methods 
for osteoporosis has involved pharmacological osteoclast 
inhibition as it holds a central role in bone resorption (3). 
Current clinical agents for treating osteoporosis target 
stimulation of bone formation and/or inhibiting bone 
resorption, for example, teriparatide, bisphosphonates, and 
receptor activator of nuclear factor-KB (RANK) ligand 
inhibitors like dinozumab. Nevertheless, these medications 
are plagued by poorly tolerated adverse effects such as 
gastrointestinal side effects, atrial fibrillation, and other 
cardiovascular events (4). It is imperative that newer, 
more convenient, and effective treatment modalities are 
discovered to manage this debilitating disease.

Traditional Chinese medicine (TCM), with a history of 
over 2,000 years, has widely been shown effective in the 
management of various diseases, including osteoporosis, 
and appears to work by reducing bone loss, decreasing 
bone resorption, and enhancing bone formation (5). The 
well-established TCM agent Cistanche deserticola, known 
as the “ginseng of the deserts” has long been heralded 
for its anti-osteoporotic active compounds which include 
phenylethanoid glycosides (PhGs), echinacoside (ECH), 
and acteoside (ACT) (6,7). Among which, A cistanche 
extract, Cis A, is a type of phenylethanoid glycoside that 
has been shown to possess antioxidative effects which 
can inhibit apoptosis by protecting against generation 
of reactive oxygen species (ROS) (8,9). Its therapeutic 
effect function on bone metabolism by regulating 
osteoclasts through phosphatidylinositol 3 kinase (PI3K)/
protein kinase B (AKT) pathway and its participation on 
autophagy procedure via Receptor activator of NF-κB 
ligand (RANKL)/RANK/TNF receptor associated factor 6 
(TRAF6) pathway have been proven, while its function on 
osteoblast remains unknown (10). Based on this knowledge, 
we hypothesized that Cis A may potentially influence 
osteoblast activity.

Apoptosis is a highly regulated programmed metabolic 

process which impairs the balance of osteogenesis, resulting 
in the deterioration of bone. Autophagy is a process 
involving programmed cell death and is part of the cellular 
energy management system, development, and cellular 
stress response (11). Autophagy appears to be associated 
in osteocyte, osteoblast, and osteoclast differentiation, 
highlighting its role in bone homeostasis and bone marrow 
disease (12,13). The relationship between apoptosis and 
autophagy has not been illustrated clearly yet, some have 
argued that apoptosis and autophagy would appear at 
the same time, while others have asserted that autophagy 
inhibits apoptosis. The Wnt/β-catenin pathway is critical 
for osteoblasts and osteogenic matrix formation (14-16). 
The accumulation of β-catenin is vital for activation of the 
Wnt/β-catenin signaling pathway (17) and contributes to 
osteoblasts development and bone formation (18), while 
Gsk-3β is a negative factor which stabilizes β-catenin (19). 
However, the relationship between autophagy and the Wnt/
β-catenin pathway in osteoblasts has remained unknown, 
let alone the relation among Cis A, the Wnt/β-catenin 
pathway, and autophagy as well as apoptosis.

In the following series of experiments, we documented 
the role of Cis A in osteogenic differentiation and 
mineralization ability through apoptosis and autophagy 
modification via the Wnt/β-catenin pathway.

We present the following article in accordance with 
the ARRIVE reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-6742/rc).

Methods

Reagents

All animal-related protocols were formulated based on the 
Guide for the Care and Use of Laboratory Animals by the 
National Research Council and approved by the Animal 
Care and Use Committee of Guangzhou University (No. 
SCXK2018-0034). Cis A (purity ≥98%) was purchased 
from Chengdu Must Bio-Technology Co., Ltd. (Chengdu, 
China); Rapamycin (Rapa) was purchased from Selleck 
(Houston, TX, USA). The 3-MA was purchased from 
MedChemExpress (Monmouth Junction, NJ, USA); Dkk-1  
protein was purchased from Sino Biological (Beijing, 
China); the rabbit LC3 antibody, Sequestosome 1 (p62), 
Beclin-1, Osteopontin (OPN), Runx family transcription 
factor 2 (Runx2), Osteocalcin (OCN), Bone morphogenetic 
protein (BMP2), glycogen synthase kinase-3β (Gsk-3β), 
β-catenin, and glyceraldehyde 3-phosphate dehydrogenase 

