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CBX4 contributes to radioresistance by regulating autophagic 
activity in esophageal squamous cell carcinoma
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Background: The function of Chromobox 4 (CBX4) function has attracted attention in many cancer types 
due to its unique biological role; however, its mechanism in esophageal squamous cell carcinoma (ESCC) 
under radiotherapeutic treatment has not yet been investigated.
Methods: Silencing of CBX4 was carried out in TE-13 and KYSE-150 cell lines. Cell proliferation, 
radiosensitivity, DNA damage, apoptosis, and cell cycle distribution were determined by Cell Counting 
Kit-8 (CCK-8), colony formation assay, immunofluorescence, flow cytometry, and immunoblot in vitro.  
In vivo xenograft models were also used to assess tumor cell growth and radioresistance. The underpinning 
mechanisms were explored based on pathway analysis and confirmed by rescue experiments, detecting 
cellular autophagy.
Results: Knockdown of CBX4 resulted in reduced tumor growth and enhanced radio-response in vivo 
and in vitro. Down-regulating CBX4 increased DNA damage, apoptotic rate, and G2/M arrest induced by 
radiation in ESCC cell lines. Gene Set Enrichment Analysis (GSEA) revealed that CBX4 was associated 
with cellular autophagy regulation. Enhanced radiosensitivity in ESCC cells silenced for CBX4 was partially 
blocked by autophagy inhibition (P<0.05). Beclin 1 was upregulated at the gene and protein levels in ESCC 
cells with CBX4 knockdown after irradiation, and overexpressing Beclin 1 reversed the radiosensitivity of 
ESCC cells with CBX4 knockdown (P<0.05).
Conclusions: By regulating autophagic activity, CBX4 contributes to radioresistance. Targeting CBX4 
might constitute an efficient approach for increasing radiosensitivity in ESCC.
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Introduction

Esophageal carcinoma (EC) is the 8th most common 
malignancy, and represents the 6th deadliest cancer 
worldwide, with a 5-year overall survival of below 20% (1). 
The broad category of EC mainly comprises esophageal 
squamous cell  carcinoma (ESCC) and esophageal 
adenocarcinoma (EAC). As a major histopathologic subtype, 
ESCC accounts for approximately 80% of all EC cases, and 
is especially predominant among Asians (2). Treatment of 
ESCC commonly includes surgical, chemotherapeutic, and/
or radiotherapeutic (RT) approaches; among these, RT is 
one of the most effective therapeutic options (3). Indeed, 
RT is very important in non-surgical treatment of ESCC; 
however, radioresistance contributes highly to recurrence 
and diminishes survival (4). Novel strategies aiming to 
improve ESCC radiosensitivity are essential (5).

Chromobox 4 [CBX4, or polycomb 2 (Pc2)] is a 
transcriptional repressor as well as a SUMO E3 ligase (6). 
The N-terminal chromodomain and 2 SUMO-interacting 
motifs (SIM) are responsible for the polycomb- and SUMO 
E3 ligase-dependent functions of CBX4, respectively (7).  
Previously, CBX4 overexpression has been detected in 
several types of malignant tumors, and it is therefore 
considered a therapeutic target. In hepatocellular carcinoma, 
CBX4 increases vascular endothelial growth factor (VEGF)-
associated angiogenesis, with elevated CBX4 expression 
predicting poor survival (8). In breast cancer, CBX4 exerts 
oncogenic effects through the Notch1 pathway (9). In 
colorectal carcinoma, CBX4 blunts metastasis by recruiting 
HDAC3 to the Runx2 promoter and acts as a tumor 
suppressor (10). Genomic analysis has revealed several 
amplified genes in ESCC with potential oncologic roles, 
including CBX4 (11). However, the function and mechanism 
of CBX4 in radio-response remain largely undefined.

