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Introduction

Morphine is an opioid drug, originally extracted and 
purified from opium poppy (1). Morphine is also the 
main psychoactive chemical substance in opium. With the 
deepening understanding of the structure of morphine, 

researchers began to synthesize morphine hydrochloride 
solution with higher purity and more convenient preparation 
and use (2). Because of its good sedative effect, it is widely 
used to relieve pain, cough, and diarrhea in patients 
undergoing surgery and those with advanced cancer (3).  
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However, with the inappropriate use of morphine, its side 
effects are also becoming apparent. For example, excessive 
dosage of morphine may lead to hypotension, bradycardia, 
and respiratory failure (4). Patients with advanced cancer 
require increased frequency and dose of medication to 
achieve pain relief (4). Long-term irregular use of morphine 
can result in serious dependence, which can lead to 
addiction (5). After entering the body, morphine first binds 
to opioid receptors and triggers a cascade of downstream 
reactions through signal transduction, thus exerting its 
effect (6). The opioid receptor is a G protein-coupled 
receptor and therefore has a basic structure consisting of an 
external amino terminus region, 7 transmembrane domains 
in the middle, and an internal carboxy-terminus region (7).

Neuropathic pain afflicts many people worldwide. It can 
be caused by nerve damage, by diseases that affect peripheral 
nerve function, or as a manifestation of diseases such as 
cancer (8). Today, with some exceptions, clinical treatment 
for patients with acute severe pain or advanced cancer 
relies on the oral opioid morphine and its substitutes (9).  
Although morphine has high analgesic activity, it is also 
accompanied by certain side effects, including poor 
stability of enzymatic hydrolysis, difficulty in crossing the 
blood-brain barrier, incurable analgesic effect, and lack 
of oral activity (10). Morphine also has certain effects on 
the endocrine system of animals, including lowering the 
testosterone concentration and affecting the production 
of gonadotropin (11). In addition to the above effects, 
morphine also has a certain regulatory effect on the 
cardiovascular system (12). Exogenous opioid peptides can 
inhibit the activity of cultured osteoblasts, and some opioid 
peptides and their modified analogues can have indirect 
effects on bone metabolism (13). However, the molecular 
mechanism of morphine analgesia still needs to be explored.

The mechanism of drug addiction involves various 
complex neural adaptive changes. Under the stimulus of 
addictive drugs, the brain’s reward system is triggered, 
involving a variety of neurotransmitters and receptors (14). 
Drug addiction can be considered a disease of learning 
and memory, and many experiments have confirmed that 
synaptic plasticity is the neurological basis of learning 
and memory (15). At present, many studies have been 
conducted to explore the molecular mechanism of morphine  
addiction (16). Dopamine is a monoamine neurotransmitter 
that plays an important role in the communication between 
neurons (17). A growing number of studies have found that 
dopamine receptors are involved in the regulation of drug 
addiction (18). In addition, dopamine receptors also play 

an important regulatory role in morphine addiction (19). 
Glutamate is a major excitatory neurotransmitter in the brain, 
regulating up to 70% of synaptic neurotransmission in the 
central nervous system (20). Drug-induced synaptic plasticity 
is associated with adaptive changes in the limbic midbrain 
circuits resulting from chronic drug exposure, ultimately 
leading to addictive behavior, and glutamate receptors are 
involved in this process (21). Long-term abuse of morphine 
can lead immune dysfunction, an increase in the susceptibility 
of the body to infection including viruses, liver injury, and the 
susceptibility of offspring (22). However, the key genes for 
the addictive effects of morphine remain unknown.

The aim of this study is to identify the genetic mechanisms 
of the analgesic effects and addictive effects of morphine. 
Using transcriptional expression datasets, the mRNA-
miRNA network and protein-protein interaction (PPI) 
network were constructed. Several differentially expressed 
miRNAs and mRNAs were obtained which showed high 
correlations with the phenotypes. Our results may highlight 
new causal candidate genes or miRNAs which underlie both 
the addictive and analgesic effects of morphine. We present 
the following article in accordance with the STREGA 
reporting checklist (available at https://atm.amegroups.com/
article/view/10.21037/atm-21-7037/rc).