https://atm.amegroups.com/article/view/10.21037/atm-21-6742/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-6742/rc
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(GAPDH) antibodies were obtained from Cell Signaling 
Technology (CST; Danvers, MA, USA). Life Technologies 
(Carlsbad,  CA, USA) supplied 4’ ,6-diamidino-2-
phenylindole (DAPI), Cyanine 3, DyLight 488, and 
Goat anti-mouse IgG (H+L) cross-adsorbed secondary 
antibodies. Cell Counting Kit-8 (CCK-8) was purchased 
from Bio sharp (Guangzhou, China); alkaline phosphatase 
(ALP) activity detection kit and the ALP kit were purchased 
from Beyotime Biotechnology (Shanghai, China); Alizarin 
Red S Staining Kit was purchased from Nanjing Jiancheng 
Bioengineering (Nanjing, China); and dimethyl sulfoxide 
(DMSO) and fetal bovine serum (FBS) were purchased from 
Sigma (Sigma-Aldrich, St. Louis, MO, USA). We obtained 
α-Modified Eagle’s Medium (α-MEM) and penicillin/
streptomycin from Gibco-BRL (Grand Island, NY, USA) 
and Hyclone (Thermo-Fisher Scientific, Waltham, MA, 
USA), respectively.

Cell culture

Cell isolation and cell culture
We procured 2-day-old Sprague-Dawley (SD) rats from 
the Laboratory Animal Center at Guangzhou University of 
Chinese Medicine (SCXK2018-0034). Cranial osteoblasts 
(OBs) were extracted by removing rat calvarial connective 
tissue and placing cleaned skulls in phosphate-buffered 
saline (PBS). Calvarias were then cut into several small 
fragments (2×2 mm) and subjected to ethylenediamine 
tetraacetic acid (EDTA) enzymatic digestion for 15 min, 
followed by 0.1% collagenase-Ⅱ for 30 min at 37 ℃. 
Cells were centrifuged to collect OB cells which were 
resuspended in α-MEM. The isolated primary OBs were 
cultured with α-MEM supplemented with 10% FBS,  
2 mM L-glutamine, 100 U/mL penicillin, and 100 μg/mL 
streptomycin at 37 ℃ in a humidified atmosphere of 5% 
CO2 for 7 d. Osteoblast differentiation and mineralization 
was induced using osteogenic induction medium (OIM; 
comprising 1% β-glycerophosphate, 0.01% dexamethasone, 
and 0.2% ascorbic acid. Media was changed every 24 h.

Cell viability assay
A CCK-8 assay was used to determine cell viability. A 96-
well plate was used to house OB cells (1×103 cells/well) prior 
to Cis A (0, 5, 10, 20, 40, 80, and 160 μM) treatment for 
24, 72, and 120 h. Each well then received 10 μL CCK-8 
solution which was then allowed to incubate in a humidified 
atmosphere of 95% air and 5% CO2 for 1 h at 37 ℃. The 
optical density (OD) was interpreted at 450 nm though a 

microplate reader (Bio-Rad Laboratories Inc., Hercules, 
CA, USA).

ALP activity and staining

After primary OBs were treated with or without different 
concentrations of Cis A, Rapa, 3-MA, DKK-1, 3MA + Cis 
A, and DKK-1 + Cis A for 7 days, ALP activity and ALP 
staining were detected, respectively. Total protein from cells 
was isolated at day 7, bicinchoninic (BCA) protein assay 
(Beyotime) was utilized to calculate protein concentration 
of each group. An ALP activity detection kit (Beyotime) 
was used to measure ALP activity. When it came to ALP 
staining, the cells were rinsed twice with PBS and fixed with 
70% paraformaldehyde for 30 min. An ALP buffer (0.15 M 
NaCl, 0.15 M Tris-HCl, 1 mM MgCl2, pH 9.0) was used 
to equilibrate cells twice prior to 1 h incubation with ALP 
substrate solution (5 L BCIP and 10 L NBT in l mL ALP 
buffer) at 37 ℃ in the dark. Distilled water was used to halt 
the reaction and plates were dried and imaged. 

Alizarin red S staining

Cells were plated onto 6-well plates at a density of  
2×103 cells/well and stimulated with or without Cis A, 
Rapa, 3-MA, DKK-1, 3MA +Cis A, and DKK-1 + Cis A for  
2 weeks. Alizarin red S staining was then used to 
evaluate the amount of calcium deposits through image 
interpretation of absorbance measurement at 570 nm using 
an enzyme-linked immunosorbent assay (ELISA) reader. 