Autophagy, as a homeostatic mechanism, causes the 
bulk degradation of long-lived proteins and cellular 
organelles in eukaryotic cells (12). It has been reported 
that autophagy plays important anti-carcinogenic roles 
in early carcinogenesis through removal of dysfunctional 

mitochondria and abnormal protein aggregates responsible 
for reactive oxygen species (ROS) production (13). In 
addition, suppressing autophagy-associated genes damages 
the DNA and induces carcinogenesis (14). Besides, several 
studies have also suggested that autophagy plays important 
roles in tumor cell response to anti-cancer treatments, 
chemotherapy, and radiotherapy. It was reported that 
autophagy plays 2 overtly contrasting roles in cancer cell 
response to radiation-associated stress, exerting cyto-
protective and cytotoxic effects (15). Cells under stress 
showing sustained DNA damage are normally cleared by 
autophagy. However, once this mechanism fails and cancer 
formation occurs, malignant cells utilize autophagy to endure 
stress associated with chemotherapy and/or radiotherapy.

In this manuscript, we investigated the influence of CBX4 
on ESCC cells under radiation therapy both in vitro and  
in  v ivo ,  and showed that  CBX4 increased ESCC 
radioresistance by regulating the autophagic activity. These 
findings suggest CBX4 as a potential therapeutic target for 
ESCC cells and provide new insights into the molecular 
mechanisms of radiosensitivity in ESCC. We present the 
following article in accordance with the ARRIVE reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-21-3630). 

Methods

ESCC cells and treatment

Human ESCC TE-13 and KYSE-150 cells were cultured 
in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, 
Waltham, MA, USA) containing 10% fetal bovine serum 
(FBS), penicillin (100 U/mL), and streptomycin (100 µg/mL)  
(Gibco) in a humid environment with 5% CO2 at 37 ℃. 
The irradiation groups underwent 2, 4, 6, and 8 Gy X-ray 
irradiation using single energy 6 MV flattening filter (FF) 
beams, generated by a medical accelerator (Elekta Precise, 
Stockholm, Sweden). The autophagy inhibitor CQ was 
provided by Sigma Aldrich (St. Louis, MO, USA). Cell 
LC3-II protein levels were determined upon incubation with 
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or without 10 µM chloroquine for 2 h (16).

Lentivirus-mediated CBX4 knockdown

Human CBX4-specific short hairpin RNA (shRNA) 
(GATGAAGATAGTCAAGAACAA) underwent cloning 
into the hU6-MCS-Ubiquitin-IRES-Puro vector to yield the 
hU6-MCS-Ubiquitin-IRES-Puro-CBX4-shRNA plasmid 
(GeneChem, Shanghai, China). Lentiviral transduction was 
performed based on a previous report (17). Transfection 
efficiency was determined by real-time reverse transcription 
polymerase chain reaction (RT-PCR) and immunoblot. 
We obtained ESCC cells with stable CBX4 knockdown by 
puromycin (0.5 mg/mL) selection for 10 days.

A protocol was prepared before the study without 
registration.

Generation of a cell line stably overexpressing Beclin 1

For the generation of a cell line overexpressing Beclin 1, 
the pEZ-M02 vector was modified to precisely include the 
open reading frame of human Beclin 1 by GeneCopoeia 
(Rockville, MD, USA). Transfection was performed with 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) as 
directed by the manufacturer.

Xenograft tumor model

Female 4–5-week old BALB/c nude mice (18–20 g) were 
assessed. Xenografts of TE-13 cells in mice were obtained 
by subcutaneously injecting 0.1 mL of normal TE-13 
(n=12) or CBX4-knockdown TE-13 (n=12) cells (106 cells) 
into the right proximal hindlimb. The mice were randomly 
allocated to 4 groups (n=6), including the Control, CBX4-
Knockdown, Control + IR, and CBX4-Knockdown + IR 
groups. Tumors were assessed at 3-day intervals with a 
Vernier caliper, and tumor volume (V) was determined as 
V=(a × b2) ×0.5 (a is the long diameter, and b is the short 
diameter). For irradiation groups, a RS-2000 biological 
irradiator (Rad Source Technologies, Suwanee, GA, USA) 
was employed for irradiation at 6 Gy by X-rays (2 Gy/min)  
when the tumor volume reached about 80 mm3. At 15 d 
following cancer cell injection, the mice were euthanized, 
fol lowed by tumor extraction and weighing (18). 
Experiments were performed under a project license (No. 
050432-4-1212B) granted by The Ethics Committee of 
Fudan University Shanghai Cancer Center, in compliance 
with Animal [Scientific Procedures] Act 1986, national or 

institutional guidelines for the care and use of animals.