Methods

Data sources

The Gene Expression Omnibus (GEO, http://www.ncbi.
nlm.nih.gov/geo/) database was used to download the 
expression matrix associated with morphine. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The GSE62346 dataset contained  
9 miRNA samples and 15 mRNA samples which were used 
to explore the analgesic effect of morphine. Among the  
9 miRNA samples, 3 samples belonged to control groups 
with 0 mg/kg morphine treatment. The other 6 samples 
were treated with 2 mg/kg morphine and 5 mg/kg 
morphine. The 15 mRNA samples were also treated with 0, 
2, and 5 mg/kg morphine. The other mRNA dataset for the 
analgesic effect of morphine was GSE50382. This dataset 
contained 2 groups. The control group contained 3 samples 
with saline treatment while the analgesic group received 
morphine treatment. 

Three mRNA datasets for studying the addictive 
effects of morphine were downloaded, namely GSE9525, 
GSE7762, and GSE78280. The GSE9525 dataset contained 

https://atm.amegroups.com/article/view/10.21037/atm-21-7037/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-7037/rc
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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8 hypothalamus samples and 10 pituitary samples. The 
GSE7762 dataset contained 12 control samples treated 
with saline and 12 samples treated with chronic morphine. 
The GSE78280 dataset contained 6 samples with saline 
treatment and 6 samples with protracted morphine 
treatment. GSE15774 was selected from an mRNA time 
series dataset for morphine addiction studies. 

Data pre-processing

The mRNA and miRNA combined dataset GSE62346 
for analgesia was extracted from the Series Matrix File. 
The probe ID was converted into gene symbol or miRNA 
ID through the platform annotation information table. 
The same gene symbol or miRNA ID was incorporated. 
Expression matrixes of mRNA and miRNA samples 
were screened out according to ID. Other datasets were 
preprocessed in the same way.

Correlation and principal component analysis

Principal component analysis (PCA) is an unsupervised 
feature learning data dimensionality reduction algorithm, 
which shows the classification of data through the 
expression data of samples. The R packages ggplot2 (23), 
plyr (24), ggbiplot (25), and scales (26) were used to perform 
PCA based on the genes with significant mean differences 
(ANOVA, P≤0.05) in the sample.

The correlation of gene expression levels between 
samples is an important reference index for experimental 
reliability and reasonable selection of samples. The 
correlation coefficient can represent the similarity between 
samples, and the closer the correlation coefficient is to 
1, the higher the similarity between 2 samples. The R 
packages hmisc (27) and corrplot (28) were used to perform 
correlation analysis between 2 samples. 

Differential expression analysis

The R package limma (29) was used to perform differential 
expression analysis of genes in the mRNA and miRNA 
datasets. Differentially expressed genes (DEGs) were 
defined by P value <0.05, fold change >1.2, or fold change 
<1/1.2. Datasets for morphine addiction were also analyzed 
by the R package limma. The screening criteria for 
differential genes were fold change >1.5, fold change <1, 
and P value <0.05. 

Prediction of the miRNA-mRNA regulatory relationship

TargetScan, miRTarBase, miRDB, miRanda, and miRMap 
databases were used to predict the regulatory relationships 
between up-regulated miRNAs and down-regulated 
mRNAs, and between down-regulated miRNAs and up-
regulated mRNAs. 

PPI network prediction

The DEGs in the miRNA-mRNA regulatory network 
were extracted and input into the STRING database 
(https://string-db.org/) for protein-protein interaction 
(PPI) network prediction. Interaction score >0.7 (highest 
confidence) was selected as the threshold of PPI. After the 
PPI relation pairs were obtained, Cytoscape (30) software 
was used to analyze the topology structure of the PPI 
relation network. 

Functional enrichment analysis

Based on the Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway databases, the 
functions of the genes in the miRNA-mRNA networks 
were analyzed. Fisher’s exact test was used to calculate the 
correlations between DEGs and functional terms. On the 
other hand, Gene Set Enrichment Analysis (GSEA) were 
performed using the R package clusterProfiler. P values 
were used to evaluate significance, and smaller P values 
represented a more significant relationship.

Analysis of gene expression trends

The expression trends of the expression values at 1, 2, 4, 
and 8 h in the mRNA time series dataset used for addiction 
research were clustered, and those with similar expression 
patterns were grouped into 1 group. The genes in the 
classes whose overall expression trend was increasing or 
decreasing were selected, and the genes in the addiction-
related pathways in the functional enrichment analysis of 
DEGs in the mRNA dataset used for addiction research 
were intersected.

Statistical analysis

Student’s t-test was used for assessing differences between 
groups. P value less than 0.05 was considered to be 

https://string-db.org/
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statistically significant. R software (version: 4.0.2) was used 
to perform all statistical analyses.

Results

PCA and differential expression analysis

To verify the gene expression differences between groups, 
PCA was performed based on the gene expression matrixes. 
As shown in Figure 1, gene expression was significantly 
different between each group in the 8 datasets. 