Immunofluorescence staining

We used 4% paraformaldehyde (Solarbio, Beijing, China) 
to fix cells at room temperature for 15 min before they 
were rinsed once with 1× PBS, permeabilized, and blocked 
(Solarbio, Beijing, China) for 10 min at 37 ℃, and then 
incubated overnight at 4 ℃ with LC3 antibody (D3U4C; 
CST, USA). This was followed by a 1 h incubation period 
with a fluorescent secondary antibody (1:200 dilution) at  
37 ℃. The cells were then rinsed once with PBS, exposed to 
DAPI (1:1,000) (Sigma, USA) for 10 min, and then covered 
with glycerin. 

Mitochondrial membrane measurement

We mixed 50 μL JC-1 (200×) and 8 mL ultrapure water well, 
then 2 mL JC-1 dyeing buffer (5×) was added and mixed 
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well were to form JC-1 dyeing working solution. We added 
1 mL JC-1 dye buffer (5×) to every 4 mL distilled water 
and a JC-1 dyeing buffer (1×) ice bath was applied. After  
5 days of culture, the cells were counted by cell counter, and 
the number of cells was adjusted to 1×106 cells/mL. After 
20 min incubation at 37 ℃, the cells were centrifuged at 
2,300 rpm for 3 min at 4 ℃ to precipitate. The supernatant 
was discarded and washed twice with JC-1 staining buffer 
(1×). Then, 1 mL JC-1 staining buffer (1×) was added 
to resuspend the supernatant and detected by up flow 
cytometry. In normal cells, the mitochondrial membrane 
potential was high, the concentration of JC-1 aggregates 
in mitochondria was high, and the red fluorescence was 
enhanced; when the cells were damaged, the mitochondrial 
membrane potential decreased, and JC-1 in mitochondria 
was in the form of monomer, which emitted green 
fluorescence. Therefore, when the green fluorescence was 
enhanced or the red fluorescence was decreased, it meant 
that the mitochondrial membrane potential had decreased 
and the mitochondria were damaged.

Apoptosis analysis

After 5 days of culture, cells were collected and stained with 
an Annexin-VFITC kit for cell apoptosis detection (Sigma-
Aldrich). The apoptosis of the cells was detected by flow 
cytometry using an excitation wavelength of 488 nm and 
an emission wavelength of 525 nm [for the detection of 
propidium iodide (PI)].

Western blot assay

Radioimmunoprecipitation assay (RIPA) lysis buffer 
(Beyotime Biotechnology, Shanghai, China) supplemented 
with protease inhibitors (Roche, Basel, Switzerland) 
was used to lyse proteins in treated OBs. Total protein 
quantification was carried out using the BCA Protein 
Assay Kit (Pierce Manufacturing Inc., Appleton, WI, 
USA). A 10% sodium dodecyl sulphate-polyacrylamide 
gel electrophoresis (SDS-PAGE) was first used to 
separate protein samples. Proteins were then blotted onto 
polyvinylidene fluoride (PVDF) membranes. Primary 
antibodies of LC3A/B (D3U4C), Beclin-1 (D40C5), 
Anti-P62 (SQSTM1) pAb (P62, PM045), GSK-3β 
(D5C5Z), β-Catenin (D10A8), GAPDH (14C10) (all 
from CST, USA), Anti-RUNX2 (ab23981) (Abcam, 
USA) were incubated with the PVDF membranes at 4 ℃ 

overnight. The second antibody of anti-rabbit [horseradish 
peroxidase (HRP)]-linked Antibody (7074S, CST) was 
added the following morning and left to incubate for 1 h 
at room temperature. An enhanced chemiluminescence kit 
(ECL; Thermo Fisher Scientific, Inc., USA) allowed for 
visualization of the protein bands. The Image Lab Software 
(Bio-Rad Laboratories Inc., USA) was used to quantify band 
image intensity. 

