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Introduction 

Sepsis is described as an excessive inflammatory response 
to an infection that fails to return to homeostasis (1). 
Sepsis syndrome frequently occurs in patients following 
an infection and/or injury and has become one of the most 

common causes of death in hospitalized patients worldwide 
(2,3). The dysregulated inflammatory response is caused by 
heterogeneous microbial pathogens, predominantly gram-
negative bacteria (4). Sepsis shack occurs when there is life-
threatening organ failure, including cardiovascular, renal, 
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hepatic, and neurological dysfunction (5,6), and is associated 
with high morbidity and mortality (7). However, to date, 
there is still no specific medicine nor effective therapy for 
the treatment of patients with sepsis syndrome. Advances in 
the understanding of the pathological mechanisms involved 
in sepsis has revealed that the inflammatory syndrome 
predominantly involves a dysfunction of the host innate 
immune system (8).

The inflammatory reaction is essential to inform the 
host immune system of the presence of an infection. 
After an infection, the host response is primarily activated 
by pathogen associated molecular patterns (PAMPs) 
that include toxins, endotoxins, and protein particles 
from invading pathogens, which is mediated by pattern 
recognition receptors (PPRs) (9). The recognition in 
immune cells leads to an increased release of cytokines 
including tumor necrosis factor (TNF), interleukin-1 (IL-
1), interleukin-6 (IL-6), and high-mobility group box-
1 protein (HMGB-1), as well as non-cytokine mediators 
such as macrophage migratory inhibitory factor (MIF), 
platelet activating factor (PAF), nitric oxide (NO), 
complements, and eicosanoids (10). PPRs also recognize 
damage-associated molecular patterns (DAMPs) that 
include various damaged proteins and organelle contents 
released from injured cells, and this also contributes 
to the release of various pro-inflammatory mediators 
(11,12). The inflammatory response is typically balanced 
with inflammation resolution. However, in the sepsis 
patient, this homeostasis is disturbed. Activation of the 
NLRP3 inflammasome is necessary for adaptive immune 
responses and innate immune defense. In addition, NLRP3 
inflammasome has been proved to be closely involved in 
the occurrence and evolution of sepsis (13).

Cinnamon is a traditional Chinese medicine and has 
been used for thousands of years. Cinnamon and cinnamon 
extracts have been demonstrated to have anti-inflammatory 
and anti-oxidative activities (14). However, it is unclear 
whether cinnamon or cinnamon extracts are effective at 
reducing sepsis syndrome. The present study investigated 
the potential application of a cinnamon extract, cinnamyl 
alcohol, in sepsis therapy. The specific objectives were as 
follows: (I) to confirm the effects of cinnamyl alcohol on 
the mortality of septic mice; (II) to determine the effects 
of cinnamyl alcohol on the secretion of inflammatory 
cytokines in the circulatory system; and (III) to demonstrate 
the effects of cinnamyl alcohol on the production of 
inflammatory cytokines in multiple organs. Previous 
report has indicated that the anti-inflammatory effects of 

cinnamyl alcohol (15). However, we firstly demonstrated 
the anti-inflammatory effects of cinnamyl alcohol in the 
sepsis animal model, and the anti-inflammatory roles were 
achieved through NLRP3 inflammasome pathway.

We present the following article in accordance with 
the ARRIVE reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-6130/rc).

