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Background: Single-photon emission computed tomography (SPECT) is widely used in the early 
diagnosis of major diseases such as cardiovascular disease and cancer. High-resolution (HR) imaging requires 
HR projection data, which typically comes with high costs. This study aimed to obtain HR SPECT images 
based on a deep learning algorithm using low-resolution (LR) detectors.
Methods: A super-resolution (SR) reconstruction network based on deep learning and transfer learning 
for parallel-beam SPECT was proposed. LR SPECT sinograms were converted into HR sinograms. 
Training data were designed and generated, including digital phantoms (128×128 pixels), HR sinograms  
(128×128 pixels), and LR sinograms (128×64 pixels). A series of random phantoms was first used for pre-
training, and then the extended cardiac-torso (XCAT) phantom was used to fine-tune the parameters. The 
effectiveness of the method was evaluated using an unknown cardiac phantom. To simulate a wide range 
of noise levels, the total count levels of the projection were normalized to 1e7 (100%), 1e6 (10%), and  
1e5 (5%). Finally, the training sets for different count levels were generated. Transfer learning was employed 
to accelerate the training.
Results: The proposed network was validated on the simulation data sets using different Poisson noise 
levels. The quantitative values of the peak signal-to-noise ratio (PSNR) and structural similarity index 
measure (SSIM) indicators of the reconstructed images were improved compared to those recorded using 
the benchmark methods. Using the proposed method, an image resolution comparable to that of images 
reconstructed from the HR projection could be achieved.
Conclusions: Based on deep learning and transfer learning, an SR reconstruction network in the 
projection domain of the parallel-beam SPECT was developed. The simulation results under a wide range of 
noise levels evidenced the potential of the proposed network to improve SPECT resolution for LR detector 
scanners.
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Introduction

Single-photon emission computed tomography (SPECT) 
is commonly used in the early diagnosis and treatment 
of diseases such as cancer and cardiovascular and 
cerebrovascular diseases (1). To reconstruct high-resolution 
(HR) SPECT images, the corresponding HR projection 
data need to be obtained. HR detectors need to be placed 
in the SPECT system, which leads to high hardware costs 
and may hinder the wide application of SPECT. Compared 
with HR detectors, low-resolution (LR) detectors have the 
advantages of low cost and ease of popularization; however, 
they also have the disadvantage of low imaging resolution. 
Therefore, methods for obtaining HR SPECT images with 
LR projection are worthy of research.

The reconstruction of SPECT images from projection 
data is an inverse problem. Traditional SPECT reconstruction 
methods mainly include analytical filtered back-projection 
(FBP) algorithms and iterative reconstruction algorithms, such 
as the algebraic reconstruction technique (ART), maximum 
likelihood expectation maximization (MLEM), ordered-subset 
expectation maximization (OSEM), and maximum a posteriori 
(MAP) (2). Although FBP algorithms have the advantage of 
being fast, their use requires a choice to be made between 
HR and noise. In comparison, reconstructed images obtained 
using iterative algorithms are more accurate, because they 
benefit from more complex system modeling; however, they 
entail much higher computational costs. The application of 
regularization terms can optimize the imaging quality, but 
there is still no unified standard for parameter selection and 
the regularization of terms. The premise of applying these 
methods is to obtain the HR projection data.

Researchers have taken various approaches to studying 
super-resolution (SR) in SPECT. One of the most 
important strategies is to apply multi-image SR technology 
on the image domain (3). In the projection domain, an HR 
projection can be calculated from a series of LR projections 
containing different information, and then the image is 
reconstructed using the reconstruction method (4-6). 
However, the design of these methods is based on a perfect, 
error-free calibration system, and, in practice, errors in 
motion and registration may introduce uncertainty. The 
recovery of HR images from LR images is also an ill-posed 
problem (7). Another strategy to obtain HR images is to use 
single-image SR technology, such as an SR method based 
on sparse representation and local linear regression (8-10).  
These methods are applied based on the assumption 
that the HR image manifold and the LR image manifold 

have similar local geometric structures. The LR image 
block close to the test image block in the training set is 
searched, and the corresponding HR image block is used 
to reconstruct the test image. The effectiveness of these 
methods is limited by the ability of the underlying features 
to express the details of the HR image.