Transmission electron microscopy 

We used 100 mm dishes to seed cells at a density of  
1.2×105/mL. Cells were cultured for 24 h and allowed to 
achieve confluence. Following treatment with or without 
Cis A, Rapa, 3-MA, DKK-1, 3MA + Cis A, and DKK-1 + 
Cis A for 5d, cells were centrifuged for 5 min in ice-cold 
PBS at 3,000 rpm, fixed in 500 μL of 2.5% phosphate-
buffered glutaraldehyde, followed by final exposure to 
1% osmium tetroxide in the same buffer. A transmission 
electron microscope was used to visualize cells.  

Statistical analysis

All data were depicted in terms of mean (SD). Statistical 
analyses were performed using the statistical software SPSS 
20.0 (IBM Corp., Armonk, NY, USA). One-way analysis 
of variance (ANOVA) was used to determine P values. A 
P value of less than 0.05 was interpreted as statistically 
significant.

Results

Effect of Cis A on primary osteoblast proliferation

Cis A is a type of phenylethanoid glycoside (Figure 1A). The 
primary osteoblasts were isolated from the calvarias of SD 
rats and cultured to 3 generations (Figure 1B). The effect of 
Cis A on primary osteoblast proliferation was measured by 
CCK-8 assay upon exposure to various concentrations of 
the substrate (0, 5, 10, 20, 40, 80, and 160 μM) for various 
durations of time (1–5 d). As shown in Figure 1C, there 
appeared to be no marked differences between the Cis A 
(0, 5, 10, and 20 μM) treatment and the control groups, 
suggesting that these concentrations did not promote 
primary osteoblast proliferation. However, at 40, 80, and 
160 μM Cis A elicited cytotoxicity in primary osteoblasts 
after 3 and 5 days of incubation (Figure 1C).
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Figure 1 Effects of Cis A on the primary osteoblast proliferation and differentiation as well as mineralization. (A) The structure of Cis 
A (cite from pubchem). (B) Morphology of the primary osteoblast. (C) Viability of the primary osteoblast treated by Cis A at different 
concentrations after 1, 3, and 5 d of culture were measured with CCK-8 assay. The experiment was repeated 3 times, ****, P<0.0001. The 
cells were cultured with Cis A (5, 10, 20 μM) for 1, 3, and 7 days. (D) The ALP staining of the primary osteoblasts was measured after 
incubating with varying concentrations of Cis A for 7 days. Scale bar =200 μm. The primary osteoblasts were treated with Cis A (5–20 μM) 
for 14 days. (E) The nodules were stained using Alizarin Red S. Scale bar =250 μm. Cis A, Cistanoside A; CCK-8, Cell Counting Kit-8; ALP, 
alkaline phosphatase.

Cis A accelerates ALP activity and mineralization of 
primary osteoblasts 
Early osteogenesis is markedly characterized by increased 
ALP staining, and the formation of calcium nodules 
by using alizarin red S staining is a sign of terminal 
osteogenesis. The optimal concentration of Cis A 
that promotes primary osteoblast differentiation and 
mineralization was determined by ALP staining and Alizarin 
red staining, respectively, following treatment of the cells 
with 5, 10, or 20 μM Cis A for 7 days for ALP staining and 
14 days for Alizarin red S staining. Treatment with 10 μM 
Cis A increased ALP expression, while other concentrations 
were notably less effective. Consistent with results of ALP 
staining, primary osteoblasts treated with Cis A (10 μM) for 
14 days exhibited a significant increase in mineralization in 

contrast to the control group (Figure 1D,1E). 

Inhibition of autophagy reduces osteoblast differentiation 
and mineralization as well as osteogenesis

The effect of autophagy on primary osteoblast proliferation 
was measured by ALP activity, ALP staining, and alizarin 
red staining following the same treatment protocols 
as mentioned in ALP activity and staining. Treatment 
with 3-MA for 7 d markedly reduced ALP activity and 
expression. Similar findings were noted with the Alizarin 
red S assay (Figure 2A-2C). Furthermore, the measurement 
of RUNX2 BMP2, OPN, and OCN by western blotting 
was degraded by 3-MA (Figure 2D-2H). Both RUNX2 and 
BMP2 are triggers of osteoblast differentiation. OPN and 
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OCN are also pivotal factors of osteogenesis, the expression 
of RUNX2, BMP2, OPN, and OCN detected by western 
blotting was elevated by Cis A, while the addition of 3-MA 
downregulated the levels of the above protein. These results 
highlight that the restraint of autophagy appeared to inhibit 
primary osteoblast differentiation and mineralization.

