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Background: This study sought to analyze non-targeted plasma metabolites in patients with atherosclerosis (AS).
Methods: The plasma of patients with AS (the patient group) and the plasma of age-matched and gender-
matched healthy individuals (the control group) at the Taihe Hospital was collected. One hundred patients 
were included in the study (60 in the patient group and 40 in the control group). Fasting venous plasma 
was collected in the morning. The metabolites in the plasma were examined by liquid chromatography-
mass spectrometry (LC-MS). An unsupervised principal component analysis (PCA) was conducted to 
observe the overall distribution of each sample and the stability of the analysis process. Next, a supervised 
partial least squares-discriminant analysis (PLS-DA) and an orthogonal partial least squares-discriminant 
analysis (OPLS-DA) were conducted to examine the overall differences among the metabolic profiles of the 
groups and identify different metabolites in the groups. Pathway enrichment was analyzed using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database.
Results: In total, 1,126 different metabolites were detected in the patient and control groups. Compared 
to the control group, 411 species decreased, and 715 species increased in the patient group. There were 61 
different metabolites with a variable weight in the projection (VIP) >1 and a P<0.05. There were 34 types 
of lipid metabolites, 10 types of carbon and oxygen compounds, 8 types of organic acids and derivatives, 
4 types of organoheterocyclic compounds, 3 types of nitrogen-containing organic compounds, and 2 
types of nucleotides and analogs. Compared to the control group, 47 species decreased, and 14 species 
increased in the patient group. The following 9 metabolites had the most significant differences (|log2fold 
change| >1; P<0.05): 2-tetradecanone, pantothenol, all-trans-13,14-dihydroretinol, linoleoyl ethanolamide, 
N-oleoylethanolamine, 4-methyl-2-pentenal, Cer (d18:1/14:0), chenodeoxycholic acid glycine conjugate, 
and 5-acetamidovalerate. The enrichment analysis results of the 61 different metabolite pathways identified 
17 metabolic pathways with significant differences (P<0.05), including the choline metabolism, lipid 
metabolism, autophagy, amino acid metabolism, vitamin digestion, and absorption pathways.
Conclusions: There are significant differences in non-targeted plasma metabolites between patients with AS and 
healthy individuals. The above-mentioned 9 most significantly different metabolites may be potential markers of AS.
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Introduction

Cardiovascular disease (CVD) has the highest incidence 
and mortality rates worldwide (1). The most important 
risk factors for CVD are dyslipidemia, hypertension, 
smoking, stress, diabetes, obesity (especially abdominal fat 
distribution), a lack of exercise, unhealthy eating habits, and 
excessive drinking (2). The primary pathological basis of 
most CVD is atherosclerosis (AS) (3). AS is a progressive 
disease that mainly involves the large and middle arteries (4),  
and is characterized by the accumulation of lipid and 
inflammatory factors in the arterial wall (5). Inflammation 
and lipid metabolism accompany and cooperate with each 
other to promote the progression of AS. Inflammatory 
mediators can affect changes in lipid metabolism, and 
inflammation obviously damages the process of reverse 
cholesterol transport. Cholesterol itself is an inflammatory 
factor. Excessive free cholesterol can activate the p38MAPK 
signaling pathway through the TLR3 or TLR4 pathway 
to induce inflammation. Abnormal lipid metabolism is 
another key pathogenic factor of AS. Previous studies have 
confirmed that elevated plasma low-density lipoprotein 
and cholesterol levels are highly correlated with AS (6). 
Sphingolipids and sphingolipid synthesis intermediates also 
play a key role in the pathogenesis of AS. The pathogenesis 
of AS (7) and the relationship between a series of external 
factors, such as diet, environment, susceptibility genes, and 
AS (8), have been extensively studied, but there is still no 
AS evaluation system.

