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Introduction

Since the discovery of the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) species—and the resulting 
novel coronavirus disease (COVID-19)—in December 
2019, humanity has been plunged into a global pandemic (1).  
Although the devastating effects of the virus have been 
mitigated by vaccination (2,3), breakthrough infections 
caused by new variants of the virus prevent the pandemic 
from coming to an end (4). 

The gold standard for COVID-19 diagnosis is the real-
time reverse transcription polymerase chain reaction (RT-
PCR) test. However, RT-PCR has several drawbacks: in 
several cases, it is known to be insufficiently sensitive to 
the virus even in symptomatic patients, leading to false 
negatives (5,6). In addition, its diagnosis in facilities that 
require specimen transport has a long turnaround time (7).  
These aspects reveal the need for a more accurate and 
timely diagnosis; for this, several diagnostic models have 
been developed using clinical characteristics, laboratory 
data, and radiographic images. However, most such models 

have not been validated with datasets external to the 
development phase (8). Moreover, methodological flaws 
and/or underlying biases, making it difficult to determine 
the model validity. Consequently, there are no diagnostic 
models using chest computed tomography (CT) with 
potential clinical use (9,10).

There is no diagnostic system that automatically 
interprets the CT and clinical features. In addition, to 
overcome the limitations of diagnostic models using chest 
CT, we have externally validated a deep-learning-based, 
CT diagnostic system for COVID-19 (Ali-M3) (11).  
To further improve its accuracy, it is important to properly 
diagnose COVID-19 patients without pneumonia 
detectable by CT. For this purpose, we integrated the 
Ali-M3 model with the clinical characteristics of patients 
suspected of having COVID-19 using machine learning, 
and validated this new system. We present the following 
article in accordance with the TRIPOD reporting 
checklist (12) (available at https://atm.amegroups.com/
article/view/10.21037/atm-21-5571/rc).

Background: We developed and validated a machine learning diagnostic model for the novel coronavirus 
(COVID-19) disease, integrating artificial-intelligence-based computed tomography (CT) imaging and 
clinical features.
Methods: We conducted a retrospective cohort study in 11 Japanese tertiary care facilities that treated 
COVID-19 patients. Participants were tested using both real-time reverse transcription polymerase chain 
reaction (RT-PCR) and chest CTs between January 1 and May 30, 2020. We chronologically split the dataset 
in each hospital into training and test sets, containing patients in a 7:3 ratio. A Light Gradient Boosting 
Machine model was used for the analysis.
Results: A total of 703 patients were included, and two models—the full model and the A-blood model—
were developed for their diagnosis. The A-blood model included eight variables (the Ali-M3 confidence, 
along with seven clinical features of blood counts and biochemistry markers). The areas under the receiver-
operator curve of both models [0.91, 95% confidence interval (CI): 0.86 to 0.95 for the full model and 0.90, 
95% CI: 0.86 to 0.94 for the A-blood model] were better than that of the Ali-M3 confidence (0.78, 95% CI: 
0.71 to 0.83) in the test set.
Conclusions: The A-blood model, a COVID-19 diagnostic model developed in this study, combines 
machine-learning and CT evaluation with blood test data and performs better than the Ali-M3 framework 
existing for this purpose. This would significantly aid physicians in making a quicker diagnosis of 
COVID-19.
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Methods

We used datasets for the external validation of Ali-M3. The 
details of the datasets were published elsewhere (11). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The institutional review board 
of Hyogo Prefectural Amagasaki General Medical Center 
(No. 2-214) and other facility approved of our study and 
waived the need to obtain written informed consent.

Study design

This was a retrospective cohort study conducted in 11 
Japanese tertiary care facilities that provided treatment for 
patients with COVID-19. 