Using the R package limma, DEGs were obtained. 
The mRNA data of the GSE62346 dataset used to study 
analgesia contained 440 DEGs, among which 163 were 
up-regulated and 277 were down-regulated (Table 1). This 
dataset also contained 23 differentially expressed miRNAs 
which contained 12 up-regulated miRNAs and 11 down-
regulated miRNAs. Using the same method, a total of 
192 DEGs were obtained from the validation dataset 
GSE50382, containing 79 up-regulated genes and 192 
down-regulated genes. Then, the DEGs of the 2 datasets 
were combined and 627 DEGs were finally obtained for 
further analysis. Four mRNA datasets were downloaded 
and analyzed to study morphine addiction. Dataset 
GSE9525 contained 796 up-regulated mRNAs and 993 
down-regulated mRNAs among the 1,789 DEGs. Another 
3 datasets contained 1,738, 136, and 27 DEGs. A total of 
1,482 up-regulated and 1,754 down-regulated DEGs were 
obtained by combining the 4 datasets. In addition, heatmaps 
were generated based on the DEGs among the 6 datasets. 
As shown in Figure 2, the DEGs of different groups could 
be well clustered together.

The common DEGs for the analgesic and addictive effects 
of morphine

Based on the 1,482 up-regulated and 1,754 down-regulated 
mRNAs for addictive effects and the 230 up-regulated 
and 367 down-regulated mRNAs for analgesic effects, 
the intersection which contained 8 common up-regulated 
mRNAs and 22 common down-regulated mRNAs was 
obtained (Figure 3). The 8 common up-regulated genes 
were Aloxe3, Chrm2, Epha8, Folh1, Has1, Hes3, Palm2, 
and Rgs17. The 22 common down-regulated genes were 
1700028P14Rik, 1700047G07Rik, Antxr2, Celsr3, Col8a1, 
Crhr2, Ctf1, Cxcr4, Glb1l, Ins2, Lass4, Lect1, Lrrc17, 
Mfap4, Myo5a, Plxna3, Postn, Prrx2, Six5, Slc28a3, Tcn2, 
and Thbs1.

MiRNA-mRNA regulatory networks

Combining the differently expressed mRNAs and miRNAs, 
an mRNA-miRNA regulatory network was generated 
(Figure 4). The network contained 101 regulatory relation 
pairs, among which 54 up-regulated miRNA and 47 down-
regulated miRNA regulatory relation pairs were obtained. 
As shown in Figure 4, up-regulated miR-129-5p showed 
regulatory pairs with 54 down-regulated mRNAs. Three 
down-regulated miRNAs, namely miR-714, miR-2145, 
and miR-2135, showed regulatory relations with 47 up-
regulated mRNAs. Among the up-regulated mRNAs, 
Tcf712 showed common regulatory relationships with 
miR-714 and miR-2145. Meanwhile, miR-2145 indirectly 
correlated with miR-2135 by regulating 3 mRNAs, namely 
Vwc2, Upk1a, and Gad1. 

PPI network prediction

The STRING database was used to predict the PPI 
network with the highest confidence (interaction score 
>0.7). A total of 12 relation pairs were obtained with 17 
DEGs, comprising 7 up-regulated mRNAs and 10 down-
regulated mRNAs (Figure S1). There was no significant 
difference in the degree of connectivity between the protein 
interaction network nodes, which ranged from 1 to 2. 
Then, Cytoscape was used to integrate the PPI and mRNA-
miRNA networks. As shown in Figure 5, the separated 
subnetworks were integrated into whole networks by several 
mRNA-mRNA regulatory pairs, such as Ins1-Sorcs1, Dst-
Lamc2, Reln-Gad1, Kalm-Trh, and Ryr2-Camk2d. 

GO and KEGG analysis of the genes in the mRNA-
miRNA network

By blasting genes with the GO and KEGG pathway 
databases, genes in the mRNA-miRNA network were 
annotated. As for biological processes (BP) in the GO 
analysis (Figure 6A), most genes were enriched in anatomical 
structure development, animal organ development, cell 
differentiation, and multicellular organism development. 
KEGG results (Figure 6B) showed that the DEGs were 
enriched in insulin secretion, circadian entrainment, 
Cushing syndrome, and alanine aspartate and glutamate 
metabolism pathways.