Quantitative real-time polymerase chain reaction 

Human CBX4 and Beclin 1 mRNA amounts were 
quantitated with glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) for normalization, by polymerase chain reaction 
(PCR) employing Assays-on-demand Gene Expression 
Products (PE Applied Biosystems, Darmstadt, Germany). 
Total RNA extraction from cells was carried out with 
TRIzol (Invitrogen) as directed by the manufacturer. The 
PrimeScript 1st Strand cDNA synthesis kit (Takara Bio, 
Kusatsu, Shiga, Japan) was employed for circular DNA 
(cDNA) production as instructed by the manufacturer. 
Amplification in 20-μL reactions was performed at 95 ℃  
for 2 min, followed by 40 cycles of 94 ℃ (10 s), 59 ℃ 
(10 s), and 72 ℃ (40 s) on an ABI7900 real-time PCR 
System (Applied Biosystems, Waltham, MA, USA). The 
2-ΔΔCT method was employed for data analysis. Primers 
for CBX4 and Beclin 1 amplification were purchased 
from All-in-One™ qPCR Primer (CBX4, HQP021189; 
Beclin 1, HQP114858; GeneCopoeia) and GAPDH’s 
primer sequences are listed below: GAPDH-Forward, 
GTCTTCACCACCATGGAGAAG; GAPDH-Reverse, 
GTCTTCACCAC CATGGAGAAG.

Immunoblot

Immunoblot was performed essentially as described in a 
previous report (19), with rabbit primary antibodies (1:1,000) 
targeting CBX4 (Catalog no. HQP021189, GeneCopoeia), 
Beclin 1 (Catalog no. HQP114858, GeneCopoeia), cleaved-
PARP (Catalog no. 5625, Cell Signaling Technology, 
Danvers, MA, USA), Bcl-2 (Catalog no. 4223, Cell 
Signaling), Bax (Catalog no. 5023, Cell Signaling), Bad 
(Catalog no. 9239, Cell Signaling) and LC3B (Catalog no. 
3868, Cell Signaling), as well as mouse anti-p62 antibodies 
(Catalog no. 88588, Cell Signaling). Mouse anti-GAPDH 
and rabbit anti-β-actin antibodies (1:500; Bioworld 
Technology, USA) were applied for normalization.

Immunohistochemistry 

For animal tissue samples, immunohistochemistry (IHC) 
was carried out for detecting CBX4 using rabbit anti-CBX4 
antibodies (Abcam, Cambridge, MA, 1:200), and Ki67 with 
rabbit anti-Ki67 antibodies (Abcam, 1:100). We performed 
IHC and scoring as described previously (20).



Zhu et al. CBX4 in ESCC radioresistance

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(18):959 | https://dx.doi.org/10.21037/atm-21-3630

Page 4 of 14

Cell proliferation

Cell Counting Kit-8 (CCK-8) was performed for evaluating 
ESCC cell proliferation. We used 96-well plates for the assay, 
with cell density at seeding of 4×103 cells/well. A CCK-8 
cell proliferation and cytotoxicity assay kit (Obio, Toronto, 
Ontario, Canada) was employed to determine cell viability 
upon treatment, and optical density was read at 450 nm.

Colony formation assessments

Colony formation assessment was based on a previous 
report (21). Briefly, cells (0 Gy, 300 cells; 2 Gy, 600 cells; 
4 Gy, 1,200 cells; 6 Gy, 3,000 cells; 8 Gy, 6,000 cells) were 
seeded in 6-well plates and incubated at 37 ℃ for 14 d 
with X-ray treatment at 2, 4, 6, and 8 Gy, respectively, for 
clonogenic survival assay after radiation. Colony staining 
was carried out with 1% crystal violet staining for 30 s 
following 10% formalin fixation (5 min). Colonies with 
≥50 cells were numbered under an IX51 light microscope 
(Olympus, Shinjuku, Tokyo, Japan). Plating efficiency (PE) 
was calculated as the number of colonies divided by that of 
seeded cells. The surviving fraction (SF) of each radiation 
group was corrected by the PE of the non-radiated control 
group. Dose-response clonogenic survival curves were 
plotted on a log-linear scale. Cell survival curves based 
on the mean survival rates of the cell line were fitted to a 
multi-target single-hit model: S =1− (1– e − D/D0)N, where 
S is the fraction of cells surviving a dose; D0 is the mean 
lethal dose. The Dq was defined as the intercept of the 
extrapolated high dose; N was the extrapolation number; 
and SER (sensitivity enhancement ratio) was derived as 
follows: SER = (D0 of control-shRNA treated group)/(D0 
of CBX4-knockdown group).