In recent years, researchers have applied deep learning 
technology to nuclear medical image reconstruction (2,11). 
Some learning reconstruction networks have been proposed 
to realize the direct mapping between projection data 
and activity images (12-16). The reconstruction step has 
been represented as two fully connected layers or a deep 
convolutional encoder-decoder network. Deep learning 
has often been used to optimize traditional reconstruction 
methods. For example, the U-Net network has been used 
to improve the quality of FBP and MLEM reconstruction 
images (17,18). Some researchers have integrated artificial 
intelligence (AI) structures into iterative reconstruction 
steps (19-23), which is a time-consuming process. In SR 
reconstruction, because medical images and natural images 
have different data distributions, the direct use of deep 
neural networks trained on natural image datasets for 
medical image processing may not result in good-quality 
images. Medical images are usually characterized by similar 
structures. For example, in the projection domain, all 
sinograms can be regarded as being composed of sinogram 
lines under different parameters. Furthermore, when SR 
technology is applied to medical images, it is necessary to 
improve the image resolution or to denoise and ensure 
the correctness of the reconstructed images, especially in 
the case of lesions. Hong et al. (24) proposed a residual 
convolutional neural network (CNN) to predict HR 
positron emission tomography (PET) sinogram data from 
LR sinogram data, thereby improving the effectiveness of 
learning local feature information. In the image domain, 
the convolutional encoder-decoder network was proven to 
be effective in image detail restoration and achieved end-
to-end mapping from LR PET images to HR PET images 
(25,26). Kim et al. (27) generated HR SPECT images from 
LR SPECT images using a dense, block-based CNN. 
Furthermore, magnetic resonance-guided PET image 
reconstruction technology (mainly post-processing) can 
provide more prior details to improve the resolution of 
anatomical images (28); however, multi-modality images 
with good registration are not easy to obtain.

The purpose of this study was to propose a learning 
approach based on residual learning and transfer learning to 
improve the imaging resolution of SPECT scans using the 



Annals of Translational Medicine, Vol 10, No 7 April 2022 Page 3 of 17

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(7):396 | https://dx.doi.org/10.21037/atm-21-4363

n64s1 n64s1 n64s1n128s1 n128s1

Residual block

Feature extraction bIock Up sampling bIock SR refinemen bIock

n64s1 n64s1n128s1

Conv 3×3 CReluElement-wise sum

Sub-pixel conv block Conv 1×1

Figure 1 The structure of the proposed network. Sub-pixel conv block, upsampling operation. SR, super-resolution; n64s1, number of 
channels 64, stride 1; CRelu, concatenated rectified linear unit. 

LR detector. We focused on two-dimensional (2D) parallel-
beam SPECT reconstruction. The input of the proposed 
network was an LR sinogram (128×64 pixels) and the 
output was an SR sinogram (128×128 pixels). The benefit 
of this design was that it converted the 2D relationship 
between the LR sinogram and the HR sinogram into a one-
dimensional relationship, further simplifying the complexity 
of network learning. The proposed network was verified on 
the phantom datasets under different Poisson noise levels. 
To mimic clinical situations, the Monte Carlo method was 
used to obtain sinograms of an unknown cardiac defect to 
verify the generalizability of the proposed method. Once the 
mapping between the LR sinogram and the HR sinogram 
was established, the SR sinogram could be obtained to 
improve the resolution of the final reconstruction. We 
present the following article in accordance with the 
Transparent Reporting of a multivariable prediction model 
for Individual Prognosis Or Diagnosis (TRIPOD) reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-21-4363/rc).

Methods

It is difficult to effectively train an SR network to map the 
relationship between a total (HR) projection domain and 
the image domain. Compared with HR projection, the 
nonlinear relationship between an LR projection image 
and a reconstructed image is more complex and requires 
the fit of a deeper, multi-layered, convolutional network. 
Limited by computer hardware and a large number of 
parameters, direct training may face the difficulties of a slow 
convergence speed and a difficult network convergence. 

Therefore, the problem was transformed into mapping the 
relationship between the training LR projection and the 
HR projection. After the SR projection image had been 
obtained, the SR SPECT image could be reconstructed 
using the conventional reconstruction algorithm.

SR network for projection

As explained above, it is difficult to apply an SR network 
trained with natural images to projection data, due to 
different pattern distributions. In the first part of our study, 
the goal was to train an SR network, G, to estimate the 
corresponding 2D HR sinogram for a given 2D LR input 
sinogram, described as:

( )( )
1

1ˆ arg min ,
G

G

N
LR HR

G n n
n

loss G I I
N θ

θ
θ

=

= ∑
	

[1]

where { }1: 1:;G L LW bθ =  denotes all parameters (weights and 
biases of all L-layer network) of the network, loss denotes 
the loss function, and LR

nI , HR
nI , and ( )

G

LR
nG Iθ  denote the 2D LR 

sinogram, the 2D HR sinogram, and the 2D SR sinogram, 
respectively. The single-channel, gray-scale sinogram was 
described using real-valued tensors of H×(W/r)×1 and 
H×W×1 in size, respectively, where r represents the scale 
factor and N represents the number of paired data in the 
training set, n=1, …, N.

As shown in Figure 1, the proposed network was divided 
into three parts: a feature extraction block, an upsampling 
block, and an SR refinement block. In the feature extraction 
block, after the application of a convolution layer with a 
3×3 filter, five identical residual blocks were serially used 
to extract and aggregate the low-frequency features in the 
LR sinogram (29). Another residual structure was designed, 

https://atm.amegroups.com/article/view/10.21037/atm-21-4363/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-4363/rc
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and the global features were extracted by setting jumper 
connections outside the five residual blocks. The function 
of the upsampling block was to merge the above-mentioned 
features and convert them to an HR size. The final SR 
sinogram was obtained by designing SR refinement blocks 
with dense connectivity, which further refined the high-
frequency features.