As for the DEGs for addiction function, the enriched 
BP terms were cell communication, signal transduction, 
regulation of cellular metabolic process, and regulation 

https://cdn.amegroups.cn/static/public/ATM-21-7037-Supplementary.pdf
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of nitrogen compound metabolic process (Figure 6C). 
The KEGG results (Figure 6D) showed that olfactory 
transduction, calcium signaling, neuroactive ligand-receptor 
interaction, and cancer pathways were enriched.

Cluster analysis of gene expression trends

The expression trends of mRNA time series datasets used 

for addiction research at 1, 2, 4, and 8 h were clustered by 
the WKNN (weighted K-Nearest neighbor) method, and 
those with similar expression patterns were grouped into 1 
class. The results showed that the expression trends could be 
divided into 4 categories including down-up trend (cluster 1), 
continuous-down trend (cluster 2), up-down trend (cluster 
3), and continuous-up trend (cluster 4) (Figure 7). Then, 
genes with the continuous up (cluster 3) or down (cluster 

Table 1 The differentially expressed genes (DEGs) in the 6 datasets

Type

Analgesia Addiction

GSE62346 
(mRNA)

GSE62346 
(miRNA)

GSE50382 GSE9525 GSE9525 GSE7762 GSE78280

Up-regulated 163 12 79 796 805 45 16

Down-regulated 277 11 113 993 933 91 11

Total 440 23 192 1,789 1,738 136 27

miR-2145
miR-503
miR-351
miR-24
miR-423
miR-455
miR-210
miR-764
miR-2135
miR-465c-2
miR-714
miR-1983
miR-434
miR-1839
miR-30c
miR-128
miR-194
miR-344-2
miR-135a-star
miR-344
miR-129-5p
miR-153
miR-383

Neurod2
Slc17a7
4933439c20Rik
Loc236604
Xdh
Cdkn1a
Pnpla2
Ipas
S3-12
Tsc22d3
Gjb6
Sult1a1
Fkbp5
Mfsd2
Olfr414
Ttc36
LOC100040384
KIk8
Spink8
LOC673501
LOC386169
A630098G03Rik
Fos
9630023E17Rik
Camp
LOC582193
Xrn1
Olfr304
Pabpc2
4930554N06Rik
Olfr1220
Opalin
Erdr1
Egr2
Slc35d3
Rgs9
Gpr88
Indo

1.5
1.0
0.5
0.0
−0.5
−1.0
−1.5

1.5
1.0
0.5
0.0
−0.5
−1.0
−1.5

2
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1
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−1
−2
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1
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−2
−3
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Figure 2 Heatmaps of the DEGs of the 6 datasets. Heatmaps of the DEGs of mRNA samples in GSE62346 (A), and miRNA samples in 
GSE62346 (B), and GSE50382 (C), and GSE9525 (D), and GSE9525 (E), and GSE7762 (F), and GSE78280 (G). DEGs, differentially 
expressed genes.
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Figure 3 Venn diagrams of the DEGs related to the analgesic and addictive effects of morphine. (A) Up-regulated genes; (B) down-
regulated genes. DEGs, differentially expressed genes.

Analgesia Analgesia AddictionAddiction

230
(13.4%)

367
(17.3%)

22
(1%)

1,732
(81.7%)

8
(0.5%)

1,474
(86.1%)

A B

Figure 4 Networks of differently expressed mRNAs and miRNAs. The red circles represent the up-regulated mRNAs. The blue circles 
represent the down-regulated mRNAs. The red rhombuses represent the up-regulated miRNAs. The blue rhombuses represent the down-
regulated miRNAs.
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Figure 5 Integrated network combining the PPI and mRNA-miRNA networks. The red circles represent the up-regulated mRNAs. The 
blue circles represent the down-regulated mRNAs. The red rhombuses represent the up-regulated miRNAs. The blue rhombuses represent 
the down-regulated miRNAs. PPI, protein-protein interaction.
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2) expression trends were selected for intersection analysis 
with the genes involved in the GO or KEGG terms. The 
results showed that Fos was the only gene in cluster 2, which 
intersected with the cAMP signaling pathway. In order to 
further explore the function of Fos gene, we performed 
GSEA analysis after grouping based on the expression level 
of Fos gene (divide by median). According to GSEA analysis, 
we found that high expression group is more enriched in the 
microtubule anchoring AND mRNA metabolism related 
pathway (Figure 8).