Transmission electron microscopy (TEM)

Fresh cells were washed with chilled phosphate-buffered 
saline (PBS), fixation with pre-cooled 2% glutaraldehyde 
(2 hours), and post-fixation with 1% osmium tetroxide. 
Graded ethanol was employed for sample dehydration, 
followed by Epon 812 embedding. We used Leica Ultracut 
R (Leica, Wetzlar, Germany) for sectioning, and ultrathin 
sections underwent staining with uranyl acetate and lead 
citrate, followed by observation under a Philips-CM120 
(Philips, Amsterdam, Netherlands) transmission electron 
microscope. The TEM was operated according to a 
previous report (22).

Immunofluorescence

Cell seeding in 6-well plates was performed at 2×105 cells  
per well on sterilized coverslips. Upon irradiation, cells 
underwent PBS washes, 4% formalin fixation, and 
permeabilization (0.2% Triton X-100 in PBS, 15 min). Then, 
2% bovine serum albumin (BSA) in PBS was employed to 
block non-specific binding (1 h at an ambient temperature), 
followed by successive incubations with primary antibodies 
targeting γ-H2AX (Cell Signaling; overnight at 4 ℃) and 
Alexa Fluor 568-linked donkey anti-rabbit IgG (1:500, 
Invitrogen; 1 h, ambient) (23). Counterstaining was carried 
out with Hoechst 33342 for 10 min. A Zeiss LSM 700 Meta 
confocal microscope (Zeiss, Oberkochen, Germany) was 
used for sample analysis at 100×.

Autophagy detection

A GFP-mRFP-LC3 lentiviral system (GeneChem, China) 
was used for autophagosome detection. We conducted 
ESCC cell transfection with the GFP-mRFP-LC3 lentivirus 
following the manufacturer’s instructions. Cell culture was 
performed on glass-bottom dishes, followed by irradiation 
with a single 8 Gy dose. Autophagosomes were located and 
quantitated under an LSM5 confocal microscope (Zeiss; 63x 
oil-immersion objective).

Cell cycle assay

Cell seeding in 6-well plates was performed at 2×105 cells 
per well. Following overnight culture, cells were irradiated, 
collected by trypsin treatment, and fixed with chilled 
70% ethanol at −20 ℃ overnight. Next, the cells were 
resuspended in propidium iodide (PI) staining solution 
(eBioscience, San Diego, CA, USA) and submitted to >2 h  
incubation at 4 ℃ away from light. A total of 104 events 
were assessed per sample, and cell cycle distribution was 
evaluated on a BD FACSVerse with the ModFit LT software 
(Becton Dickinson and Co., Franklin Lakes, NJ, USA). 
Triplicate assays were carried out.

Statistical analysis

The software SPSS 22.0 (SPSS Inc., IBM Corp., Chicago, 
IL, USA) was used for data analysis, with 2-sided P<0.05 
indicating statistical significance. Normally distributed 
data were expressed as mean ± standard deviation (SD), 
and comparisons were carried out by one-way analysis of 
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variance (ANOVA) with the Tukey post-hoc test. Data 
with skewed distribution were expressed as median ± 
interquartile range (IQR), and comparisons were performed 
by the Wilcoxon rank test for paired samples.

Results

CBX4 contributes to ESCC proliferation

Previous data had identified CBX4 amplification in 
ESCC by whole-genome and whole-exome sequencing, 
with functional studies revealing its contribution to cell 
proliferation, colony formation, and cell invasion in selected 
cell lines (11). We successfully generated stable CBX4-
knockdown cell lines of both TE-13 and KYSE-150 cells 
by utilizing a specific shRNA against CBX4 (Figure 1A,1B). 
In comparison with cells administered control shRNA, 
the CBX4 knockdown groups had significantly decreased 
proliferation rates for both TE-13 and KYSE-150 cells 
detected by CCK-8 (Figure 1C).