In the feature extraction block, after the application 
of a convolution layer with a 3×3 filter, a concatenated 
rectified linear unit (CReLU), and a convolution layer with  
a 1×1 filter were designed (30). The residual block consisted 
of two convolution layers with 3×3 filters, one convolution 
layer with a 1×1 filter, and a CReLU as the activation 
function (31,32). With the deepening of the network, the 
CReLU network could capture positive- and negative-
phase information, thus avoiding the redundancy of the 
convolution kernel. The CReLU is described as:

( ) ( ) ( )CReLU Concat ReLU ,  ReLU  = −x x x 	 [2]

( ) ( )ReLU 0,x max x= 	
[3]

where, x is the input of the neuron. The rectified linear 
unit (ReLU, or linear rectification function) is a common 
activation function in artificial neural networks (33).

The number of feature maps in the feature extraction 
block was set to 64, and the batch normalization layer was 
discarded. After CReLU, the number of feature maps was 
doubled; subsequently, a convolutional layer with a 1×1 filter 
was used to restore the number of feature maps to 64. In 
addition to the five residual blocks, the independent jumper 
connection could better retain the global characteristics and 
eliminate the redundant information obtained (34).

In the upsampling block, 2 one-dimensional, sub-pixel 
convolution blocks were used to implement multi-channel 

parallel upsampling. The inputs of two sub-pixel convolution 
blocks were the output of the residual blocks and the 
output of the first convolution layer, respectively (35).  
The outputs of the two sub-pixel convolution blocks were 
fused by the element-wise sum operation. As shown in 
Figure 2A, before being input to the sub-pixel convolution 
layer, the feature maps from the residual block output had 
to be calculated using the convolution layer with 3×3 filters. 
The number of channels of the sub-pixel convolution 
layer was equal to 64×2. After application of the sub-pixel 
convolution layer, a common parametric rectified linear 
unit (PReLU) activation function was applied (36,37). A 
demonstration of how to operate the sub-pixel convolution 
layer is shown in Figure 2B.

Instead of directly taking the output of the sub-pixel 
convolution block as the result, after upsampling, we input 
the feature maps into the SR refinement block. The SR 
refinement block included three convolutional blocks and 
a convolutional layer. The convolutional block included 
a convolution layer with a 3×3 filter, a CReLU, and a 
convolution layer with a 1×1 filter. The setting of the number 
of feature maps was consistent with the description in the 
feature extraction block. The dense connection mechanism 
was applied, and the specific performance requirement was 
for each layer to accept all the previous layers as its additional 
input, with a view to achieving feature reuse and improving 
efficiency (38). The number of output channels of the last 
convolutional layer with a 3×3 filter was designed to be 1, and 
there was no activation function.

Digital phantoms and preprocessing

As it is difficult to collect a large number of clinical datasets, 

Figure 2 The sub-pixel convolution block. (A) The structure of the one-dimensional sub-pixel convolution block. (B) An example 
demonstrating the operation of the sub-pixel convolution layer. n64s1, number of channels 64, stride 1; PReLU, parametric rectified linear unit.
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this study used digital phantoms to generate training sets. 
The advantage of using a digital phantom is that it has a 
unique ground truth image. Through network training, 
images that are infinitely close to ground truth images can be 
generated, which cannot be achieved using clinical datasets. 
A possible disadvantage of using digital phantoms is the 
difficulty of including all possibilities. However, projections 
of different medical images have similar structures (which can 
be regarded as the combination of sinusoids); this allows a 
large number of digital phantoms to be pre-trained and then 
further trained on medical data through transfer learning (39). 
The advantage of transfer learning is that re-learning from 
scratch can be avoided, and the learning efficiency of the 
model can be accelerated and optimized.

In this study, 100,000 Shepp Logan-like phantoms, 
100,000 Derenzo-like phantoms, and 100,000 Jaszczak-
like phantoms were generated. For the Shepp Logan-like 
phantoms, we used multiple parameter values (position, 
major axis, minor axis, rotation, and intensity) of different 
ellipses in the standard Shepp Logan-phantom as the 
expected values and the expected 1/10 as the variance. 
The normal distribution was used to randomly generate 
phantoms in batches. The number of point sources in 
the six triangular regions in the Derenzo-like phantoms 
was random and could be selected from the integer  

range [1–9]. The intensity values of the background and 
point sources were random decimals and could be selected 
from the range (0.0–1.0). Similarly, the number of sources 
in the Jaszczak-like phantoms was random and could be 
selected from the integer range [7–12]. The values of radius 
and intensity of the source were selected in accordance with 
the mathematical uniform distribution (0.0–1.0) (24). All 
phantoms were treated as active images, and the size was 
uniformly set to 128×128 pixels. Noise-free HR sinograms 
(128×128 pixels) could be obtained from the activity image 
(128×128 pixels) by applying the forward projection method 
using the system matrix. To obtain more sampling details, 
the number of sampling angles was not reduced at this 
stage. Average pooling with windows 1×2 was used on the 
HR sinogram to simulate the LR sinogram (128×64 pixels). 
The number of viewing angles of the sinogram remained 
unchanged, but the number of bins was reduced by half. To 
simulate the SPECT scan after the radiotracer injection, 
the total count level of the projection was normalized to 
1e7 (100%). Poisson noise was introduced into the noise-
free sinogram, and datasets with Poisson noise were 
generated. In each category, 90% of the phantoms were 
used for training and the other 10% were used for testing. 
Figure 3A-3F shows a random selection of different digital 
phantoms involved in the training process. 