Metabonomics is an essential part of systems biology 
after genomics, transcriptomics, and proteomics. It is 
also a hot topic in the field of metabolomics. The British 
Nicholson Research Group put forward the concept of 
metabonomics when analyzing rat urine components 
from the perspective of toxicology (9). Metabonomics is 
a technology used to study the metabolic pathway of a 
biological system by investigating changes in metabolites 
or changes in metabolites over time after the disturbance 
or stimulation of a biological system (e.g., a specific gene 
variation or environmental change) (9). Compared to 
traditional metabolic research, metabonomics combines 
knowledge of physics, biology, and analytical chemistry. 
It uses modern advanced instruments and analytical 
techniques to detect changes to the whole metabolite 
spectrum under specific conditions and studies overall 
biological function using a unique multivariate statistical 
analysis method. Metabonomics analyzes all the metabolites 
of organisms. Metabolites are produced by the reaction 

of endogenous substances. Thus, metabolite change 
also reveals endogenous substances or gene levels, 
which changes the research object from micro-genes 
to macro-metabolites. The study of macro-metabolic 
phenotypes makes research objects more intuitive (10). 
Metabonomics has become a powerful tool for the study 
of AS with complex pathophysiological characteristics. 
Many epidemiological studies have used this technique 
to accurately and comprehensively assess the effects of 
environmental factors on health outcomes, which used to 
be challenging to study. Metabolites are the intermediate 
products of various enzyme-catalyzed metabolic reactions 
in cells. Due to interactions between genetic variations and 
environments, metabonomics enables us to explore gene-
environment interactions, and better understand AS and 
other multifactorial diseases (11). According to different 
research methods, metabolomics is divided into targeted 
metabolomics and non-targeted metabolomics. Non-
targeted metabolomics can mainly analyze the ionization 
mode and stationary phase to produce the largest number 
of chromatographic features. With the improvement of 
non-targeted data processing software, the precision and 
qualitative accuracy of non-targeted analysis continue to 
improve. High substance detection coverage is the main 
feature and advantage of non-targeted omics.

Liquid chromatography-mass spectrometry (LC-
MS) started later then, but has obvious advantages over, 
other metabonomic technologies. LC-MS is suitable for 
the analysis of metabolites with high throughput, high 
resolution, and high sensitivity. In MS scanning mode, the 
tandem-mass spectrometer can quickly switch between 
high- and low-collision energy, simultaneously collect 
the primary and secondary mass-spectrum information of 
metabolites, and when combined with the analysis of mass 
spectrum information by the metabonomic data processing 
software Progenesis QI v2.3 (Nonlinear Dynamics, 
Newcastle, UK), hundreds to thousands of metabolites 
can be detected and identified in a single analysis (12). The 
application of this technology to the research of coronary 
heart disease has achieved some results. Studies have 
confirmed that in patients with coronary heart disease, serum 
sphingomyelin (SM) is directly related to plasma cholesterol 
levels through non-targeted MS lipidomics studies of 2,998 
serum samples (6). The results of this study confirm that 
sphingolipids play an important role in regulating blood 
lipid levels, and the biological markers in the sphingolipid 
metabolism pathway are new targets for the treatment of 
coronary heart disease (6).
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Metabolic  factors play an essential  role in the 
pathogenesis and development of AS (13). Metabonomics 
comprehensively characterizes small molecule metabolites, 
such as amino acids, organic acids, nucleic acids, and lipids, 
providing an overview of the metabolic state and any 
pathophysiological changes, cells or biological systems. 
LC-MS, which is a high-throughput technique, has been 
introduced in epidemiological studies, and will extend 
understandings of the consequences of gene-environment 
interactions, and help to find novel biomarkers for the 
prevention and detection of AS and CVD (14-17). Changes 
in blood lipid metabolism are closely related to AS. This 
study used LC-MS technology to analyze the non-targeted 
plasma metabolites of patients with AS to provide insights 
into how to identify diagnostic target molecules and study 
the mechanism of AS. We present the following article in 
accordance with the MDAR reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-118/rc).