To further demonstrate that CBX4 contributes to 
tumor growth in vivo, TE-13 cells with stable CBX4 
knockdown were subcutaneously administered to BALB/c  
nude mice. The results showed that tumors grown from 
CBX4-knockdown cells were much smaller than those 
generated from control cells. After euthanasia, tumor sizes/
volumes in the CBX4-knockdown group were reduced in 
comparison with control values (Figure 1D,1E). Similar 
results were obtained for xenograft weights (Figure 1F). 
Tumor tissues collected from the CBX4-knockdown group 
had fewer Ki67-positive cells compared with control values 
(Figure 1G,1H). Moreover, high CBX4 mRNA expression 
was significantly associated with poor prognosis in ESCC 
data retrieved from the Kaplan Meier (KM)-plot survival 
prediction database (http://kmplot.com/analysis/index.
php? P=service&start=1; Figure 1I). Collectively, the above 
data demonstrated that CBX4 was highly correlated with 
proliferation in ESCC.

CBX4 affects radiosensitivity in ESCC

To investigate the potential regulation of CBX4 involved in 
radiation response, CBX4 expression levels in ESCC cells 
were assessed upon treatment with different irradiation 
doses (0, 2, 4, 6, and 8 Gy). The level of CBX4 in TE-13 
and KYSE-150 cells was significantly and dose-dependently 
upregulated after cell exposure to irradiation (Figure 2A,2B).  
After CBX4 knockdown, ESCC cell susceptibility to 

irradiation was dramatically increased. The survival clones 
were assessed after crystal violet staining, and colony 
formation data were further submitted to a multi-target 
single-hit model (Figure 2C,2D). After CBX4 knockdown, 
the SER values for TE-13 and KYSE-150 cells were 1.13 and 
1.22, respectively. These data suggested that CBX4 silencing 
enhanced ESCC radiosensitivity.

To further demonstrate that knockdown of CBX4 
could contribute to enhancing the radiosensitivity of 
ESCC in vivo, TE-13 cells with stable CBX4 knockdown 
were subcutaneously administered to BALB/c nude mice, 
followed by 6 Gy X-ray irradiation. Tumors grown from 
CBX4-knockdown cells were smaller than those generated 
by control-shRNA treated cells with radiotherapy. After 
euthanasia, tumor sizes/volumes in the CBX4-knockdown 
group were reduced in comparison with those of the 
control group upon irradiation (Figure 2E,2F). Similar 
results were acquired for xenograft weights (Figure 2G). 
The above findings indicated that genetically altering 
CBX4 markedly influenced radioresistance in ESCC cells 
both in vitro and in vivo.

CBX4 regulates radiation-associated DNA damage, cell 
cycle distribution and apoptosis

To explore the mechanisms by which CBX4 affects 
radiosensitivity in ESCC cell lines, different cellular 
responses induced by irradiation, including DNA damage, 
cell cycle arrest, and apoptosis, were measured. First, to 
determine whether CBX4 is involved in double-strand 
DNA break repair, the expression pattern of phospho-
H2AX (γH2AX), a well-recognized sensitive molecular 
marker of DNA damage and repair, was detected in CBX4-
knockdown and shRNA-control treated cells before 
and after irradiation. Representative images of γH2AX 
immunostaining (Figure 3A) and related quantitative analysis 
(Figure 3B) indicated that γH2AX signals were significantly 
increased in a short period of time after irradiation, and then 
slowly dropped in both TE-13 and KYSE-150 cell lines. 
Meanwhile, the expression levels of γH2AX (Figure 3B)  
were higher in CBX4-knockdown groups compared with 
control-shRNA treated counterparts at different time-
points after irradiation. In agreement, the expression levels 
of c-PARP (another indicator of double-strand DNA break), 
detected by western blot, were higher in CBX4-knockdown 
cells than control-shRNA treated cells (Figure 3C).