Figure 3 Example display of digital phantoms and XCAT phantoms participating in training. (A,B) Random display of Jaszczak-like 
phantoms. (C,D) Random display of Derenzo-like phantoms. (E,F) Random display of Shepp Logan-like phantoms. (G) Random display of 
XCAT attenuation maps. (H) Random display of XCAT exact source image. XCAT, extended cardiac-torso. 
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As shown in Figure 3G,3H, to further optimize the 
generalizability of the network in specific fields, the extended 
cardiac-torso (XCAT) phantoms were validated (40).  
In total, 40 sets of XCAT phantoms were applied, and 
the CT images were converted to corresponding SPECT 
images based on tissue segmentation (41). In this study, 
the liver was chosen as the target organ. Due to the 
limitations of the graphics processing unit (GPU) of 
memory and network complexity, the image size was 
reduced to 128×128×160 from 256×256×160 pixels. For the 
XCAT phantom, the HR sinogram (128×128 pixels) was 
obtained from the activity image (128×128 pixels) using 
a forward projection method and the system matrix and 
attenuation map. The way the LR sinogram was obtained 
was consistent with the way the LR sinogram of the digital 
phantom was obtained. We used the sinogram with a total 
count level of 1e7 (100%), which was regarded as high 
count data. To simulate a wide range of noise levels, the 
total count level of the sinogram was normalized to 1e6 
(10%) and 1e5 (5%) in turn, and training sets at different 
count levels were generated. Thirty-five sets of XCAT 
phantoms were used as the training set; three sets of XCAT 
phantoms were used as the validation set; and two sets of 
XCAT phantoms were used as the test set. Finally, an extra-
cardiac phantom was simulated by the Monte Carlo method 
for SPECT imaging (42). The active and the attenuation 
images of each slice were set to 128×128 pixels, and the 
image size was set to 320×320 mm2. The HR detector unit 
size was set to 2.5 mm2; the collimating hole diameter was 
set to 2.5 mm; the hole length was set to 100 mm; and the 
height of the scintillation crystal was set to 50 mm. To 
verify the performance of the proposed method at different 
doses, the number of photons emitted at each angle was 
set to 2.7×106 and 2×105 in turn. The performance of the 
proposed method was verified when the cardiac phantom 
demonstrated tissue defects.

Training details and parameters

The input of the proposed SR network was 128×64 pixels 
and the output was 128×128 pixels. The periodicity of 
the sinogram (with a period of 2pi) was used to enhance 
the training data and avoid the boundary error caused by 
convolution. In the vertical axis direction, three identical 
sinograms were spliced from end to end, and then randomly 
cropped to obtain a sinogram of the same size as before 
splicing. Further, random flips and rotations were used 

to enhance the training data. Before inputting into the 
network, we used standardization to preprocess the training 
data, as follows: 

( )
( )

,ˆ̂ ,
 

LR HR LR
n n nLR HR

n n LR
n

I I mean I
I I

standard deviation I

  −   = 

	

[4]

where, ,LR HR
n nI I   represents the paired 2D LR sinogram and 

2D HR sinogram, and ˆ̂ ,LR HR
n nI I   represents the standardized 

paired 2D LR sinogram and 2D HR sinogram.
It was difficult to directly obtain the mapping of the 

noise-added LR and HR sinograms. Using transfer learning, 
a progressive training program was designed. In Step 1, 
because extensive clinical datasets could not be obtained 
during the training phase, the proposed network was trained 
on the noise-free digital phantom dataset. The network 
was trained for a total of 30 epochs (2.8e5 iterations). The 
learning rate was initially set to 0.0001 and decreased to  
0.5 times the original rate every 20 epochs. The batch size 
was set to 32. The Adam optimizer was also used (43), 
with the settings β1 =0.9 and β2 =0.999. The objective 
of the proposed method was to minimize the difference 
between the real SR ground truth sinogram and the output 
sinogram. L1loss was selected as the loss function (44). 

In Step 2, the purpose was to provide initial parameters 
for Step 3 and accelerate the training speed, which was a 
transitional step. To obtain a better network parameter, in 
the noise digital data training, the noise-added LR digital 
sinogram was used as the input and the noise-free HR 
digital sinogram was used as the label. Transfer learning was 
used, and the parameters trained with noise-free digital data 
were used as the initial training parameters of this network. 
For this step, the network was trained at 30 epochs (2.8e5 
iterations). The parameter settings were set to be consistent 
with Step 1.