Participants

We included patients who underwent both a RT-PCR and a 
chest CT for the diagnosis of COVID-19. Potentially eligible 
participants were identified as those who had, on the advice of 
physicians, taken both the RT-PCR and chest CT tests when 
they presented with symptoms or were suspected of having 
COVID-19. RT-PCR results were extracted from the patients’ 
medical records at each facility. We selected patients by using 
consecutive sampling methods between January 1 and May 30, 
2020. We excluded patients when the time-interval between 
chest CT and the first RT-PCR assay exceeded 7 days.

Chest CT and artificial intelligence (AI)

We considered, for each patient, the CT image that was 
taken closest to the onset of symptoms. All of these images 
featured the patient in a supine position. 

Ali-M3 is a three-dimensional, deep-learning framework 
for the detection of COVID-19 infections, developed from 
7,000 chest CT scans (13). It predicts COVID-19 infections 
with confidence levels in the range of 0–1. The learning 
of Ali-M3 was halted before our evaluation (11) and the 
investigators who entered data from the CT images into 
Ali-M3 were blinded to the corresponding RT-PCR results. 
The area under the curve (AUC) of Ali-M3 for predicting a 
COVID-19 diagnosis was 0.797 [95% confidence intervals 
(CI): 0.762 to 0.833] (11).

Clinical characteristics

We extracted, from electronic medical records, clinical 

characteristics that were recorded at a time closest to the 
date of the chest CT scans. During data acquisition, the 
turnaround time of RT-PCR was a few days; therefore, all 
predictive variables were recorded without the RT-PCR 
results.

Reference standard

COVID-19 was diagnosed by the RT-PCR test, which 
detected the presence of the nucleic acid of SARS-CoV-2 
in the sputum, throat swabs, and secretions of the lower 
respiratory tract (14). This test was established as the 
primary reference standard. Although the findings of chest 
CT, interpreted by radiologists, were included as a reference 
standard in the AI development phase of this framework, we 
did not include it as the reference standard in this study.

Statistical analysis

Model development
We used the machine learning model, Light Gradient 
Boosting Machine (LightGBM), which is also a highly 
effective gradient-boosting decision tree algorithm (14). 
In the boosting algorithm, a weak classifier (decision tree) 
is sequentially created to minimize the prediction errors 
made by the previous classifier (15). The result is a powerful 
ensemble classifier with superior predictive performance. 
To avoid overfitting, parameters specific to the algorithm 
(known as hyperparameters) must be well tuned before fitting 
them to the final model, which also needs to treat missing 
data as such.

The creation of prediction models consists of three 
steps. First, the dataset in each hospital was chronologically 
split into a training set (with 70% of the patients) and a 
test set (with the remaining 30% of subjects). Second, 
hyperparameters were tuned to maximize the area under the 
receiver-operator curve (AUROC) by performing a fivefold 
cross-validation on the training set using stratified splitting 
in equally sized groups. A Bayesian optimization algorithm 
was used for tuning, with the search parameters and spaces 
given as follows: “num_leaves” (maximum number of leaves 
in one tree) at 10–150, “max_depth” (maximum tree depth) 
at 10–150, “learning_rate” (learning rate) at 0.005–0.5, 
“subsample_for_bin” (number of data sampled to construct 
feature-discrete bins) at 20,000–300,000, “min_child_
samples” (minimal number of data in one leaf) at 10–100, 
“reg_alpha” (L1 regularization) at 0.0–1.0, “reg_lambda” (L2 
regularization) at 0.0–1.0, “colsample_bytree” (the rate of 
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features selected in training each tree) at 0.5–1.0, “subsample” 
(the rate of data selected in training each tree) at 0.5–1.0, and 
“is_unbalanced” with True or False. Optimal “n_estimator” 
(number of trees) was automatically determined by employing 
early stopping (“early_stopping_rounds” =100). Next, we 
used the entire training set to fit two final models, whose 
hyperparameters were also tuned. One model—the full 
model—included all the above-mentioned variables, while 
the other model—the A-blood model—included only eight 
limited variables (the Ali-M3 confidence variable, in addition 
to seven variables pertaining to blood test results: white 
blood cell, hemoglobin, platelet, aspartate aminotransferase, 
alanine aminotransferase, lactate dehydrogenase, and 
C-reactive protein). These blood test variables were selected 
owing to the ease of availability of their data and due to their 
relative importance in the full model, which was computed 
as Shapley Additive exPlanations (SHAP) values (14). SHAP 
values quantify the association between each variable and the 
outcome of each patient.