Methods

Animals

A total of 40 specific pathogen free male C57BL/6J mice 
(8–10 weeks old) were purchased from Shanghai Lingchang 
Biological Technology Co., Ltd. (Shanghai, China) and 
housed in an animal facility under a 12-hour light-dark 
cycle, in an ambient temperature of 22–25 ℃ and humidity 
of 50%. The mice were given free access to food and water. 
After a week of acclimatization, the mice were randomly 
divided into four groups. In the control group, the mice 
were given phosphate buffered saline (PBS) by gavage 
and injection of PBS. In the model group, mice were 
administered PBS by gavage and sepsis was induced by 
injection of Escherichia coli. In the cinnamyl alcohol group 
(CA group), mice were treated with cinnamyl alcohol  
(2 g/kg) by gavage and injected with PBS. In the model 
+ CA group, mice were given cinnamyl alcohol (2 g/kg) 
by gavage and sepsis was induced by injection of E. coli. 
Animal experiments were granted by the ethics committee 
of Fujian Medical University (No. FJMU IACUC 2021-
0512) and conformed to the Guide for the Care and Use of 
Laboratory Animals of the National Institute of Health for 
the care and use of animals. During the experimental 
period, all efforts were made to minimize animal suffering. 
The dose of cinnamyl alcohol was determined based on our 
pre-experiment and previous reports (16,17). The cinnamyl 
alcohol was purchased from MedChemExpress (Shanghai, 
China), and prepared with ethanol.

Induction of sepsis 

The E. coli strain (ATCC 25922) of bacteria was inoculated 
into 100 mL Luria-Bertani broth and cultured overnight at 
37 ℃ with shaking. The bacteria were washed, resuspended 
in sterile PBS, and serially diluted to achieve 109 colony-
forming units (CFU)/mL. Prior to injection, mice were 
anesthetized with 1% pentobarbital sodium (80 mg/kg  
body weight). The E. coli solution was administered 

https://atm.amegroups.com/article/view/10.21037/atm-21-6130/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-6130/rc
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Table 1 Primers used in the present study

Gene Forward primer (5'-3') Reverse primer (5'-3')

NLRP3 ATTACCCGCCCGAGAAAGG TCGCAGCAAAGATCCACACAG

ASC GCTACTATCTGGAGTCGTATGGC GACCCTGGCAATGAGTGCTT

Caspase-1 ACTGACTGGGACCCTCAAGT GCAAGACGTGTACGAGTGGT

GAPDH ATCAACGGGAAACCCATC GAAGACGCCAGTAGACTCCA

NLRP3, nucleotide-binding oligomerization domain-like receptor 3; ASC, apoptosis-associated speck-like protein containing a caspase 
recruitment domain; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

intravenously into the tail vein of the mice to induce sepsis 
syndrome. Intragastric administration of the cinnamon 
extract (250 mg/kg) was performed 1 hour before E. coli 
injection. Animals were observed at 6 hours intervals and 
the mortality rate was recorded. 

Sampling and histological analysis

Blood samples were drawn from the tail vein of the mice 
48 hours after treatment and centrifuged for 10 minutes at 
3,000 ×g to obtain the plasma. Subsequently, the mice were 
sacrificed with a lethal dose of pentobarbital and the liver, 
heart, lungs, and kidneys were harvested. Tissue samples 
were immediately frozen in liquid nitrogen and stored 
at −80 ℃ until further analyses. The organ samples were 
fixed with 10% formalin for 48 hours and embedded in 
paraffin. Slides containing the paraffin-embedded sections 
(10 μm) were deparaffinization and dyed using hematoxylin 
and eosin. The slides were observed with an Olympus 
microscope (BX50 model).

Quantitative real-time polymerase chain reaction (qRT-
PCR)

Apoptosis-associated speck-like protein containing a 
caspase recruitment domain (ASC) and nucleotide-binding 
oligomerization domain-like receptor 3 (NLRP3) were 
selected for gene expression quantification using relative 
real-time PCR. Total RNA was extracted from the liver, 
heart, lungs, and kidney using TRIzol reagent (Invitrogen, 
CA, USA) according to the manufacturer’s instructions. 
The concentration and integrity of the RNA was measured 
using NanoDrop (ND-1000) and Agilent Bioanalyzer 2100 
(Agilent Technologies). cDNA was synthesized using Evo 
M-MLV RT Kit with gDNA Clean for qPCR II (Accurate 
Biotechnology Co., Ltd., Hunan, China). qRT-PCR was 
performed on a QuantStudio 3 Real-time PCR System 

(Thermo Scientific, MA, USA) using TB Green Premix 
Ex TaqTM II (Takara, Dalian, China) Kit according to the 
manufacturer’s instructions. The qRT-PCR program was as 
follows: denaturation at 95 ℃ for 30 seconds, followed by 40 
cycles of denaturation at 95 ℃ for 5 seconds, and annealing 
and extension at 60 ℃ for 30 seconds. The dissociation 
curve of the amplification products was analyzed to confirm 
that only one PCR product was amplified and detected. 
The data were calculated using the 2−ΔΔCt method (Livak and 
Schmittgen 2001). The PCR primers used are provided in 
Table 1. 