In Step 3, the proposed network was trained using the 
noise-add XCAT phantom dataset. Compared with the 
digital phantom, the XCAT phantom experiment was closer 
to the clinical case scenario. To simulate a wide range of 
noise levels, the total count level of the projection was 
normalized to 1e7 (100%), 1e6 (10%), and 1e5 (5%). The 
networks under the different noise levels were trained 
separately, in order of 1e7, 1e6, and 1e5. Transfer learning 
was used again, in order to avoid training from scratch, 
and the parameters trained for the noise-added digital 
phantom were used as the initial training parameters for 
the training step (1e7). The training at the other noise 
levels was deduced by analogy. The network (1e7 counts) 
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was trained for a total of 130 epochs (2.4e4 iterations); the 
network (1e6 counts) was trained for a total of 130 epochs 
(2.4e4 iterations); the network (1e5 counts) was trained for a 
total of 150 epochs (2.7e4 iterations). Other than the initial 
learning rate, which was set to 0.00001, the other parameter 
settings were set to be consistent with Step 1.

Combined with Compute Unified Device Architecture 
(CUDA) Toolkit v.10.0, and Pytorch v.1.20, Python code 
was used to implement the proposed method on the 
NVIDIA GeForce RTX 2080 GPU. Due to the use of the 
complete convolution neural network, the trained neural 
network was suitable for input of any size.

Statistical analysis

To quantitatively evaluate the performance of the proposed 
algorithm, two standard metrics, the peak signal-to-noise 
ratio (PSNR), and the structural similarity index measure 
(SSIM), which are widely used to evaluate image quality, 
were used to compare the prediction image with the ground 
truth image (45).

The PSNR is widely used to evaluate prediction 
accuracy, and is an objective criterion for image evaluation. 
The formula is as follows:

( )
( )

2

10 2
1

1

max ,
10log n

n

n original

N
n originalN n

u u
PSNR

u u
=

=
−∑ 	

[5]

where nu  and noriginalu  are the pixel values of the reconstructed 
image and the reference image, respectively, and N is the 
total number of pixels in the image. A larger PSNR reflects 
better image quality.

The SSIM is an indicator used to evaluate the similarity 
between two images, and is calculated as follows:
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[6]

where originalu  and originaluσ  denote the mean value and variance of 
the reference image, respectively, u  and σ  denote the mean 
value and variance of the reconstructed image, respectively, 

originalu uσ  is the covariance of the two images, c1 and c2 are 
constants. The closer the SSIM value is to 1, the more 
similar are the images.

For the images obtained by different methods under 
different noise levels, the average PSNR and SSIM were 
calculated in turn, along with the standard deviation (SD). 
The average activity concentration in the high-uptake area 
and low-uptake background area were also calculated, along 
with the SD (16).

Results

Results of simple digital phantom

Figure 4 shows the sinograms and reconstructed images of 
the untrained noise-free digital phantom under different 
methods. By setting the intensity values of adjacent 
positions on the horizontal axis as equal, the LR sinogram 
could be changed to the HR size. Using our method, more 
sinogram details could be restored than could be with 
the LR sinograms (128×128) or the bicubic interpolation 
sinograms; the difference between our results and HR 
sinogram was the smallest. We opted to take a transverse 
tangent (representing the detector direction, line 54 of 
sinogram) from all the sinograms, which is depicted in 
Figure 5. The SR sinogram obtained using our method was 
closest to the HR sinogram; more sinogram details could 
be restored to obtain better reconstructed image quality 
than with the LR sinogram or the bicubic sinogram. Using 
these sinograms, the images were reconstructed by the 
ART reconstruction algorithm. In the case of noise-free 
images, compared with the images reconstructed by the LR 
sinogram and the bicubic sinogram, the image reconstructed 
by the SR sinogram was clearer and the details were more 
completely restored.

Figure 6 shows the sinograms and reconstructed images 
of the untrained noise-added digital phantom under the 
different methods in Step 2. Since it is difficult to directly 
train SR networks under noise, the label applied here is 
noise-free HR sinogram, and the results shown here are 
transitional. Compared with the LR sinogram and the 
bicubic sinogram, the SR sinogram had a better signal-to-
noise ratio and could be reconstructed with a quality close 
to the original phantom. Compared with the traditional 
interpolation method, the performance of our method was 
closer to that of the noise-added sinogram, and effectively 
improved the reconstruction quality without introducing 
obvious errors. To quantitatively evaluate the performance 
of the reconstructions, we computed the average PSNR 
and the SSIM (standard is noise-free HR sinogram), as 
shown in Table 1, where a higher value corresponds to a 
better reconstruction; the results in Table 1 belong to the 
held-out test set of the digital phantom. The parameters 
obtained in this part can be considered as intermediate 
parameters. We directly applied the network parameters 
obtained under this data to the noise-add XCAT phantom 
and used them as the initialization parameters under the 
new dataset.
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Results of digital XCAT phantom

Figure 7 shows the results of the liver phantom under 
different methods. For Step 3, the input was the noise-
added LR sinogram, and the label was noise-added HR 
sinogram. The sinogram was reconstructed using the 
OSEM reconstruction method. Table 2 shows the mean 
and SD of the PSNR and the SSIM of different results in 
the held-out test set of the XCAT phantom under different 
noise levels. The results obtained using our proposed 
method achieved better numerical evaluation and visual 

effects. For the images presented in Figure 7, we also 
calculated the average activity concentration in the high-
uptake liver area and low-uptake background area, along 
with the SD. The calculated values are presented in Table 3. 
At all noise levels, the average activity concentration values 
in our images were closer to the exact values than those 
images for both the high-uptake and low-uptake regions. 
Compared with the traditional interpolation method, the 
error between the result obtained by our method and the 
real HR sinogram was smaller, which was reflected in the 
more detailed restoration of the reconstructed image. 