Methods

Samples

The morning fasting plasma of patients with AS treated 
at the Taihe Hospital from June 2019 to June 2020 was 
collected (the patient group). The morning fasting plasma 
of healthy individuals matched in terms of age and sex was 
collected at the health examination center (the control 
group). All the procedures in this study involving human 
participants were conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of the Taihe Hospital, 
Hubei University of Medicine (No. 2020-TH-055), and 
informed consent was obtained from all the patients.

The individuals in the healthy control group underwent 
coronary angiography, and were shown to have normal 
coronary arteries. Those in the patient group were 
diagnosed with CAD by angiography, and the complications 
and medications were evaluated based on self-reported 
information and written medical reports. Two experienced 
interventional cardiologists analyzed the evaluation and 
classification of the syntax scores. Except for age and 
gender, the other analysis variables were blind. Syntax 
scores were valuated with the internet-based SYNTAX 
calculator (version 2.28; https://www.syntaxcore.com/). 
Consistent with previous studies on the effects of different 
parameters on the complexity of CAD, we screened patients 

with a SYNTAX score ≥23 according to the low- and high-
risk complexity of CAD, and excluded patients with acute 
myocardial infarction. The patient group comprised 38 males 
and 26 females, with an average age of 60.57±9.05 years.  
The control group comprised 14 males and 26 females, with 
an average age of 54.52±8.66 years.

Quality control (QC) samples

All samples were mixed equally as QC samples. In the 
process of MS, the QC samples were interspersed among 
the samples. The QC samples were used to evaluate the 
stability of the mass MS platform during the experiment.

Reagent

Methanol, formic acid, water, and acetonitrile were 
purchased from the Thermo company. L-2-chlorophenyl 
alanine was purchased from Shanghai Hengchung 
Biotechnology Co., Ltd. All chemicals and solvents were 
analytically pure or chromatographic grade.

Instrument

See Table 1 for information on the instruments used in the 
experiment.

Pretreatment

The samples were stored at −80 ℃, and thawed at room 
temperature. One hundred μL of the samples were 
transferred, and 10 μL of internal standard solution (L-2-
chlorophenyl alanine, 0.3 mg/mL, methanol configuration) 
was added. The samples were then vortexed for 10 s. Three 
hundred μL of protein precipitant methanol-acetonitrile 
(V:V =2:1) was added, and the samples were then vortexed 
for 1 min. Ultrasonic extraction was performed in an ice-
water bath for 10 min, and the samples were then left to 
stand at −20 ℃ for 30 min, and then centrifuged for 10 min 
(13,000 rpm; 4 ℃). Three hundred μL of the supernatant 
was added to the LC-MS sample vial and evaporated to 
dryness, after which it was reconstituted with 300 μL of 
methanol-water (V:V =1:4) (vortexed for 30 s, ultrasound 
for 3 min). The samples were allowed to stand at −20 ℃ for 
2 hours, and then centrifuged for 10 min (13,000 rpm; 4 ℃). 
One hundred and fifty μL of supernatant was taken with a 
syringe and filtered with a 0.22 μm organic phase pinhole 
filter, and then transferred to the LC injection vial. The 

https://atm.amegroups.com/article/view/10.21037/atm-22-118/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-118/rc
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samples were stored at −80 ℃ until the LC-MS analysis.
The QC samples were prepared by mixing the extracts of 

all the samples in equal volumes, and the volume of the QC 
was the same as that of the samples. All extraction reagents 
were pre-cooled at −20 ℃ before use.