Enzyme-linked immunosorbent assay (ELISA) and 
Western blot analysis

The plasma concentrations of interleukin (IL)-1β and IL-
18 were determined using ELISA kits according to the 
manufacturer’s protocols. The expression levels of ASC, 
NLRP3, and caspase-1 were measured using Western blot. 
Tissue samples were homogenized with sample buffer  
(50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% NP-40, 
0.1% SDS, 10 μL proteinase inhibitor). After centrifugation 
for 20 minutes at 12,000 rpm at 4 ℃, the supernatant was 
collected and protein concentration was determined using 
the BCA Protein Assay Kit (Abcam). The proteins were 
separated by 12% sodium dodecyl sulphate-polyacrylamide 
gel electrophoresis (SDS-PAGE) and transferred onto 
polyvinylidene difluoride (PVDF) membranes (Millipore 
Co., Billerica, MA, USA). The membranes were blocked 
with 5% nonfat milk and for 1 hour at room temperature 
followed by incubation with primary antibodies (1:1,000 
dilution) overnight. Membranes were washed 3 times with 
PBST (PBS with 0.05% Tween 20) followed by incubation 
with a horseradish peroxidase-conjugated goat-anti-
rabbit antibody (1:20,000 dilution) for 1 hour at room 
temperature. After 3 washes with PBST, the band intensities 
were analyzed using the Image Lab software (Bio-Rad) 
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and quantified using the Image J analysis software. The 
antibodies used in this study were listed as follows: rabbit 
monoclonal to ASC (#ab283684, Abcam, UK), rabbit 
monoclonal to NLRP3 (#ab263899, Abcam, UK), rabbit 
monoclonal to Cleaved Caspase-3 (#ab32042, Abcam, 
UK), goat polyclonal secondary antibody to rabbit IgG 
(#ab150077, Abcam, UK).

Statistical analysis

One-way analysis of variance (ANOVA) was used to 
compare the data among groups, followed by Turkey post-
hoc test for multiple comparisons. Prior to the ANOVA 
test, the normality of data was verified by the Shapiro-
Wilk test. A P value <0.05 was considered statistically 
significant. All statistical analyses were conducted using 
Graph Pad Prism 5.0 software (San Diego, CA, USA).

Results

Cinnamyl alcohol increased the survival rate of sepsis mice

The mortality rate differed among the 4 treatment groups. 
In mice that were not subjected to sepsis induction, that 
is, the control group and the CA group, no deaths were 
recorded during the 48 hours post-administration (Table 2). 
In the sepsis model group, administration of E. coli results in 
50% (5/10) mortality. One death was recorded at 6, 18, and 
42 hours post-administration, and 2 deaths were observed 
at 24 hours post-treatment. In mice given cinnamyl alcohol 
before the induction of sepsis, that is, the model + CA 
group, a total of 3 mice died, 2 of which occurred at 6 hours  
post-administration, and 1 occurred at 18 hours post-
administration. These findings suggested that cinnamyl 
alcohol effectively reduced mortality in septic mice. 
Cinnamyl alcohol may be a novel therapeutic candidate for 
the treatment of sepsis syndrome.