We used Python version 3.7.11 (16) with LightGBM 
version 2.2.3 (17) and hyperopt version 0.1.2 (18).

Model external validation
We used the temporal validation method for external 
validation. We differentiated between the confidence of 
the machine-learning models and the Ali-M3 framework 
by using AUROC in the test set, with 95% CIs calculated 
with bootstrapped resampling (1,000 samples). AUROC is 
an effective measure of overall diagnostic accuracy, which is 
deemed to be “outstanding” if AUROC ≥0.9, “excellent” if 
0.8< AUROC <0.9, and “acceptable” if 0.7< AUROC <0.8 (19). 
Calibration was assessed using the Brier score (20) and a 
calibration plot. The formulation of the Brier score for a 

binary prediction is given by: ( )1

1Brier score N
i ii

p Y
N =

−∑ , where 
the score predicts the occurrence of the outcome, ranging 
from 1 for an outcome that definitely occurs and 0 for one 
that definitely does not occur, where smaller values indicate 
superior model performance. The AUROC values and 
Brier scores of the machine-learning models were compared 
with those of the Ali-M3 confidence using bootstrapped 
resampling (1,000 samples). We calculated the SHAP values 
and presented them in the figures.

Results

Patient characteristics

A total of 703 patients were included in the study, including 

326 PCR-positive and 377 PCR-negative patients. In the 
training set, we included 490 patients, including 247 PCR-
positive patients. In the test set, we included 213 patients, 
including 79 PCR-positive patients. Patient characteristics 
are shown in Tables 1,2.

Model performance

We developed two models—a full model and an A-blood 
model. Details of the A-blood model are accessible in 
web calculators online (21). We have outlined the model 
discrimination and calibration of the test data in Table 3. 
The AUROC values of both the full model (0.91, 95% CI: 
0.86 to 0.95) and the A-blood model (0.90, 95% CI: 0.86 
to 0.94) were better than that of the Ali-M3 confidence 
(0.78, 95% CI: 0.71 to 0.83) in the test set. The calibration 
evaluated by the Brier scores of both the full model (0.10, 
95% CI: 0.07 to 0.13) and the A-blood model (0.12, 95% 
CI: 0.08 to 0.16) were better than that of the Ali-M3 
confidence (0.23, 95% CI: 0.19 to 0.27) in the test set. 
The ROCs of the test data are shown in Figure 1, with 
SHAP values shown in Figures 2,3. Figure 2 shows all of the 
predictive variables that were used. Figures 4-6 show the 
calibration plots for the Ali-M3 framework, the full model, 
and the A-blood model, respectively.

Discussion

We have developed and validated two integrated diagnostic 
models of the Ali-M3 framework with the clinical 
characteristics of patients with suspected COVID-19. Based 
on the relative importance of each variable, we shrank 
the full model to a more compact A-blood model, whose 
parameters included the Ali-M3 confidence and eight 
routinely collected blood markers. This A-blood model 
showed a better discrimination and calibration performance 
than the full model.

Our diagnostic model is the first to automatically 
interpret clinical data in conjunction with CT scans. Several 
problems faced by existing diagnostic models, such as the 
separate collection of cases and controls, the lack of external 
validation, and insufficient reporting (8,9), have been 
overcome in this study with rigorous methodology, with 
our model achieving good discrimination and calibration 
performance. 