Cis A upregulates Beclin1 and LC3 expressions while 
promoting autophagosome formation 

Cis A-induced autophagy in osteoblasts was evaluated by 
intensity of LC3 by immunofluorescence staining and 
confirmation of autophagosome formation was imaged 
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Figure 2 Cis A activates osteogenesis while inhibition of autophagy reduces the differentiation and mineralization of osteoblast. (A) The 
primary osteoblasts were respectively incubated with Cis A (10 μM), Rapa (2.5 nM), 3-MA (1 mM), 3-MA (1 mM) + Cis A (10 μM) for  
7 days, then the ALP staining of the primary osteoblast was measured. (B) The primary osteoblasts were respectively incubated with OIM, 
Cis A (10 μM), Rapa (2.5 nM), 3-MA (1 mM), 3-MA (1 mM) + Cis A (10 μM), then, Alizarin Red S was used to stain the mineralized 
nodules. Scale bar =250 μm. (C) The primary osteoblasts were respectively incubated with Cis A (10 μM), Rapa (2.5 nM), 3-MA (1 mM), 3-MA 
(1 mM) + Cis A (10 μM) for 7 days, then the ALP activity was measured. (D) Relative BMP2, OPN, OCN, and RUNX2 protein levels 
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using a transmission electron microscope. It is known 
that 3-MA blocks formation of autophagosomes while 
rapamycin is a known inhibitor of the mammalian target of 
rapamycin. Cells were exposed to Cis A (10 μM), autophagy 
inhibitor 3-MA (1 mM), and autophagy inducer rapamycin 
(2.5 nM) for 5 d. Rapamycin was used as a positive 
control for induction of primary osteoblast autophagy. 

The treatment with Cis A was detected a higher intensity 
of LC3 (Figure 3A,3B). Expression of Beclin-1 and LC3 
Ⅱ/Ⅰ, was elevated in primary osteoblasts incubated by Cis 
A and Rapa cells exposed to 3-MA or 3-MA+Cis A were 
decreased, while P62 protein negatively unveiled the level 
of autophagy, highly expressed in cells exposed to 3-MA or 
3-MA+Cis A, but lower in combination treatment of Cis 
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Figure 3 Cis A induces autophagy of the primary osteoblast. (A) Immunofluorescence images of LC3 showing the primary osteoblasts in the 
Cis A (10 μM), Rapa (2.5 nM), 3-MA (1 mM), 3-MA (1 mM) + Cis A (10 μM) group (scale bar =100 μm). The green light indicates the LC3 
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(1 mM), 3-MA (1 mM) + Cis A (10 μM) for 5 d (scale bar =500 nm). The black arrowhead pointing at the autophagosome. (B) The primary 
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medium.

A and Rapa (Figure 3C-3F). In addition, Cis A treatment 
appeared to stimulate autophagosome treatment. However, 
combination treatment of 3-MA with Cis A did not result 

in autophagosome formation (Figure 4A). We therefore 
concluded that Cis A is able to trigger autophagy in 
osteoblasts, with autophagy in turn activating osteoblast 



Annals of Translational Medicine, Vol 10, No 2 January 2022 Page 9 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(2):64 | https://dx.doi.org/10.21037/atm-21-6742

differentiation. 

Cis A induces autophagy in primary osteoblasts through 
activation of the Wnt/β-catenin pathway

The Wnt/β-catenin pathway is critical for osteoblasts and 
osteogenic matrix formation. To investigate whether Cis 
A—induced autophagy in primary osteoblasts involved the 
Wnt/β-catenin pathway, Wnt/β-catenin pathway inhibitors 
such as DKK-1 were used. The degree of osteoblast 
differentiation and mineralization were evaluated using 
ALP and Alizarin red S staining kits, transmission electron 