Cinnamyl alcohol improved the tissues injury of sepsis mice

The liver, heart, lungs, and kidneys from mice in the control 
group and the CA group showed normal morphology 
(Figure 1), suggesting that cinnamyl alcohol did not exert 
any side effects on these organs. In the sepsis model group, 
obvious inflammatory cell infiltration, cell necrosis, and 
tissue abscesses were observed in the liver, heart, lungs, 
and kidneys (Figure 1). These histopathological changes 
are consistent with previous findings (18). Among these 
tissues, the inflammatory reaction was more pronounced in 
the liver compared to that observed in the heart, lungs, and 
kidneys (Figure 1). However, inflammatory cell infiltration, 
cell necrosis, and tissue abscesses were notably inhibited 
in mice in the model + CA group compared to mice in the 
model group. In fact, the findings were comparable to that 
observed in the control group and the CA group (Figure 1). 
These results indicated that cinnamyl alcohol effectively 
protected the liver, heart, lungs, and kidneys from excessive 
inflammatory reactions.

Cinnamyl alcohol inhibited the levels of IL-1β and IL-18 
in the serum

The plasma concentrations of IL-1β and IL-18 were 
significantly different among the various groups (F=549.80, 
P<0.0001 for IL-1β; F=924.90, P<0.0001 for IL-18). The 
plasma concentrations of IL-1β (169.20±1.92 pg/mL) and 
IL-18 (216.50±3.50 pg/mL) were significantly higher in 
the model group compared to that in the model + CA 
group (120.90±4.120 pg/mL for IL-1β; 172.50±3.93 for IL-
18 pg/mL) (Figure 2). The plasma concentrations of IL-
1β and IL-18 were significantly higher in the model + CA 
group compared to control mice (94.81±2.55 pg/mL for 
IL-1β; 100.20±2.27 pg/mL for IL-18) and mice in the CA 
group (93.60±0.42 pg/mL for IL-1β; 172.50±3.93 pg/mL  
for IL-18). No significant differences were observed in 

Table 2 The mortality of mice in during the 48 hours post-administration

Group
Number of survivals

Percentage survival
0 h 6 h 12 h 18 h 24 h 30 h 36 h 42 h 48 h

Control 10 10 10 10 10 10 10 10 10 100%

Model 10 9 9 8 6 6 6 5 5 50%

CA 10 10 10 10 10 10 10 10 10 100%

Model + CA 10 8 8 7 7 7 7 7 7 70%

CA, cinnamyl alcohol.
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Figure 1 The hematoxylin and eosin staining (magnification ×200) and histological analysis of the heart, liver, kidneys, and lungs from mice 
in the control group, the CA group, the model group, and the model + CA group. Arrows indicate infiltration of inflammatory cells. CA, 
cinnamyl alcohol.

Figure 2 The expression level of IL-1β and IL-18 in the serum of mice. ****, P<0.0001. ns, not significant; IL, interleukin; CA, cinnamyl 
alcohol.
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the plasma concentrations of IL-1β and IL-18 between 
the control group and the CA group. In agreement with 
previous studies (14), these findings demonstrated the anti-

inflammatory activity of cinnamyl alcohol and may indicate 
that cinnamyl alcohol can alleviate sepsis syndrome by 
reducing the inflammatory response. 
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Figure 3 The relative mRNA expression of ASC and NLRP3 in the heart, liver, lungs, and kidneys. ****, P<0.0001; ***, P<0.001; **, P<0.01; 
*, P<0.05. Error bars, ± SD. ns, not significant; CA, cinnamyl alcohol; ASC, apoptosis-associated speck-like protein containing a caspase 
recruitment domain; NLRP3, nucleotide-binding oligomerization domain-like receptor 3.