Figure 4 Noise-free sinogram and reconstructed image using different methods. LR, low-resolution; HR, high-resolution.

Digital phantom (noise-free)

Sinogram 128×128128×64

Residual map with HR sinogram

Reconstructed image 128×128

From LR sinogram From bicubic sinogram From our sinogram From HR sinogram

LR Bicubic Our HRLR sinogram
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Figure 5 Typical line profile of the projection obtained using different methods. HR, high-resolution; LR, low-resolution; SR, super-
resolution.
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Figure 6 Noise-added sinogram and reconstructed image obtained using different methods. LR, low-resolution; HR, high-resolution. 
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Table 1 Average PSNR and SSIM of the different results (the held-out test set of digital phantoms)

Image type Index
Noise-free Noise-add 1e7 counts 

LR Bicubic Our LR Bicubic Our

Sinogram PSNR 36.77 41.78 52.59 33.05 35.28 42.01

SSIM 0.9087 0.9521 0.9944 0.8477 0.8931 0.9776

Image PSNR 19.19 25.30 34.72 16.41 21.44 26.86

SSIM 0.5091 0.8081 0.9673 0.4130 0.6054 0.8366

PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure; LR, low-resolution. 

Figure 7 Noise-added sinogram and reconstructed image under different methods for the XCAT phantom (6). XCAT, extended cardiac-
torso. LR, low-resolution; SR, super-resolution; HR, high-resolution. 
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Table 2 Mean and SD (in parenthesis) of PSNR and SSIM for the different liver results (the held-out test set of XCAT phantom) 

Noise level Method
Sinogram Image

PSNR SSIM PSNR SSIM

Noise-added 1e7 counts LR 35.22 (1.64) 0.9403 (0.0060) 31.97 (3.84) 0.9191 (0.0269)

Bicubic 38.87 (1.08) 0.9580 (0.0052) 37.30 (3.11) 0.9322 (0.0437)

Sharpening 32.19 (0.78) 0.8911 (0.0247) 32.45 (2.99) 0.9140 (0.0208)

Multi-image SR (6) 40.62 (1.14) 0.9702 (0.0143) 38.76 (3.16) 0.9604 (0.0147)

Our 42.44 (1.00) 0.9802 (0.0051) 42.84 (3.17) 0.9777 (0.0095)

Noise-added 1e6 counts LR 32.52 (0.75) 0.8958 (0.0177) 31.24 (2.58) 0.8856 (0.0150)

Bicubic 33.49 (1.03) 0.8997 (0.0222) 33.56 (2.27) 0.9006 (0.0162)

Sharpening 24.67 (1.01) 0.7494 (0.0396) 29.39 (1.96) 0.8593 (0.0144)

Multi-image SR (6) 32.05 (1.13) 0.8686 (0.0345) 31.31 (2.43) 0.8899 (0.0201)

Our 33.95 (1.10) 0.9112 (0.0205) 35.01 (2.37) 0.9170 (0.0143)

Noise-added 1e5 counts LR 26.53 (1.01) 0.8045 (0.0244) 28.25 (2.67) 0.8332 (0.0274)

Bicubic 26.37 (1.06) 0.7851 (0.0293) 28.52 (2.74) 0.8195 (0.0335)

Sharpening 18.64 (1.02) 0.6660 (0.0321) 24.59 (3.19) 0.7811 (0.0267)

Multi-image SR (6) 25.20 (1.08) 0.7254 (0.0411) 26.75 (2.79) 0.7871 (0.0370)

Our 27.01 (1.03) 0.8106 (0.0258) 28.94 (2.64) 0.8429 (0.0278)

SD, standard deviation; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measure; XCAT, extended cardiac-torso; LR, 
low-resolution; SR, super-resolution.

Although the sinogram processed by the Sharpening filter 
{Laplace operator [0 1 0; 1 −4 1; 0 1 0] was used} obtained 
more edge information, there was no obvious improvement 
in the reconstruction result. The multi-image SR method 
described in (6) could obtain the effect close to the real 
HR sinogram, but it would require more LR detectors, 
making it more expensive. The ring artifacts caused by 
LR acquisition in the reconstructed image could be more 
effectively eliminated by our SR method. Compared with 
the images reconstructed by the LR sinogram and the 
bicubic sinogram, our results also showed reduced noise. It 
should be noted that under higher noise, the performance 
of the network decreased, but it still obtained a better 
boundary in the reconstructed image.