microscopy, and western blotting. Cells treated with 
DKK-1 were noted to have reduced degrees of ALP and 
Alizarin red S staining intensities (Figure 4B,4C), indicating 
the blocking of Wnt/β-catenin pathways inhibited the 
differentiation and mineralization of the primary osteoblast. 
We then performed immunofluorescence staining  
(Figure 5A,5B) and western blotting. The decreasing 
expression of LC3 both in immunofluorescence staining 
and western blotting implied that blocking of Wnt/
β-catenin pathways suppressed autophagy in the primary 
osteoblasts. When cells were cultured in combination of 
Cis A and DKK-1, the expression of LC3 was consistent 
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LC3 showing the primary osteoblast in the α-MEM, Cis A (10 μM), DKK-1 (100 ng/mL), Cis A (10 μM) + DKK-1 (100 ng/mL) (scale bar  
=100 μm). The green light indicates the LC3 protein. (B) Quantification of LC3’s fluorescent intensity. (C) Representative TEM images 
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arrowhead pointing at the autophagosome. Cis A, Cistanoside A; TEM, transmission electron microscope. ***, P<0.001, **, P<0.01.
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Figure 6 Cis A induces autophagy in primary osteoblast through the Wnt/β-catenin pathway. (A) Relative LC3, P62, Beclin-1, WNT1, 
WNT3a, β-catenin, and Gsk-3β protein levels in each group. (B-H) Quantification of relative protein levels. ***, P<0.001, **, P<0.01, *, 
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with the result that incubated with DKK-1, suggesting that 
Cis A may induce autophagy via Wnt/β-catenin pathways. 
Furthermore, the trends of results tested in transmission 
electron were consistent with the above (Figure 5C). 
Ultimately, Wnt1, Wnt3, Gsk-3β, and β-catenin were tested 
by western blotting, the results reflect that Cis A regulates 
the Wnt/β-catenin pathway potently. These results clearly 
demonstrate that blocking of the Wnt/β-catenin pathway 
represses autophagy and Cis A may induce autophagy 
involved in Wnt/β-catenin pathway (Figure 6). 

Cis A downregulates the level of apoptosis and upregulates 
the maintenance of mitochondrial membrane

The level of apoptosis of primary osteoblasts was measured 
by Annexin-VFITC following the same treatment 
protocols as mentioned above. Treatment with 3-MA for 
7 d markedly upregulated the level of apoptosis while Cis 
A downregulated the level of apoptosis (Figure 7A). The 
mitochondrial membrane was tested by JC-1. Similar 
findings were congruous with the level of mitochondrial 
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membrane. These results demonstrated that the Cis 
A downregulates the level of apoptosis and regulates 
maintenance of the mitochondrial membrane (Figure 7B).

Discussion

Cistanche herba appears to demonstrate anti-osteoporotic 
properties which are thought to be mediated by its active 
compounds such as echinacoside, acteoside, and PhG. It 
has been reported that PhG possesses anti-oxidant, anti-
aging, neuroprotective, and osteoblast growth promoting 
abilities (7). Cis A is a PhG compound and an extract of 
Cistanches herba. Cis A has been reported to be involved in 
TRAF6-mediated NF-kappaB inactivation and PI3K/Akt 
activation in experiments involving OVX mice (10), and it 
has also been purported to impart benefits in the treatment 
of neurodegenerative disorders such as vascular dementia, 
Parkinson’s disease, and Alzheimer’s disease (20). Moreover, 
Cis A may also protect against ethanol-induced damage 
in primary cultured mouse hepatocytes as well as against 
alcohol-induced hepatotoxicity in mice (21). Our study 
aimed to investigate the influence of Cis A on osteoblasts. 
The current investigation demonstrated that Cis A increases 
osteoblast differentiation and mineralization as evidenced 
by ALP and Alizarin red S staining. The ALP is a marker 
of early osteogenic differentiation as well as an indicator of 
osteoblast activity (22). Raised ALP levels may represent 
the occurrence of active bone formation (23). Alizarin red S 
is a chelating agent and its use as a colorimetric regent for 
cations is well established (24). The increasing expression 
of osteogenesis protein such as RUNX2, BMP2, OPN, and 
OCN further demonstrated the activating function of Cis A.

Apoptosis is an essential process for maintenance of 
homeostasis in multicellular organisms. Osteoblast apoptosis 
suppresses differentiation and mineralization in vitro by 
reducing cell density. Our study assessed the function of 
Cis A on anti-apoptosis with Annexin-VFITC, on account 
its quality of antioxidation, and revealed that Cis A lowers 
the level of apoptosis and maintains normal levels of the 
mitochondrial membrane. Autophagy is another biologically 
essential component of cellular survival (25). A genome-
wide association study highlighted the close association 
of bone mineral density (BMD) and/or osteoporosis with 
autophagy regulation (26). Autophagy protects osteoblasts 
through its effects in reducing ROS, inhibiting apoptosis, 
and regulating mineralization (27). The relationship 
between osteoblasts and key protein in autophagy can be 
concluded as follows, osteoblast mineralization has been 

