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Network pharmacology and molecular docking analysis reveals 
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Background: Asiaticoside (AS) is a saponin extracted from the traditional Chinese herbal medicine Centella 
Asiatica, which has the effects of reducing inflammatory infiltration and anti-oxidation in pneumonia and 
combating pulmonary fibrosis. We hypothesize that AS might have therapeutic potential for the treatment of 
the coronavirus disease 2019 (COVID-19). With the help of network pharmacology and molecular docking 
techniques, this study discussed the underlying molecular mechanism of AS in the treatment of COVID-19.
Methods: The molecular structure of AS was obtained from the Traditional Chinese Medicine Systems 
Pharmacology Database and Analysis Platform (TCMSP) system. The targets of AS were achieved using 
PharmMapper, SwissTargetPrediction, and the Comparative Toxicogenomics Database (CTD). The 
targets corresponding to COVID-19 were obtained using GeneCards, Online Mendelian Inheritance in 
Man (OMIM), and CTD database. Then, a target protein-protein interaction (PPI) network was formed 
using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. A network of 
AS, COVID-19, and their co-targets was built using Cytoscape. Afterwards, the co-targets were analyzed 
by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. 
Moreover, the predictions of crucial targets were further investigated by performing molecular docking 
with AS.
Results: A total of 45 core targets of AS were found to be engaged in the pathogenesis of COVID-19. The 
KEGG enrichment analysis indicated that AS might be protective against COVID-19 through inflammation- 
and immune-related signaling pathways, including interleukin-17 (IL-17) signaling, T helper 17 (Th17) cell 
differentiation pathway, Coronavirus disease-COVID-19, MAPK, the PI3K-Akt signaling pathway, and so 
on. The results of molecular docking showed that AS had a high affinity with those core targets.
Conclusions: The beneficial effect of AS on COVID-19 might be through regulating multiple immune or 
inflammation-related targets and signaling pathways.
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Introduction

Coronavirus disease 2019 (COVID-19) was induced by 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), a haunting coronavirus discovered in humans. The 
initial outbreak of SARS was caused by the peer of the same 
species of SARS-CoV-2, a SARS-CoV (1). Later, the middle 
east respiratory syndrome-related coronavirus (MERS-CoV) 
caused the MERS outbreak in 2015 (2). Like its predecessors, 
COVID-19 has wreaked severe outbreaks of acute 
respiratory diseases and provoked great panic worldwide (3). 
Since its first report in Wuhan, Hubei, China, COVID-19 
has spread to the whole world with almost 100 million 
diagnosed patients and caused more than 2,141,468 deaths by 
11:55 am Central European Time (CET) 27 January 2021, 
as reported by the World Health Organization (WHO). 
Patients with COVID-19 exhibited hyperinflammatory 
response, also called a cytokine storm, which has been 
observed and is suspected of causing the detrimental 
progression of COVID-19 (4). The common symptoms of 
COVID-19 patients have been dry cough, fever, upper airway 
congestion, shortness of breath, sputum production, fatigue, 
arthralgia, and myalgia (5). Older populations and those 
with reduced immunity have proven more likely to exhibit 
severe symptoms like pneumonia, acute respiratory distress 
syndrome (ARDS), acute respiratory failure, kidney failure, 
and even death (5). Currently, the disease’s exact pathogenesis 
is not fully understood, and effective disease-specific drugs 
are greatly anticipated.

Traditional Chinese medicine (TCM) is a comprehensive 
system with multicomponent and multi-target characteristics 
that exert synergistic effects on many diseases with fewer 
side effects. The potential of TCM in the prevention and 
treatment of COVID-19 has attracted mounting interest. 
Based on the classification system of TCM, the core 
pathogenesis of COVID-19 is a wet epidemic caused by cold 
and humidity outside the lung and spleen, which transforms 
into heat and leads to heat stagnation (4). Throughout 
the thousands of years of Chinese civilization, TCM has 
acquired rich clinical experience in diagnosing and treating 
epidemics and has been shown to reduce the mortality 
rate and improve the prognosis of a range of diseases. It 
has been demonstrated that TCM could shorten fever 
duration and accelerate symptomatic relief in patients with 
severe COVID-19 (6,7). In the Diagnosis and Treatment 
Program of COVID-19 (trial version 7; available at: http://
www.nhc.gov.cn/xcs/zhengcwj/202003/46c9294a7dfe4cef
80dc7f5912eb1989.shtml), jointly issued by the National 

Health Commission and the National Administration of 
Traditional Chinese Medicine, Chinese herbal decoctions, 
and Chinese patent medicine, TCM has been suggested as a 
possible option for the treatment of COVID-19. More than 
85% of SARS-CoV-2-infected patients have received TCM 
treatment in China (8). Early intervention with TCM could 
delay the disease progression, shorten the disease course, 
improve the cure rate, and reduce the mortality rate (7,9). 
However, the complicated ingredients of TCM make it 
challenging to understand the mechanisms.