The A-blood model may allow for quicker diagnoses 
at emergency departments. Even if the RT-PCR test is 
available in the facility, the A-blood model might be a 

https://github.com/Microsoft/LightGBM
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Table 1 Patient characteristics

Variables
COVID-19 PCR: 
positive (N=326)

COVID-19 PCR: 
negative (N=377)

Age, years 55 [43–68] 68 [45–79]

Sex, male, N (%) 197 (60.4) 220 (58.4)

Smoking, current/ex-
smoker, N (%)

46 (14.1) 64 (17.0)

Contact history, N (%)

With family patients 39 (12.0) 6 (1.6)

With non-family patients 78 (23.9) 34 (9.0)

None 209 (64.1) 337 (89.4)

Travel overseas, N (%) 39 (12.0) 14 (3.7)

Duration of symptom, days 6 [4–9] 4 [2–9]

Missing data, N (%) 15 (4.6) 15 (4.0)

Symptoms, N (%) 

Cough 123 (37.7) 109 (28.9)

Chill 48 (14.7) 43 (11.4)

Sore throat 81 (24.8) 78 (20.7)

Diarrhea 41 (12.6) 25 (6.6)

Muscle pain 29 (8.9) 17 (4.5)

Conjunctivitis 18 (5.5) 12 (3.2)

Taste disorder 33 (10.1) 22 (5.8)

Complications, N (%)

Coronary arterial diseases 12 (3.7) 38 (10.1)

Cerebrovascular diseases 25 (7.7) 46 (12.2)

Chronic heart failures 21 (6.4) 59 (15.6)

Chronic kidney diseases 17 (5.2) 53 (14.1)

COPD 16 (4.9) 62 (16.4)

Malignancy 29 (8.9) 87 (23.1)

Immune disorders 5 (1.5) 28 (7.4)

Hypertension 52 (16.0) 85 (22.5)

Diabetes mellitus 56 (17.1) 84 (22.3)

Others 59 (18.1) 158 (41.9)

Vital signs 

Body temperature, ℃ 37.2 [36.6–38.1] 37.2 [36.7–38.0]

Missing data, N (%) 14 (4.3) 25 (6.6)

Table 1 (continued)

Table 1 (continued)

Variables
COVID-19 PCR: 
positive (N=326)

COVID-19 PCR: 
negative (N=377)

Systolic blood pressure, 
mmHg

126 [113–138] 130 [114–148]

Missing data, N (%) 20 (6.1) 38 (10.1)

Diastolic blood pressure, 
mmHg

79 [70–89] 77 [67–87]

Missing data, N (%) 20 (6.1) 38 (10.1)

Heart rate, beats per 
minute

86 [78–98] 93 [80–108]

Missing data, N (%) 11 (3.4) 35 (9.3)

Respiratory rate, breaths 
per minute

18 [16–21] 20 [16–24]

Missing data, N (%) 65 (19.9) 138 (36.6)

Laboratory data

White blood cell, ×10
3
/μL 4.1 [1.8–5.2] 9.2 [6.4–12.5]

Missing data, N (%) 14 (4.3) 44 (11.7)

Hemoglobin, g/dL 14.0 [12.9–15.2] 12.2 [10.3–13.5]

Missing data, N (%) 23 (7.1) 60 (15.9)

Platelet, ×10
4
/μL 18.9 [15.1–25.0] 23.5 [16.4–30.0]

Missing data, N (%) 16 (4.9) 45 (11.9)

Aspartate 
aminotransferase, U/L

32 [24–54] 27 [19–40]

Missing data, N (%) 13 (4.0) 43 (11.4)

Alanine aminotransferase, 
U/L

30 [17–46] 20 [13–34]

Missing data, N (%) 13 (4.0) 43 (11.4)

Lactate dehydrogenase, 
U/L

282 [216–403] 244 [186–324]

Missing data, N (%) 15 (4.6) 54 (14.3)

C-reactive protein, mg/dL 3.7 [0.5–9.5] 5.5 [1.4–11.9]