Besides double-strand DNA breaks, cell cycle arrest is 
another significant parameter for assessing the cell response 

http://kmplot.com/analysis/index.
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to irradiation. Next, cell cycle distribution was examined in 
both CBX4-knockdown and control-shRNA groups before 
and after irradiation. As shown in Figure 3D and Figure S1A,  
the percentages of G2/M phase cells were remarkably 
increased after irradiation in both cell lines; meanwhile, the 
percentages of G2/M phase cells were markedly reduced in 
CBX4-knockdown groups and those of S phase cells were 
increased, in comparison with shRNA-control counterparts. 
This indicated that CBX4 silencing might help cells escape 
irradiation-induced G2/M arrest.

Apoptosis is another important cellular response to 
irradiation. We found that knockdown of CBX4 did not 
affect cellular apoptosis under normal conditions but 
increased apoptotic levels after irradiation in both TE-
13 and KYSE-150 cell lines (Figure 3E and Figure S1B). 
In agreement, CBX4 silencing increased BAD and BAX 
expression levels and decreased BCL2 expression after 
irradiation (Figure 3F). In general, knockdown of CBX4 
increased double-strand DNA damage response, reduced 
cell cycle arrest, and enhanced cellular apoptosis upon 
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irradiation.

CBX4-knockdown promotes radiation-associated cell death 
by suppressing autophagosome formation

To further explore the mechanism by which CBX4 regulates 
radiosensitivity in ESCC, Gene Set Enrichment Analysis 
(GSEA) was performed to examine the potential pathways 
or biological processes involved. Interestingly, low CBX4 
amounts were correlated with reduced expression levels of 
certain components of the autophagy pathways [with false 

discovery rate (FDR)-q value of 0.195], suggesting that low 
CBX4 expression might negatively regulate autophagic 
activity in ESCC (Figure 4A).

To determine whether CBX4 knockdown would affect 
the autophagic flux, GFP-mRFP-LC3 was transfected into 
TE-13 and KYSE-150 cell lines. After puromycin selection, 
these cells were exposed to 8 Gy irradiation. It was found 
that autophagosome numbers were significantly decreased 
both in TE-13 and KYSE-150 CBX4-knockdown cell lines 
without treatment, in comparison with control-shRNA 
cells. Similarly, fewer autophagosomes were found both in 
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Figure 2 CBX4 influences radiosensitivity in ESCC. (A) Relative mRNA expression of CBX4 after exposure at various irradiation doses of 
TE-13 and KYSE-150 cell lines, assessed by qRT-PCR. (B) Protein expression of CBX4 after exposure at various irradiation doses, assessed 
by immunoblot. (C) Stably transfected TE-13 and KYSE-150 cells with lentivirus-associated shRNAs underwent irradiation at 0, 2, 4, 6, and 
8 Gy, respectively, at 2 Gy/min, and incubated for 14 d. Then, the generated colonies were assessed to determine ESCC cell radiosensitivity. 
(D) The multi-target single-hit model was employed for analysis. BALB/c nude mice of the IR NC (TE-13 normal control with irradiation 
at 6 Gy) and IR CBX4 knockdown (TE-13 cells stably transfected with CBX4 shRNA and irradiated at 6 Gy) groups. (E) Tumor volume (mm3) 
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Figure 3 CBX4 regulates radiation-associated DNA damage, cell cycle progression and apoptosis. (A) Representative images of γH2AX 
foci at 12 h following irradiation in TE-13 and KYSE-150 cell lines. (B) Quantitative analysis of γH2AX foci after irradiation. (C) Protein 
amounts of c-PARP and γH2AX, as assessed by immunoblot. (D) Analysis of cell cycle distribution after irradiation. (E) Apoptotic rates after 
irradiation in both TE-13 and KYSE-150 cell lines. (F) Bad, Bax, and Bcl 2 protein expression levels, detected by immunoblot. *, P<0.05; **, 
P<0.01; ***, P<0.001. 
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Figure 4 CBX4 promotes radiation-induced cytotoxicity by suppressing autophagosome generation. (A) GSEA analysis validated the 
autophagy pathway. (B) Quantitative data of autophagosome foci in CBX4-knockdown and control-shRNA treated ESCC cells with 
and without irradiation. (C) Autophagy flux detection by immunofluorescence with or without irradiation. Yellow puncta represent 
autophagosome, red puncta represent autolysosome. (D) Representative electron micrographs of autophagosomes detected by transmission 
electron microscopy. Yellow arrows indicate autophagosome-like vesicles induced by irradiation in ESCC cells. (E) Protein expression 
levels of LC3 with or without CQ/IR, detected by immunoblot. *, P<0.05; **, P<0.01. GSEA, Gene Set Enrichment Analysis; shRNA, short 
hairpin RNA; ESCC, esophageal squamous cell carcinoma.
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TE-13 and KYSE-150 CBX4-knockdown cell lines after 
irradiation in comparison with the control-shRNA groups 
(Figure 4B,4C). Corroborating data were obtained by 
TEM for detecting autophagosome formation (Figure 4D). 
Microtubule-associated protein 1 light chain 3 (MAP1LC3/
LC3) represents an autophagy marker. During autophagy, 
the fat-insoluble form of LC3 (LC3-I) interacts with 
phosphatidylethanolamine (PE), undergoing transformation 
to yield the fat-soluble LC3-II, which contributes to the 
generation of autophagosomes (24). The LC3-II is rapidly 
degraded by lysosomes; thus, autophagy flux can be easily 
measured by alterations in the amount of LC3-II (25). To 
further investigate the role of CBX4 in regulating cellular 
autophagic activity, transition from LC3 type I to type II 
was assessed by immunoblot. The protein levels of LC3-
II were significantly increased in control-shRNA groups 
compared with CBX4 knockdown groups with or without 
irradiation, or after chloroquine (CQ) administration. 
In comparison with irradiation or CQ administration as 
monotherapy, the combined administration of irradiation 
and CQ resulted in more pronounced transition of LC3-
II at the protein level in both control-shRNA and CBX4-
knockdown groups (Figure 4E).