Asiaticoside (AS) is a natural Chinese medicine monomer 
extracted from Centella Asiatica, which has been used for 
many years to treat dermal disorders, venous insufficiency, 
and microangiopathy (10). In 2008, AS was launched 
in China with the approval of the State Food and Drug 
Administration (Z20083081). It has two pharmaceutical 
forms, including AS tablet and AS ointment. It has been 
reported that AS has potent pharmacological activity as well 
as broader pharmacological effects including anti-oxidant 
and scavenging free radicals, antidepressant and anti-
anxiety, immune regulation and anti-inflammatory, anti-
ulcer, hepato-protective, and antitumor activities (11,12). 
Researchers have found that AS exerts therapeutic effects 
on diarrhea, asthma, tuberculosis, atherosclerosis, wound 
healing, as well as antifungal and antibacterial (13,14). 
It has the functions of relieving asthma, clearing heat, 
and detoxifying dampness (15). It is effective against 
pulmonary infection and prevents lipopolysaccharide (LPS)-
induced acute lung injury through potent anti-inflammatory 
effects (16). Also, AS has been shown to have an impact on 
the prevention and treatment of H5N1/H1N1 by inhibiting 
the mTOR pathway (17). Based on the evidence above, we 
proposed that AS could exert a positive therapeutic effect 
on COVID-19.

In regard to the working mechanism, TCM regulates 
the human body synergistically through multiple targets, 
although it is challenging to identify specific action 
mechanisms. Network pharmacology is an emerging 
method that merges computer science and clinical 
medicine. Meanwhile, it constructs and visualizes the 
‘multi-gene, multi-target, and multi-pathway’ interaction 
network to assess the molecular mechanism of medicine (18).  
This approach is especially suitable for researching 
multicomponent medicines such as TCM due to their 
complex matrix nature (19). Molecular docking is a pathway 
for structural molecular biology and computer-aided 
drug design in novel medicines (20). The targets found 
by network pharmacology are considered as receptors. 

http://www.nhc.gov.cn/xcs/zhengcwj/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml
http://www.nhc.gov.cn/xcs/zhengcwj/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml
http://www.nhc.gov.cn/xcs/zhengcwj/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml
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Therefore, the integration of network pharmacology 
and molecular docking helps accelerate experimental 
verification and target discovery (4). With the help of 
network pharmacology and molecular docking, we explored 
the molecular mechanism of how AS improves COVID-19 
and laid the foundation for investigating the molecular basis 
of COVID-19 treatment with AS. The detailed procedure 
is shown in Figure 1. Although AS has not been applied for 
COVID-19 in China at present, our study would show it 
was beneficial in the treatment of COVID-19 and it may 
be a potential agent. The research also provided a rapid 
channel for the discovery and application of new anti-CoV 
therapeutics.

Methods

Predicting the targets of AS

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The protein targets 
related to AS were retrieved from SwissTargetPrediction 

(http://www.swisstargetprediction.ch/), Comparative 
Toxicogenomics Database (CTD; (https://ctdbase.org/;jse
ssionid=84E0B5D0353A4B9A77545215380F0CA7), and 
the PharmMapper database (http://www.lilab-ecust.cn/
pharmmapper/). After the line notations (from Simplified 
Molecular-Input Line-Entry System) of AS were imported 
into the SwissTargetPrediction database, target information 
was then obtained. The SwissTargetPrediction database is 
a web server that accurately predicts the similarity in the 
targets of bioactive molecules based on their chemistry (21). 
PharmMapper (22) could predict potential biological targets 
for a given small molecule against all the experimentally 
determined three-dimensional (3D) structures of proteins 
available on PharmTargetDB. The candidate targets of AS 
were predicted by PharmMapper after the 3D structures had 
been submitted, and all the parameters were kept as default. 
The CTD is a publicly available database providing curated 
core information about chemical genes/protein interactions, 
chemical diseases, and gene-disease relationships from peer-
reviewed literature (23). The potential targets of AS were 