Missing data, N (%) 14 (4.3) 57 (15.1)

Computed tomography 
data

Ali-M3 confidence, % 0.93 [0.52–1.00] 0.25 [0.01–0.71]

All continuous variables are not normally distributed and are 
presented as median [interquartile range]; categorical variables are 
presented as N (%). COPD, chronic obstructive pulmonary disease.
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Table 2 Patient characteristics and scanning protocol in each hospital

Characteristic
H01  

(N=94)
1

H02  

(N=158)
1

H03 

(N=19)
1

H04 

(N=70)
1

H05 

(N=71)
1

H06  

(N=32)
1

H07  

(N=21)
1

H08  

(N=68)
1

H09 

(N=110)
1

H10 

(N=34)
1

H11 

(N=43)
1

Age, years 57 [44–76] 60 [44–73] 63 [53–76] 60 [39–72] 59 [44–76] 60 [46–68] 65 [41–76] 63 [42–73] 59 [42–73] 78 [58–86] 68 [46–80]

COVID-19 PCR

Positive 70 (74%) 52 (33%) 18 (95%) 35 (50%) 26 (37%) 21 (66%) 12 (57%) 18 (26%) 37 (34%) 11 (32%) 21 (49%)

System Aquilion 

PRIME

Optima 

CT660

Aquilion 

PRIME

Optima 

CT660

Optima 

CT660

Aquilion 

PRIME

Aquilion CX 

Edition

Aquilion 

ONE

Aquilion 

CXL

Aquilion 

PRIME

Aquilion 

CXL

Aquilion 

CX Edition

Vendor Canon 

Medical 

Systems

GE Canon 

Medical 

Systems

GE GE Canon 

Medical 

Systems

Canon 

Medical 

Systems

Canon 

Medical 

Systems

Canon 

Medical 

Systems

Canon 

Medical 

Systems

Canon 

Medical 

Systems

Canon 

Medical 

Systems

Tube voltage 

(kVp)

120 120 120 120 120 120 120 120 120 120 120 120

Automatic 

tube current 

modulation 

(mAs)

Auto 100–510 150–250 80–500 80–500 150–250 403–500 100–400 100–400 50–250 100–400 100–400

Pitch

Standard 111 55 65 55 55 65 – 65 53 65 53 –

Factor 0.813 0.984 0.813 0.984 0.984 0.813 1.172 0.813 0.828 0.813 0.828 1.000

Matrix 512×512 512×512 512×512 512×512 512×512 512×512 512×512 512×512 512×512 512×512 512×512 512×512

Slice thickness 

(cm)

0.500 0.625 0.500 0.625 0.625 0.500 0.500 0.500 0.500 0.500 1.000 5.000

Field of view 

(mm)

320 340 320 – – 330 350 320 320 320–400 320 320

Reconstruction 

interval (mm)

5 0.625 2 1.25 1.25 3 5 5 5 5 5 5

1
, n (%) or median [interquartile range].

Table 3 Model discrimination and calibration in the test data

Model
Score Difference between Ali-M3 confidence

AUROC (95% CI) Brier score (95% CI) AUROC (95% CI) Brier score (95% CI)

Full model* 0.91 (0.86 to 0.95) 0.10 (0.07 to 0.13) 0.13 (0.07 to 0.19) −0.13 (−0.17 to −0.09)

A-blood model 0.90 (0.86 to 0.94) 0.12 (0.08 to 0.16) 0.12 (0.07 to 0.18) −0.11 (−0.15 to −0.07)

Ali-M3 confidence 0.78 (0.71 to 0.83) 0.23 (0.19 to 0.27) – −

*, machine learning model using all variables; ,
 
machine learning model using 8 variables including Ali-M3 confidence, white blood cell, hemoglobin, 

platelet, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and C-reactive protein. AUROC, area under receiver 
operator curve; CI, confidence interval.