notably reduced in ATG7 and Beclin1 deficiencies (28). 
Likewise, an ATG5 deletion decreases in vivo bone volume 
by decelerating mineralization capacity (29). Osteoblasts 
which are unable to undergo autophagy experience higher 
oxidative stress, leading to increased receptor activator 
of NFKB1 (TNFSF11/RANKL) secretion, thereby 
leading to bone resorption through increased osteoclast 
formation (30). When autophagy occurs, autophagosomal 
membranes express LC3 family proteins, participate in 
cargo recognition and recruitment, and are cleaved by Atg4 
protease to form LC3 I, which is then activated by Atg7 to 
yield LC3-II (31). The presence of P62 is a typical signal of 
autophagy, and when autophagy occurs, the level of P62 will 
increase. Our study showed a higher expression of LC3-
II in contrast to LC3 I in Cis A treated groups, suggesting 
the role of this compound in inducing osteoblast autophagy 
which in turn is involved in osteoblast mineralization 
and differentiation. Our study found that Cis A activates 
autophagy while inhibiting apoptosis, which might provide 
evidence for the argument that autophagy downregulates 
apoptosis.

Osteoblasts originate from bone marrow mesenchymal 
stem cells (BMSCs) and are regulated by the Wnt/
β-catenin pathway. The Wnt1 signaling proteins consist of 
Wnt1 family and Wnt5a family proteins (32). The Wnt1 
family proteins include Wnt1, Wnt3a, and Wnt7a, which 
activate the canonical Wnt/β-catenin pathway (32), and 
it help to improve mitochondrial function and prevent 
apoptotic cell injury (33). The relationship between the 
Wnt/β-catenin pathway and autophagy has yet to be fully 
documented. In most tumors (34), Wnt/β-catenin signaling 
appears to negatively regulate autophagy, with β-catenin 
suppressing levels of p62 (35). Some papers have reported 
that the Wnt/β-catenin pathway and autophagy can be 
activated simultaneously, therefore Wnt/β-catenin signaling 
pathway activation was postulated to mediate autophagy 
in hepatocellular cancer (HCC) cells (36). Other papers 
have described how the Wnt3a ligand stimulates autophagy 
through Wnt signaling. In this study, we found that groups 
treated with Cis A had elevated Wnt1, Wnt3a, and β-catenin 
levels with decreased Gsk-3β expressions, indicating 
that Cis A did activate the Wnt/β-catenin pathway. The 
β-catenin component is a key protein of the Wnt/β-catenin 
pathway, when the Wnt/β-catenin pathway is activated, 
β-Catenin will enter the nucleus and affect the next step 
of gene transcription. Studies have shown that autophagy 
can increase the expression of β-Catenin, and then p62 
will be inhibited by β-Catenin. Research has suggested 
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that the accumulation of β-Catenin inhibits the p62 
promoter, leading to autophagy inhibition (37). However, 
our experiment found that the increase of β-Catenin 
could decrease the expression of p62, without inhibiting 
autophagy; on the contrary, it promoted the occurrence of 
autophagy. Perhaps this is because β-catenin accelerated 
and decreased p62 expression by enhancing autophagy 
when lysosomal enzymes degraded p62 protein. The Gsk-
3β is a serine/threonine protein kinase which can inhibit 
β-catenin entering the nucleus and inhibit autophagy by 
phosphorylation of TSC2. The same mechanism is also 
reflected in Alzheimer’s disease, with abnormal Gsk-3β 
activity having been shown to cause neuronal damage. Our 
study showed that Cis A downregulates the expression of 
Gsk-3β, which possibly means that Cis A inhibits Gsk-3β 
expression through the Wnt/β-Catenin pathway. Our study 
also showed that cells treated with DKK-1 only had low 
levels of autophagy, incongruous with those treated with a 
combination of DKK-1 and Cis A. Taken together, these 
findings suggest that Cis A may activate autophagy via the 
Wnt/β-catenin pathway. Base on the results above, Cis A 
may be potential for development into anti-osteoporosis 
drugs.

To summarize, we documented that Cis A promotes 
the differentiation and mineralization of the primary 
osteoblasts. This process may be mediated through 
apoptosis and activation of autophagy that involves Wnt/
β-catenin signal pathway activation. 
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