Results of the cardiac phantom

Figure 8 shows a slice of the cardiac phantom under 
different methods. In this part of our study, we used the 
new phantom and the new projection method to test 
our network. A perfusion defect was simulated on the 
anterolateral myocardium of the left ventricle, and the 

extent of the defect was one-third of the normal activity. 
When the number of photons emitted at each angle 
was set to 2.7×106, we used the corresponding network 
parameters under the noise level of 1e7. When the number 
of photons emitted at each angle was set to 2×105, we used 
the corresponding network parameters under the 1e5 noise 
level. The experimental results show that the reconstructed 
image obtained by our method was closer to the HR 
sinogram reconstructed image. Compared with the method 
in (6), our reconstruction results had less noise; specifically, 
the reconstructed image from the LR sinogram had obvious 
ring artifacts, the image after bicubic processing was 
more blurred, and the result after sharpening processing 
was obviously non-uniform. For the first row in Figure 8,  
a transverse tangent (line 64 of image) was taken from all 
the reconstructed images, as shown in Figure 9. We have 
zoomed in on two details, which show that the proposed 
method was closer to the HR result and demonstrated a 
better boundary. Table 4 shows the evaluation index scores 
of the cardiac phantom in Figure 8 under different dose 
levels. Table 5 shows the numerical comparison between 
the different methods depicted in Figure 8 in the uptake 
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Table 3 Numerical comparison between the different methods, as depicted in Figure 7, used in the uptake regions, by activity mean value and SD 

Noise level Method High-uptake region mean activity (SD) Low-uptake region mean activity (SD)

Noise-added 1e7 
counts

True 1 0.1

LR 0.9955 (0.1872) 0.1041 (0.0585)

Bicubic 0.9966 (0.0291) 0.1028 (0.0202)

Sharpening 1.0366 (0.1275) 0.0922 (0.0572)

Multi-image SR (6) 1.0004 (0.0361) 0.1030 (0.0156)

HR 1.0016 (0.0909) 0.1007 (0.0266)

Our 1.0010 (0.0510) 0.1006 (0.0239)

Noise-added 1e6 
counts

True 1 0.1

LR 0.9891 (0.1664) 0.1043 (0.0492)

Bicubic 0.9905 (0.0926) 0.1023 (0.0399)

Sharpening 1.0122 (0.2795) 0.0926 (0.0885)

Multi-image SR (6) 0.9954 (0.1864) 0.1020 (0.0505)

HR 0.9956 (0.1766) 0.1022 (0.0461)

Our 0.9953 (0.1422) 0.1011 (0.0531)

Noise-added 1e5 
counts

True 1 0.1

LR 0.9916 (0.2997) 0.1098 (0.0865)

Bicubic 0.9936 (0.2403) 0.1080 (0.0790)

Sharpening 0.9939 (0.6605) 0.1252 (0.2195)

Multi-image SR (6) 0.9901 (0.2519) 0.1116 (0.0622)

HR 0.9981 (0.3845) 0.1101 (0.0961)

Our 0.9988 (0.3243) 0.1087 (0.0974)

The high-uptake region refers to the liver region and the low-uptake region refers to the background region. SD, standard deviation; LR, 
low-resolution; SR, super-resolution; HR, high-resolution.

Figure 8 Comparison of cardiac images under different sampling photons (6). LR, low-resolution; SR, super-resolution; HR, high-resolution. 
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regions, by activity mean value and SD. Compared with 
the HR results, the average activity concentration values 
obtained using our method were found to be more 
accurate than those obtained using other methods, and 
the errors were also smaller than those occurring by other 
methods. Furthermore, the reconstructed image obtained 
by our method could better reconstruct the defects in the  

cardiac tissue.

Discussion

In this study, we have developed a single-image SR 
method on sinograms for LR SPECT systems. Residual 
learning and transfer learning were applied and verified on 
different phantoms. Compared with traditional methods, 
the projected image and the reconstructed image obtained 
using our SR method achieved better PSNR and SSIM 
performances. The proposed SR network performed well 
for the noisy sinograms. We found that it was almost 
impossible to completely recover the HR projection under 
noise (especially at the high-noise level), but our method 
showed the advantage of reducing the error observed with 
the HR sinogram. On the basis of preserving the details of 
the HR image as much as possible, a certain denoising effect 
was achieved, which meant that the reconstructed image 
had a better signal-to-noise ratio. We used transfer learning 
to train the SR network in a noisy environment, step by 
step. The application of transfer learning accelerated and 
optimized the convergence speed of the model on the 
target phantom to a certain extent, and effectively reduced 
the unknown impact of the model’s dependence on data 
distribution. Figure 10, for instance, shows the different 
performances when applying or not applying transfer 
learning in the network training in Step 3, comparing the 
average SSIM on the XCAT dataset (1e7 counts), which 
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Figure 9 Typical line profile of the projection obtained by different methods for the cardiac phantom (6). HR, high-resolution; LR, low-
resolution. 