better option because of its lower turnaround time, which 
requires only a general blood test and CT results. In the 
majority of Japanese emergency hospitals, including the 
11 hospitals in the dataset, the time to CT imaging for 
stroke patients is less than 20 min (22). Even during the 

COVID-19 pandemic, no substantial increase was observed 
in the time to obtain CT (23). When the RT-PCR results 
are not known, the “A-blood” model could help physicians 
determine indications for timely treatment with antibody 
drugs (24). For patients for whom COVID-19 infection 
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Alibaba confidence 

WBC 

Hb 

LDH 

PLT 

RR 

Without close contact 

ALT 

Cancer 

Age 

HR 

Duration of symptoms 

Other complications 

CRP 

AST 

dBP 

sBP 

Close contact with non-family patients 

BT 

Cough

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
SHAP value (impact on model output)

Low

High

Feature value

−4 −2 0 2 4
SHAP value (impact on model output)

Low

High

Feature value

Alibaba confidence 

WBC 

Hb 

LDH 

ALT

CRP 

PLT 

AST

Figure 2 Variables that demonstrated the greatest association with COVID-19 real-time reverse transcription polymerase chain reaction 
(RT-PCR) positive in machine learning model using all variables in the test data. WBC, white blood cells; Hb, hemoglobin; LDH, lactate 
dehydrogenase; PLT, platelet; RR, respiratory rate; ALT, alanine aminotransferase; HR, heart rate; CRP, C-reactive protein; AST, aspartate 
aminotransferase; dBP, diastolic blood pressure; sBP, systolic blood pressure; BT, body temperature; SHAP, Shapley Additive exPlanations.

Figure 3 Variables that demonstrated the greatest association 
with COVID-19 real-time reverse transcription polymerase chain 
reaction (RT-PCR) positive in machine learning model using 
8 variables (Ali-M3 confidence; white blood cell; hemoglobin; 
platelet; aspartate aminotransferase; alanine aminotransferase; 
lactate dehydrogenase; C-reactive protein) in the test data. WBC, 
white blood cells; Hb, hemoglobin; LDH, lactate dehydrogenase; 
ALT, alanine aminotransferase; CRP, C-reactive protein; PLT, 
platelet; AST, aspartate aminotransferase; SHAP, Shapley Additive 
exPlanations.
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Figure 1 Receiver operator curves (ROCs) of COVID-19 PCR 
positive prediction models in the test data. Models include machine 
learning model using all variables, machine learning model using 
8 variables (Ali-M3 confidence; white blood cell; hemoglobin; 
platelet; aspartate aminotransferase; alanine aminotransferase; 
lactate dehydrogenase; C-reactive protein), and Ali-M3 confidence. 
AUROC, area under the receiver operator curves.
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cannot be ruled out based on a single negative RT-PCR, 
physicians may be able to use the “A-blood” model to 
determine if a patient can be released from quarantine. 
These clinical implications need to be evaluated in further 
studies (25).

This study has several limitations. First, the dataset used 
in this study is from the first wave of infections in the spring 
of 2020, which does not include vaccinated patients or the 
latter variants of the SARS-CoV2 virus. Therefore, it is 
necessary to further expand on this external validation. A 
second limitation is the occurrence of false negatives, which 
includes patients falsely regarded as COVID-negative with 
a single negative PCR result. This misclassification may 

affect the accuracy, but the magnitude of this bias cannot 
be predicted. Further studies are required with datasets 
that also include sufficient follow-up. Third, because of the 
retrospective nature, we could not define rigorous inclusion 
criteria, such as symptoms or settings.

In conclusion, we developed the A-blood model, which 
is a COVID-19 diagnostic tool that combines machine 
learning and CT evaluation with blood test data. Physicians 
would be able to use this model for the rapid diagnosis of 
COVID-19. Further validation studies, especially those 
including SARS-CoV-2 variants and subjects inoculated 
with different vaccines, are warranted.
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