LC-MS analysis conditions

The analytical instrument used in this experiment was 
the LC-MS system composed of Dionex U3000 UHPLC 
ultra-performance LC (UPLC)-tandem QE plus a high-
resolution mass spectrometer. The chromatographic 
conditions were as follows: column: ACQUITY UPLC HSS 
T3 (100 mm × 2.1 mm; 1.8 μm). The column temperature 
was 45 ℃. The mobile phase conditions were as follows: 
A-water (containing 0.1% formic acid), B-acetonitrile 
(containing 0.1% formic acid); flow rate: 0.35 mL/min; and 
injection volume: 2 μL. The MS conditions were as follows: 
used ion source: electrospray ionization (ESI); and mode 
for sample mass spectrum signal acquisition: positive and 
negative ion scanning.

Data analysis

Based on the QC samples, the pre-treatment of the LC-
MS experimental part, samples on the computer, and the 
stability of the MS system were analyzed and evaluated. 
The ion peak with a relative standard deviation (RSD) 
>0.4 in the QC group was deleted. The RSD is the ratio 
of the standard deviation, and the arithmetic mean of the 
measurement results. It is a standard for measuring the 
dispersion degree of data distribution and the deviation 
degree of the data value from the arithmetic mean. Before 
pattern recognition, the original data were processed by 

metabonomic software Progenesis QI v2.3 to determine 
baseline filtering, peak recognition, integration, retention 
time correction, peak alignment, and normalization. The 
precursor tolerance’s main parameters were as follows: 
precursor tolerance: 5 ppm; product tolerance: 10 ppm; 
and product ion threshold: 5%. The identification of 
the compounds was based on the accurate mass number, 
secondary fragments, and isotopic distribution, and the 
Electron Microscopy Data Bank (EMDB) database was 
used for the qualitative analysis. The EMDB is a dedicated 
metabolite database for humans and animals. The database 
contains 3,600+ metabolites, including amino acids, lipids, 
nucleotides, carbohydrates, vitamins, cofactors, hormones, 
etc., including metabolite structure, and MS data, and is 
aimed at solving biological problems through metabonomics 
in a more professional way.

In the multivariate statistical analysis, an unsupervised 
principal component analysis (PCA) was conducted to 
observe the overall distribution of each sample and the 
stability of the whole analysis process. Next, a supervised 
partial least squares-discriminant analysis (PLS-DA) and 
an orthogonal partial least squares-discriminant analysis 
(OPLS-DA) were conducted to distinguish among the 
overall differences of the metabolic profiles among the 
groups and identify different metabolites in the groups. 
7-fold cross-validation and 200 response permutation 
testing were used to evaluate the quality of the model. To 
avoid the risk of the supervised learning method obtaining 
the classification, we established a random ranking method 
for the OPLS-DA model to evaluate the accuracy of 
the OPLS model. We tested the OPLS-DA model for  
200 times of response ranking, fixed the X matrix, and 
randomly arranged the variables (e.g., 0 or 1) of the 
previously defined classification y matrix, n times (n=200). 

Table 1 Instrument information

Instrument Model and specification Manufacturer

Ultrasonic cleaning machine F-060SD Shenzhen Fuyang Technology Group Co., Ltd.

Vortex oscillator TYXH-I Shanghai Hannuo Instrument Co., Ltd.

High-speed refrigerated centrifuge TGL-16MS Shanghai Luxianyi Centrifuge Instrument Co., Ltd.

Freeze concentration centrifugal dryer LNG-T98 Taicang Huamei Biochemical Instrument Factory

High-resolution mass spectrometer QE plus Thermo Fisher Scientific

High-performance LC Dionex U3000 UHPLC Thermo Fisher Scientific

Chromatographic column ACQUITY UPLC HSS T3 Waters

LC, liquid chromatography.