Table 4 Comparison of evaluation indicators (PSNR and SSIM) for 
different cardiac results 

No. of photons emitted at 
each angle

Method PSNR SSIM

2.7×10
6

LR 33.98 0.9762

Bicubic 35.14 0.9797

Sharpening 32.37 0.9833

Multi-image 
SR (6)

38.18 0.9879

Our 40.61 0.9954

2×10
5

LR 36.42 0.9874

Bicubic 37.08 0.9883

Sharpening 32.37 0.9814

Multi-image 
SR (6)

34.60 0.9842

Our 37.81 0.9990

PSNR, peak signal-to-noise ratio; SSIM, structural similarity 
index measure; LR, low-resolution; SR, super-resolution. 
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Figure 10 Comparison of the effect of applying or not applying transfer learning on testing the average SSIM on the XCAT data set (1e7 
counts) not involved in training. SSIM, structural similarity index measure; XCAT, extended cardiac-torso. 

Table 5 Numerical comparison between the different methods depicted in Figure 8 in the uptake regions, by activity mean value and SD 

No. of photons emitted at each angle Method High-uptake region mean activity (SD) Low-uptake region mean activity (SD)

2.7×10
6

LR 20.30 (4.21) 5.27 (1.54)

Bicubic 20.39 (3.93) 5.29 (1.54)

Sharpening 22.30 (4.72) 5.96 (2.38)

Multi-image SR (6) 20.74 (3.81) 5.46 (1.63)

HR 20.97 (3.67) 6.01 (1.89)

Our 20.96 (3.23) 5.97 (1.75)

2×10
5

LR 21.44 (4.78) 5.60 (1.73)

Bicubic 21.59 (4.42) 5.64 (1.70)

Sharpening 20.35 (6.35) 5.51 (2.17)

Multi-image SR (6) 21.11 (5.02) 5.48 (2.44)

HR 21.29 (4.79) 5.63 (2.14)

Our 21.30 (4.15) 5.88 (1.86)

The high-uptake region refers to the liver region and the low-uptake region refers to the perfusion-defect region of the left ventricle. SD, 
standard deviation; LR, low-resolution; SR, super-resolution; HR, high-resolution.

was not included in the training. It was difficult to obtain 
an ideal performance by training directly on the data under 
noise. We applied the trained network to simulate the 
cardiac imaging of myocardial perfusion defect. Numerical 
examples showed that the proposed network could 
reconstruct high-quality images, even if the noise on the 

sinogram was unknown.
There are some limitations to this study. The first is 

that the final prediction effort was relatively poor at the 
positions with large pixel differences in the projection. 
In particular, under the condition of high noise, it was 
difficult to obtain the same result as the HR sinogram, and 
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the error could only be reduced as much as possible. The 
possible reason for this is that there were very few outliers 
in the projection data that were too large or too small, 
which made it difficult to effectively obtain the positional 
relationship for the data-driven method. However, we 
found that, compared to the LR reconstruction results, 
the impact of this error on the reconstruction quality was 
acceptable. Also, we used simulation methods to obtain a 
series of data. Limited by the huge simulation calculation 
time, we did not use the Monte Carlo software to generate 
training data. However, to simulate different doses in real 
cases, we verified the performance of the network under 
different noise levels. Without introducing new errors, 
we showed that our method can improve resolution and 
suppress noise. 

In practical applications, the detected targets often have 
similar structures, which has benefits for data-driven deep 
learning methods and avoids introducing large amounts of 
invalid data. Furthermore, paired HR sinograms and LR 
sinograms are almost impossible to obtain. For a known 
LR SPECT system, the LR sinogram of the target can 
be obtained by direct acquisition. The corresponding 
HR sinogram is unknown, but could be obtained by the 
corresponding HR detector acquisition or Monte Carlo 
algorithm. Moreover, even if paired data are obtained, 
it would be difficult to train the network directly under 
noise. Therefore, in the early stage of network training, 
the training steps of digital phantoms are indispensable. 
Since the noise in SPECT can be modeled as Poisson noise, 
in this paper, the proposed method was verified under 
different noise levels, which showed that the method has 
potential application value. On a real device, we would only 
need to apply transfer learning to fine-tune a small amount 
of data; then, the true mapping relationship between the 
LR sinogram and the corresponding HR sinogram could be 
obtained, thereby improving the reconstruction resolution, 
which is beneficial for reducing equipment costs.

Conclusions

This study has explored the possibility of using SR 
technology in a low-cost LR SPECT projection to improve 
the reconstruction resolution. We first used random 
phantoms for pre-training, and then used XCAT phantoms 
for fine-tuning of parameters. The proposed method 
was verified under different noise levels. Furthermore, 
an unknown cardiac phantom was used to evaluate the 
generalizability of the method. Images similar to those 

reconstructed from the HR projection using ART and 
OSEM methods were obtained. The quantitative values 
of the PSNR and SSIM indicators for the reconstructed 
image were improved compared to those obtained using 
the benchmark methods. Our experimental results show 
that our proposed SR framework can improve imaging 
resolution and reduce noise. However, the results of this 
paper are preliminary, and the performance of the proposed 
method needs to be further verified with clinical data.
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