Cinnamyl alcohol inhibited the mRNA levels of ASC and 
NLRP3

The relative mRNA expression of ASC (F=21.37, P<0.001 
for liver; F=108.30, P<0.0001 for heart; F=182.60, P<0.0001 
for lungs; and F=103.00, P<0.0001 for kidneys) and NLRP3 
(F=27.97, P<0.0001 for liver; F=109.80, P<0.0001 for heart; 
F=55.03, P<0.0001 for lungs; and F=88.00, P<0.0001 for 
kidneys) were significantly different among groups, and the 
patterns of variation were similar in the liver, heart, lungs, 
and kidneys (Figure 3). The relative mRNA expression of 
ASC and NLRP3 was significantly greater in the model 
group (2.25±0.25 for ASC and 1.97±0.21 for NLRP3 in 
liver; 2.84±0.17 for ASC and 2.45±0.02 for NLRP3 in 
heart; 3.65±0.04 for ASC and 3.51±0.57 for NLRP3 in 
lungs; 3.37±0.18 for ASC and 10.40±1.48 for NLRP3 in 
kidneys) compared to the model + CA group (mean ± SD 
=1.44±0.21 for ASC and mean ± SD =1.51±0.17 for NLRP3 
in liver, mean ± SD =1.80±0.17 for ASC and mean ± SD 
=1.35±0.10 for NLRP3 in heart, mean ± SD =2.36±0.29 
for ASC and mean ± SD =2.22±0.05 for NLRP3 in lung, 
mean ± SD =1.70±0.30 for ASC and mean ± SD =4.85±0.68 

for NLRP3 in kidney). The relative mRNA levels of ASC 
and NLRP3 were significantly greater in the model + CA 
group compared to those in the control group (mean ± SD 
=1.00±0.13 for ASC and mean ± SD =1.00±0.09 for NLRP3 
in liver, mean ± SD =1.00±0.12 for ASC and mean ± SD 
=1.00±0.02 for NLRP3 in heart, mean ± SD =1.00±0.14 
for ASC and mean ± SD =1.00±0.07 for NLRP3 in lung, 
mean ± SD =1.00±0.15 for ASC and mean ± SD =1.00±0.13 
for NLRP3 in kidney) and the CA group (mean ± SD 
=1.11±0.24 for ASC and mean ± SD =1.01±0.10 for NLRP3 
in liver, mean ± SD =1.17±0.08 for ASC and mean ± SD 
=0.91±0.05 for NLRP3 in heart, mean ± SD =0.95±0.06 
for ASC and mean ± SD =0.86±0.03 for NLRP3 in lung, 
mean ± SD =1.06±0.06 for ASC and mean ± SD =1.04±0.04 
for NLRP3 in kidney). No significant differences were 
observed between the control group and the CA group. 

Cinnamyl alcohol inhibited the protein levels of ASC, 
NLRP3, and caspase-1

The relative protein expression of ASC (F=87.62, P<0.0001 
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Figure 4 Western blot analysis showing the protein expression of ASC, NLRP3, and caspase-1 in the (A) heart, (B) liver, (C) lungs, and 
(D) kidneys. The relative expression level of the proteins is shown in the graphs. ****, P<0.0001; ***, P<0.001; **, P<0.01; *, P<0.05. ns, 
not significant; CA, cinnamyl alcohol; ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain; NLRP3, 
nucleotide-binding oligomerization domain-like receptor 3.

for liver; F=49.64, P<0.0001 for heart; F=42.92, P<0.0001 
for lungs; and F=70.56, P<0.0001 for kidneys), NLRP3 
(F=88.73, P<0.0001 for liver; F=29.29, P<0.0001 for heart; 
F=57.16, P<0.0001 for lungs; and F=55.60, P<0.0001 for 
kidneys), and caspase-1 (F=109.40, P<0.0001 for liver; 
F=139.50, P<0.0001 for heart; F=159.70, P<0.0001 for 
lungs; and F=20.23, P<0.001 for kidneys) were significantly 
different among the 4 treatment groups, and the patterns 