Annals of Translational Medicine, Vol 10, No 3 February 2022 Page 5 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(3):133 | https://dx.doi.org/10.21037/atm-22-118

The corresponding OPLS-DA model was established to 
obtain the R2 and Q2 values of the random model. Linear 
regression was conducted with the R2Y and Q2Y of the 
original model. The regression line and Y-axis intercept 
values (R2 and Q2, respectively) were used to measure 
whether the model was overfitted. Finally, a Loading 
diagram and Splot diagram were drawn to show the 
effect intensity and characteristics of metabolites on the 
comparison group. The Student’s t-test and fold change 
analysis were used to compare the metabolites between 
the two groups. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG; https://www.kegg.jp/) database was used 
for path enrichment analysis. The KEGG IDs of different 
metabolites were used for the pathway enrichment analyses, 
and the results of the metabolic pathway enrichment 
analyses were obtained. A hypergeometric test was used to 
identify the pathway items that were significantly enriched 
in the significantly differentially expressed metabolites 

compared to the whole background. The following formula 
was used:
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where N is the total number of metabolites, n is the 
number of differentially expressed metabolites in N, M is 
the number of metabolites annotated as a specific pathway, 
and M is the number of different metabolites annotated 
as a particular pathway. A P value ≤0.05 was set as the 
threshold; any pathway that met this condition was deemed 
to be significantly enriched in the different metabolites. 
The KEGG pathway mapper function was used to display 
the differential metabolic pathways, and the differential 
metabolites were colored according to the up-down 
information. The data analysis process is shown in Figure 1.

Figure 1 Flow chart of data analysis. QC, quality control; PCA, principal component analysis; PLS-DA, partial least squares-discriminant 
analysis; OPLS-DA, orthogonal partial least squares-discriminant analysis.
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Statistical analysis

In this study, R software (V3.5.1) and related R packages 
were used for statistical analysis. P<0.05 indicates statistical 
significance.

Results

Results of sample statistical analysis

There were no significant differences in terms of age and 
gender between the patient group and the control group (see 
Table 1). The interference of age and gender was excluded.

QC results

In the QC sample, we detected various material peaks, 
which are illustrated in a Base Peak Chromatogram (BPC) 
diagram of the QC sample’s positive and negative ion mode 
QC1 in this experiment (see Figure 2A,2B). The instrument 
detection stability was good in the experimental process 
(see Figure 2C,2D). The PCA model diagram obtained by 
a 7-fold cross-validation (i.e., 7 cycles of cross-validation) 
showed that the QC samples were closely clustered, and 
the metabolite intensity of the QC samples was relatively 
strong. To more intuitively establish the relationship 
between the QC samples and the other samples, and the 
stability between the QC samples and the other samples, 
we performed a hierarchical clustering analysis of the 
expression of all the metabolites (see Figure 2E), which 
further confirmed that the detection process was stable and 
reliable.

Qualitative and quantitative results

According to the extracted data, the ion peaks with missing 
values (0 value) >50% in the group were deleted, and 
the ‘0’ value was replaced by half of the minimum value. 
The qualitative compounds were screened according 
to the scores of the compound qualitative results. The 
screening standard was 36 points (the full score was 60 
points). Qualitative results with a score <36 were regarded 
as inaccurate and were deleted. Finally, the positive and 
negative ion data were combined into a data matrix table 
containing all the information extracted from the original 
data used for the analysis. The subsequent investigation was 
based on the data matrix. In total, 14,348 types of substance 
peaks were detected, of which 6,917 types decreased, and 
7,431 increased in the patient group. There were 1,126 

types of metabolites, of which 411 types decreased, and 715 
increased in the patient group (see Figure 3).

Multivariate statistical analysis results

The PCA chart showed that most of the original data of 
the patient group and the control group were gathered 
in the 95% confidence interval. The few discrete points 
proved that the repeatability of the same group of samples 
in the detection process was increased (see Figure 4A). 
The corresponding PLS-DA models had good quality 
and good prediction ability (see Figure 4B). There was a 
significant difference in the plasma metabolites between the 
patient and control groups. To filter out noise irrelevant 
to the classification information, improve the analytical 
ability and effectiveness of the model, and maximize the 
differences among the different groups within the model, 
we modified the PLS-DA by drawing an OPLS-DA score 
chart (see Figure 4C). The two groups of the samples 
differed significantly in the OPLS-DA score chart, and we 
found various variable weight in the projection (VIP) >1,  
P value <0.05. This study used a 7-fold cross-validation and 
200 response ranking tests (see Figure 4D). R2 and Q2 were 
0.918 and −0.634, respectively. The results showed that the 
model was stable without overfitting. To identify the effect 
intensity and correlations of metabolites in the comparison 
group, we created a load map and plots of the patient group 
and the control group (see Figure 4E,4F), and confirmed 
that the selected metabolites differed significantly between 
patients with AS and healthy individuals. These differential 
metabolites may be potential biomarkers of AS.