CBX4 regulates autophagic activity after irradiation by 
targeting Beclin 1

Beclin 1 controls autophagosome formation and maturation 
(26-28). The expression of Beclin 1 was examined in 
CBX4-knockdown and control-shRNA ESCC cell 
lines after irradiation or not. The data revealed that 
Beclin 1 levels were dramatically decreased after CBX4 
knockdown. Meanwhile, p62, which is considered a specific 
autophagosome cargo protein, was remarkably upregulated 
after CBX4 knockdown (Figure 5A).

To further determine the role of Beclin 1 in regulating 
CBX4 for radioresistance and autophagy inhibition in 
ESCC, Beclin 1 was overexpressed in ESCC cell lines. The 
results clearly demonstrated that Beclin 1 overexpression 
increased colony formation after irradiation (Figure 5B,5C)  
and reversed autophagy inhibition induced by CBX4 
silencing according to LC3-II levels (Figure 5D). In 
agreement, autophagosome formation and maturation 
were significantly enhanced after Beclin 1 overexpression 
in ESCC cell lines (Figure 5E,5F). Collectively, the above 
findings indicated that radioresistance could be partly 
attributed to irradiation-associated autophagy activation.

Discussion

With recent advances in physics and biology, radiation 
therapy has moved into the era of precision medicine. 
Precision radiation radiotherapy at the biological level is 
also very promising. However, in multiple malignancies, 
recurrence is linked to acquired radioresistance (29). 
Developing novel approaches or identifying new biomarkers 
to overcome resistance is the key to improve the response 
rate in tumor radiotherapy, fulfilling the requirements of 
precision radiotherapy at the biological level. Radiotherapy is 
critical to non-operative treatment of ESCC (30). However, 
radioresistance prolifically causes recurrence and reduces 
survival in the ESCC treatment process (31). Moreover, 
a great deal of ESCC cases show local recurrence upon 
radiation therapy, with relapsed ESCC being generally more 
aggressive. Multiple reports have assessed potential target 
molecules for overcoming ESCC resistance to radiotherapy, 
few of which have shown beneficial clinical effects (32). As 
shown above, CBX4 played an oncogenic role by contributing 
to ESCC growth, and was upregulated by radiation in a dose-
dependent manner. Meanwhile, we also investigated the 
role of CBX4 in radiosensitivity both in cultured cells and 
nude mice. We firstly demonstrated that CBX4 silencing in 
ESCC cells could improve radio-response. These findings 
imply that targeting CBX4 could be a promising approach for 
overcoming radioresistance in this challenging malignancy.