of variation were similar in the liver, heart, lungs, and 
kidneys (Figure 4). The relative protein levels of ASC, 
NLRP3 and caspase-1 were significantly greater in the 
model group (mean ± SD =1.76±0.04 for ASC, mean ± SD 
=2.16±0.16 for NLRP3, and mean ± SD =2.30±0.16 for 
caspase-1 in liver; mean ± SD =2.60±0.11 for ASC, mean ± 
SD =1.78±0.03 for NLRP3, and mean ± SD =2.78±0.15 for 
caspase-1 in heart; mean ± SD =1.86±0.19 for ASC, mean ± 
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SD =1.65±0.13 for NLRP3, and mean ± SD =2.90±0.17 for 
caspase-1 in lung; mean ± SD =1.86±0.08 for ASC, mean 
± SD =2.16±0.16 for NLRP3, and mean ± SD =1.81±0.20 
for caspase-1 in kidney) than those of model + CA group 
(mean ± SD =1.38±0.08 for ASC, mean ± SD =1.66±0.09 for 
NLRP3, and mean ± SD =1.85±0.09 for caspase-1 in liver; 
mean ± SD =2.06±0.10 for ASC, mean ± SD =1.35±0.06 for 
NLRP3, and mean ± SD =2.29±0.14 for caspase-1 in heart; 
mean ± SD =1.48±0.03 for ASC, mean ± SD =1.23±0.04 for 
NLRP3, and mean ± SD =2.20±0.14 for caspase-1 in lung; 
mean ± SD =1.52±0.09 for ASC, mean ± SD =1.74±0.12 
for NLRP3, and mean ± SD =1.34±0.08 for caspase-1 in 
kidney). The protein levels of ASC, NLRP3, and caspase-1 
was significantly greater in model + CA group than those of 
the control group (mean ± SD =1.00±0.03 for ASC, mean ± 
SD =1.00±0.03 for NLRP3, and mean ± SD =1.00±0.04 for 
caspase-1 in liver; mean ± SD =1.00±0.27 for ASC, mean 
± SD =1.00±0.17 for NLRP3, and mean ± SD =1.00±0.12 
for caspase-1 in heart; mean ± SD =1.00±0.07 for ASC, 
mean ± SD =1.00±0.03 for NLRP3, and mean ± SD 
=1.00±0.05 for caspase-1 in lung; mean ± SD =1.00±0.07 
for ASC, mean ± SD =1.00±0.07 for NLRP3, and mean 
± SD =1.00±0.15 for caspase-1 in kidney) and CA group 
(mean ± SD =1.05±0.09 for ASC, mean ± SD =1.08±0.07 for 
NLRP3, and mean ± SD =1.07±0.09 for caspase-1 in liver; 
mean ± SD =1.10±0.22 for ASC, mean ± SD =1.06±0.13 for 
NLRP3, and mean ± SD =1.15±0.10 for caspase-1 in heart; 
mean ± SD =1.05±0.08 for ASC, mean ± SD =0.96±0.05 for 
NLRP3, and mean ± SD =1.07±0.11 for caspase-1 in lung; 
mean ± SD =1.08±0.09 for ASC, mean ± SD =1.16±0.13 
for NLRP3, and mean ± SD =1.05±0.11 for caspase-1 in 
kidney), between which no difference was observed. 

Discussion

The findings in this study suggested that sepsis induced 
by E. coli infection in the bloodstream leads to activation 
of the NLRP3 inflammasome pathway. The intracellular 
NLRs bind to caspase-1 via ASC, forming inflammasomes. 
Subsequently, caspase-1 is activated due to recruitment 
of procaspase-1, resulting in the secretion of IL-1β and 
IL-8 (19). The secretion of IL-1β and IL-8 is associated 
with the pathogenesis of numerous acute and chronic 
inflammatory human diseases (20). Previous studies 
have reported that the NLRP3 inflammatory pathway is 
involved in the occurrence and development of immune 
diseases, including inflammatory bowel disease, multiple 
sclerosis, and metabolic disorders (21,22). Meanwhile, 

other reports have shown that activation of the NLRP3 
inflammatory pathway benefits viral infections (22). 
Nonetheless, the important role of NLRP3 in bacterial 
infections remains to be fully understood. Zhong et al. (23) 
reported that NLRP3 signaling confers protection against 
polymicrobial abdominal infection but promotes lethality 
during disseminated bacterial infection. Zhu et al. (24) 
demonstrated that E. coli bloodstream infection is associated 
with the activation of the NLRP3 inflammatory pathway, 
and the expression of NLRP3 inflammasomes is related 
to the severity of the infection. While the current study 
suggested that cinnamyl alcohol reduced sepsis syndrome 
by inhibiting the NLRP3 inflammasome pathway, further 
investigations examining the clinical effects of cinnamyl 
alcohol are warranted.
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