Screening results of different metabolites

According to the results of the quantitative analysis, to 
screen the differential metabolites, we visualized the P 
value and fold change value and drew a volcano map of the 
upregulated and downregulated metabolites (see Figure 5A).  
Four hundred and eleven metabolites in the patient group 
were more downregulated than those in the control 
group, and 715 metabolites in the patient group were 
more downregulated than those in the control group. 
On this basis, we set the screening criteria as the VIP 
value of the first principal component (PC) of the OPLS-
DA model >1, P value of t-test <0.05, and screened 61 
types of metabolites of biological significance and with 
significant differences (see Figure 5B-5D). More than half 
of the metabolites [34] were lipids, 10 types of carbon 
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Figure 2 The QC results show that the detection is stable and reliable. (A) The BPC of the positive ion mode of QC1. (B) The BPC in negative 
ion mode of QC1. (C) PCA score chart of all samples. (D) The Y coordinates of the two-dimensional sample metabolite intensity box is the log10 
value of mass spectrum intensity. (E) The abscissa of the cluster heat map of all the samples shows the sample name, and the ordinate shows the 
secondary classification information of the substance. The color gradient from blue to red indicates the abundance of metabolites from low to 
high (i.e., the redder the color, the higher the abundance of differential metabolites). QC, quality control; BPC, Base Peak Chromatogram; PCA, 
principal component analysis; PC, principal component; P, patient group samples; C, control group samples.
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and oxygen compounds, 8 types of organic acids and 
derivatives, 4 types of organic heterocyclic compounds, 3 
types of nitrogen-containing organic compounds, and 2 
types of nucleotides and analogs. Among the 61 different 
metabolites, this study used |log2fold change| >1; P <0.05 
as the standard, and screened 9 metabolites with the 
most significant differences, including 2-tetradecanone, 
pantothenol, all-trans-13,14-dihydroretinol, linoleoyl 
ethanolamide, n-oleoylethanolamine, 4-methyl-2-pentenal, 
Cer (d18:1/14:0), chenodeoxycholic acid glycine conjugate, 
and 5-acetamidovalerate. The 9 most significant metabolites 
may be potential markers of AS. Figure 5E shows the close 
correlations between the top 50 significant differences in 
the VIP values and the metabolites.

Enrichment analysis of metabolic pathways

By screening the 61 significant metabolites, we identified 
17 enriched metabolic pathways that were significantly 
different between the patient and control groups (P<0.05), 
including choline metabolism in cancer, sphingolipid 
signaling pathway, glycerophospholipid metabolism, linoleic 
acid metabolism, neuroactive ligand-receptor interaction, 
basal cell carcinoma. There were significant differences 
between the patient and control groups (P<0.01; see  
Figure 6A,6B).