It was suggested that autophagy is important in regulating 
carcinogenesis and tumor progression, as well as in 
determining tumor cell response to antitumor treatment. 
However, autophagy plays sophisticated roles in these 
cancer-associated processes, with conflicted consequences 
in cancer cells (33). To determine the cellular mechanism 
by which CBX4 modulates radioresistance, we further 
examined whether this molecule is important in inducing 
autophagy and participates in resistance to apoptosis 
associated with stress. As shown above, CBX4 regulated 
Beclin 1 protein expression. Improved radiosensitivity was 
observed after Beclin 1 overexpression, indicating that 
CBX4 contributes to cellular autophagy and radioresistance 
by regulating Beclin 1. A multi-domain protein, Beclin 1 
controls autophagy both positively and negatively. As a gene 
required for embryo survival and development, Beclin 1 also 
has a tumor-suppression function with one allele suppressed 
in multiple malignancies (34,35). Several Beclin 1 domains 
modulate communication among many ligands that could 
change its conformation and binding features, thereby 
making Beclin 1 a critical molecular platform for regulating 
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Figure 5 CBX4 regulates adaptive autophagy after irradiation by targeting Beclin 1. (A) WB detection of Beclin 1 and p62 protein amounts 
with or without irradiation in CBX4-knockdown and control-shRNA treated cells. (B) Representative images depicting colony formation in 
CBX4-knockdown ESCC cells and control-shRNA treated cells with and without Beclin 1 overexpression. (C) Quantitative data of depicting 
colony formation in CBX4-knockdown ESCC cells and control-shRNA treated cells with and without Beclin 1 overexpression. (D) Protein 
expression levels of LC3 with or without CQ after irradiation in the indicated cell lines, assessed by WB. (E) Autophagy flux detection 
by immunofluorescence in CBX4-knockdown and control-shRNA treated ESCC cells with and without Beclin 1 overexpression. Yellow 
puncta represent autophagosome, red puncta represent autolysosome. (F) Quantitative data of autophagosome foci in CBX4-knockdown 
and control-shRNA treated ESCC cells with and without Beclin 1 overexpression. *, P<0.05; **, P<0.01. WB, western blot; shRNA, short 
hairpin RNA; ESCC, esophageal squamous cell carcinoma.
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autophagy (36). Meanwhile, Beclin 1’s BH3 domain mediates 
its binding to the anti-apoptotic molecule Bcl2. This 
interaction sterically inhibits PI3K complex synthesis (37),  
which further explains why CBX4 decreases radiation-
induced apoptosis. Modifications could alter Beclin 1/
Bcl2 interaction, allowing cells to regulate autophagy in 
response to several internal and/or external stressors such 
as irradiation (38). Consequently, CBX4 triggers cyto-
protective autophagy after irradiation by targeting Beclin 1 
and causes radioresistance in ESCC cells.

As shown above, CBX4 was correlated with radioresistance 
in ESCC, and regulated radio-response by interacting 
with autophagic activity. However, the limitations of this 
study should be addressed. Although we demonstrated that 
CBX4 might regulate autophagic activity after irradiation 
by targeting Beclin 1, the underlying molecular mechanism 
was not thoroughly investigated in this research. It remains 
unknown whether CBX4 directly interacts with Beclin 1 
or binds to other components for indirect regulation to 
subsequently control autophagic activity. Moreover, for 
potential clinical application, combining radiotherapy and 
autophagic activators such as rapamycin should be assessed in 
further research.

Conclusions

In ESCC radioresistance is promoted by CBX4, and its 
targeting may be a promising approach to improve tumor 
response to radiation therapy. The mechanisms underpinning 
CBX4’s effects deserve further attention, and such effects 
should be verified in experimental studies and clinical trials.
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Supplementary

A

B

Figure S1 CBX4 regulates cell cycle progression and apoptosis. (A) Analysis of cell cycle distribution after irradiation. (B) Apoptotic rates 
after irradiation in both TE-13 and KYSE-150 cell lines.