Discussion

Compared with other analgesic drugs, morphine has strong 

analgesic effect and strong addiction, and is mainly used for 
the treatment of cancer in clinic. However, the molecular 
mechanisms of morphine’s analgesic and addictive effects 
still need to be uncovered. In this study, we used expression 
data on the analgesic and addictive effects of morphine to 
identify the mRNAs and miRNAs involved in transcriptome 
alteration. A comprehensive network combining an mRNA-
miRNA network which contained 101 regulatory relation 
pairs and a PPI network was built. From the network, 4 
miRNAs including 1 up-regulated miRNA (miR-129-5p) 
and 3 down-regulated miRNAs (miR-714, miR-2135, and 
miR-2145) were found. 

MiR-129 has long been studied as a biomarker for 
cancers such as gastric, rectal, and bladder cancer. In this 
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study, the up-regulated miR-129-5c was recognized to 
respond to treatment with morphine in the transcriptome 
datasets for analgesia. These results were consistent with 
Tian et al.’s study which indicated that miR-129-5p alleviates 
neuropathic pain through regulating HMGB1 expression in 
chronic constriction injury (CCI) rat models (31). Peregud 
et al. also demonstrated that miR-129 that may regulate the 
content of brain-derived neurotrophic factor in the frontal 
cortex of rats after spontaneous morphine withdrawal (32). 
Yu et al. discovered the analgesic effects of miR-129-5p 
against bone cancer pain through the EphB1/EphrinB2 
signaling pathway in mice (33). Our results confirmed that 
miR-129 may be closely related to the analgesic effect of 
morphine. Another 3 differently expressed miRNAs, namely 
miR-714, miR-2135, and miR-2145, also showed significant 

regulatory effects after treatment with morphine. However, 
no research has associated morphine or its analgesic 
effect with these 3 miRNAs. Further research needs to be 
conducted to demonstrate the effects of miR-714, miR-
2135, and miR-2145 on morphine analgesia. 

The insulin I (Ins1) gene encodes insulin to regulate the 
metabolism of sugars and fats. In our study, up-regulated 
miR-129 could directly regulate the expression of Ins1. 
However, there is still no evidence that Ins1 is associated 
with analgesia. By taking the intersection of genes, 8 
common up-regulated and 22 down-regulated genes were 
obtained, which respond to both the analgesic and addictive 
effects of morphine. Lipoxygenase-3 (ALOXE3) encodes 
a hydroperoxide isomerase and was implicated in skin 
differentiation (34). In previous studies, ALOXE3 was shown 
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to play a role in analgesia by inhibiting the expression of IL-6 
(35-37). The corticotropin-releasing hormone receptor 2 
(CRHR2) gene has been linked to mood and depression (38).  
In this study, CRHR2 was associated with both the analgesic 
and addictive effects of morphine. Pirnik et al. also found 
the expression of CRHR2 changed with the treatment 
of morphine (39). Mousa et al. also proved that CRHR2 
could mediate the inhibition of inflammatory pain (40). 
Drug addiction and heroin addiction were discovered and 
evaluated in an African American population and in rats, 
respectively (41,42). CXCR4 is the receptor for SDF1, which 
has important functions in T lymphocyte trafficking (43). 
Wilson et al. revealed that CXCR4 signaling could mediate 
morphine-induced tactile hyperalgesia (44). In addition, 
numerous studies have linked this gene to the analgesic 
effects of morphine (45-47). Activation of CXCR4 by 
CXCL12 triggered the release of glutamate, which played a 
crucial role in alcohol and drug addiction (48).

Combining the results of genes in the continuously down-
regulated cluster and KEGG analysis results, the Fos gene 
was obtained. Fos encodes a nuclear phosphoprotein to detect 
nerve cells that have recently been activated (49). Chang  
et al. demonstrated that morphine activated c-fos expression 
in the rat brain (50). In addition, Fos expression induced 

by electroacupuncture in the periaqueductal gray led to 
higher levels of analgesia (51). Takeda et al. revealed that Fos 
expression showed a high correlation with analgesia in the 
anterior cingulate cortex in a rat neuropathic pain model (52).  
For addiction effects, Cruz et al. used Fos to investigate 
neuronal ensembles in corticostriatal circuitry in addiction 
and found correlative evidence supporting a role for neuronal 
ensembles in addiction (53). Interestingly, alcohol, nicotine, 
and cocaine addiction were related to Fos mRNA expression 
(54-56). In summary, Fos is a key gene involved in pain relief 
and addiction, the development of inhibitors targeting the 
Fos gene may be beneficial to reduce the adverse effects of 
morphine addiction in clinical treatment.
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Figure S1 PPI network diagram of differentially expressed genes in miRNA-mRNA regulatory network. PPI, protein-protein interaction 
network.