Discussion

Non-targeted metabonomics is a comprehensive analytical 
method that can detect, identify, and quantify metabolites 
in as many biological samples as possible (18,19). To this 
end, non-targeted methods aim to distinguish unique 
metabolite characteristics related to genotype, drug 

therapy, clinical subgroup, or other comparison groups, 
usually via comparisons to an appropriate control group. 
The broad coverage provided by non-targeted methods 
can identify new metabolic pathways, disease biomarkers, 
and drug-derived metabolites (20,21). However, non-
targeted metabolomics approaches lack specific fragments 
for target metabolites. Thus, improper sample processing 
leads to biases in non-targeted metabolomic analysis results. 
Strict QC samples are essential if reliable results are to 
be obtained (11). In metabonomics, control measurement 
errors and deviations, such as sample collection, processing, 
transportation, and storage, can be occur at the pre-analysis 
stage. Hirayama et al. studied the effects of sampling 
procedures and storage conditions on the stability of plasma 
and serum metabonomics by capillary electrophoresis-MS 
(CE-MS), and noted that the spectrum in plasma was more 
stable than that in serum (22). Based on this, we collected 
the fasting venous plasma of the patients in the morning. 
We excluded the interference of age and gender factors 
in the patient group through the statistical analysis. As 
discussed above, we implemented QC measures to ensure 
the accuracy and credibility of the analysis results.

In this study, we compared a patient group to a healthy 
control group and identified 1,126 different metabolites. Of 
these metabolites, 411 were downregulated, and 715 were 
upregulated in the patient group. To further confirm these 
results, PCA, PLS-DA, and OPLS-DA models were used 
to verify that the selected metabolites differed significantly 
between patients with AS and healthy individuals. These 
differential metabolites may be potential biomarkers of AS.

Individual lipids are specific in their biological functions. 
Thus, quantitative lipidomics, which provides the structural 
details of single lipids is very important to revealing the 
precise lipid targets involved in disease pathogenesis. 
Based on a VIP >1 and a P<0.05, we identified 61 different 
metabolites between the two groups, of which 47 were 
upregulated and 14 were downregulated in the patient 
group. Among these metabolites, 34 (>50%) were lipid 
metabolites. The results suggest that lipid metabolites play 
an essential role in the pathogenesis of AS. Previous serum 
metabolomic studies showed that patients with coronary 
heart disease metabolize lipids, especially phospholipids, 
very differently to healthy people (23-25), which is 
consistent with our research results.

The changes of lipid metabolites will significantly affect 
the fluidity, thickness, and accumulation of cell membranes, 
and the dynamics and function of membrane proteins 
(26-29). Ganna et al. found that lysophosphatidylcholine 
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(LPC) 18:1, LPC 18:2, monoglyceride (MG) 18:2, and 
SM were associated with coronary heart disease and were 
not associated with major cardiovascular risk factors. 
They not only found that these metabolites improved risk 
reclassification beyond traditional risk factors to a certain 
extent, but also suggested that there was an association 
between coronary heart disease-related single nucleotide 
polymorphism (SNP) and some LPCs (30). Another 

Italian-based lipidomic study measured 8 lipids [i.e., 
phosphatidylcholine (PC), LPC, cholesteryl ester (CE), 
SM, phosphatidylserine (PS), phosphatidylethanolamine 
(PE), lysophosphatidylethanolamine (LPE), and triglyceride 
(TAG)], and conducted a 10-year follow-up study of 
702 participants, and found that 28 types of lipids were 
significantly associated with CVD. These lipids had an 
extensive overlap with those previously associated with 
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Figure 4 There are significant differences in plasma metabolomics between the patient group and the control group. (A) The ellipse area 
of the PCA in the patient group and the control group represents the 95% confidence interval. (B) PLS-DA diagram of the patient group 
and the control group. (C) OPLS-DA diagram of the patient group and the control group. (D) Permutation diagram of the patient group 
and the control group. (E) Loading diagram of the patient group and the control group. (F) Splot plot of the patient group and the control 
group. PCA, principal component analysis; PLS-DA, partial least squares-discriminant analysis; OPLS-DA, orthogonal partial least squares-
discriminant analysis; PC, principal component; P, patient group samples; C, control group samples.
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Figure 5 Screening of differential metabolites between the patient group and the control group. (A) Map of different metabolites in the 
P-C group before screening. (B) Volcano map of VIP and P screenings. (C) Thermogram of different metabolites in the P-C group. (D) 
Statistical chart of P-C group differences in the number of metabolites. (E) Correlation analysis of the top 50 metabolites. P, patient group 
samples; C, control group samples; VIP, variable weight in the projection; FC, fold change.
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advanced atherosclerotic plaques, such as PC (38:3). The 
Cox proportional hazards model was used to identify 
3 lipids significantly associated with incidental CVD, 
including TAG (54:2), CE (16:1), and PE (36:5). Further, 
an analysis revealed that adding these 3 lipids to risk 
factors (e.g., age, gender, diabetes, smoking, systolic blood 

pressure, total cholesterol, and high-density lipoprotein 
cholesterol) significantly improved the risk identification 
and classification ability of the risk prediction model (31). 
A lipidomic analysis of the sarcoplasmic reticulum showed 
that the imbalance between PC and PE was related to 
decreased sarcoplasmic reticulum calcium triphosphatase 
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Figure 6 Enrichment of differential metabolite metabolic pathways. (A) Top 20 metabolic pathway enrichment map. The P value in a 
metabolic pathway indicates the significance of the metabolic pathway enrichment. The P value indicated by the red line is 0.01, and that 
indicated by the blue line is 0.05. When the top of the column was higher than that of the blue line, the signal pathway represented by the 
red line was significant. (B) Top 20 bubble chart. The P value of metabolic pathway indicates the significance of enrichment. The ordinate 
is the name of the metabolic pathway. The abscissa is the enrichment factor (rich factor = the number of significant difference metabolites/
the total number of metabolites in the pathway). The larger the rich factor, the greater the enrichment degree. The color from green to red 
indicates that the P value decreases in turn. The larger the dot, the more metabolites enriched on the pathway.
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activity, resulting in abnormal calcium homeostasis and 
coronary heart disease.

We conducted a KEGG pathway enrichment analysis 
to clarify the possible mechanism of the 61 differential 
metabolites screened in this study in the pathogenesis of 
AS. The results showed that the differentially expressed 
metabolites were significantly enriched in the choline 
metabolism, lipid metabolism, autophagy, amino acid 
metabolism, vitamin digestion, and absorption pathways. 
Notably, lipid metabolites, susceptible genes related to 
metabolic disorders, and lipid metabolic pathways have been 
shown to play important roles in atherosclerotic diseases 
(32,33). Similarly, studies have shown that the plasma 
choline pathway is highly correlated with cardiovascular risk 
(34-36). These results are consistent with our findings.

Our research had a number of limitations. First, the 
sample size was small, and needs to be expanded for further 
verification. Second, in vivo and in vitro experimental 
verification was not undertaken to confirm our results. 
Finally, the screening of differential metabolites and the 
investigation of the mechanism pathways need to be further 
studied to clarify the critical pathogenic metabolites and 
their mechanism.

Through the non-targeted metabolic analysis of the 
blood of patients with AS, our research can provide more 
strategies for the screening of AS markers and the study 
of the mechanism of occurrence, and provide more targets 
for treatment. For example, the differential metabolites 
we screened may be used as marker molecules for AS. 
Pathway enrichment results show that, in addition to 
the recognized lipid metabolism is closely related to its 
occurrence, it suggests that choline metabolism, autophagy 
pathway, amino acid metabolism, and vitamin digestion 
and absorption may all be closely related to the occurrence 
of CAD. It can provide more strategies for the study of 
its occurrence mechanism and provide more targets for 
treatment. The digestion and absorption of vitamins 
suggests that the intestinal flora may be closely related to it.

We found significant differences in the plasma non-
targeted metabolites between patients with AS and 
healthy individuals. Differential metabolites may be 
potential biomarkers of AS and play important roles in 
the pathogenesis of AS. Our research identified some key 
differential expressed metabolites. The metabolites could be 
used to detect AS and as potential therapeutic targets. We 
intend to further explore and clarify the pathogenesis of AS 
in future studies.
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