SwissTargetPrediction

Venn program

58 Co-genes

STRING R

PPI analysis

AutoDock PDB Pymol Molecular 
docking

KEGG analysis GO analysis

Metascape

PharmMapper

COVID-19 Asiaticoside CTD

OMIM

GeneCards

CTD

Figure 1 The flow chart of this whole analysis for this study. CTD, Comparative Toxicogenomics Database; COVID-19, coronavirus 
disease 2019; OMIM, Online Mendelian Inheritance in Man; STRING, Search Tool for the Retrieval of Interacting Genes/Proteins; PPI, 
protein-protein interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; PDB, Protein Data Bank.

http://www.swisstargetprediction.ch/
http://ctdbase.org/;jsessionid=84E0B5D0353A4B9A77545215380F0CA7
http://ctdbase.org/;jsessionid=84E0B5D0353A4B9A77545215380F0CA7
http://www.lilab-ecust.cn/pharmmapper/
http://www.lilab-ecust.cn/pharmmapper/
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predicted using CTD with default setting parameters.
After removal of duplicated data, the desired targets 

were obtained. Then, the target proteins screened from the 
three databases were standardized in The Universal Protein 
Resource (UniProt; https://www.uniprot.org/), and the 
targets of “Homo sapiens” were reserved for further analysis.

Predicting the targets of COVID-19

The COVID-19-related target proteins were screened from 
the following three sources: (I) GeneCards database (https://
www.genecards.org/), which is an online database of human 
genes and genetic diseases enabling navigate gene-disease 
linkages (24); (II) Online Mendelian Inheritance in Man 
database (OMIM; https://www.omim.org/), which possesses 
over 15,500 gene entries, and focuses on explaining the 
relationships of gene-phenotype (25); (III) CTD database. 
We established a COVID-19-related gene set by combining 
these search results.

Intersection of drug targets and disease targets

Using the Venn diagram intersection, we mapped the 
COVID-19 targets to those of AS and located the 
overlapping drug-disease targets. These targets were 
considered potential targets of AS action in the treatment of 
COVID-19.

Protein-protein interactions (PPIs) network construction

We gathered the common targets of COVID-19 and AS 
as the co-targets of AS for COVID-19. The Search Tool 
for the Retrieval of Interacting Genes/Proteins database 
(STRING; https://cn.string-db.org/cgi/input.pl) was used 
to integrate all publicly available sources of PPI information 
and complement these with computational predictions. The 
co-targets were input into STRING and a PPI network 
was built to construct a comprehensive global network, 
including physical and functional interactions. The cutoff 
of the PPI confidence score was 0.4. Degree stood for the 
number of connections of the node in the whole network, 
reflecting the interaction information between nodes and 
the importance of the core targets. The targets were sorted 
by degree, and the top 30 nodes were displayed.

Construction of the whole network

The intersection of PPI target and drug-disease common 

targets were taken for further analysis. A visual drug-disease-
target network was established based on data mentioned 
above through Cytoscape (version 3.8.0) to visualize the 
complicated relationships between drug-disease and their 
potential targets (26). In the network, nodes represented the 
drug, targets, and disease, while the connections between 
them represented these biological interactions. The top 16 
targets were listed in the central panel, which was screened 
based on the degree value. The molecular degree value 
reflected the number of connections between the molecular 
and target in the network (27). A larger value indicated a 
greater possibility for the component to become the critical 
target of AS for COVID-19.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis

Metascape (https://metascape.org/gp/index.html#/main/) is 
a portal website designed to provide an extensive gene list 
annotation and analysis resource. Metascape integrates gene 
annotation, functional enrichment, membership search, 
and interactome analysis to leverage over 40 independent 
knowledgebases within one integrated portal in the field 
of design features. Therefore, Metascape was useful in 
processing data for GO analysis on following aspects: 
biological process (BP), molecular function (MF), and 
cellular component (CC) (28).

To understand gene functions and signaling pathways of 
potential targets, KEGG pathway analysis (29) was carried 
out using the clusterProfiler package and org.Hs.eg.db 
(30,31) to locate the gene ID of the potential targets. The 
statistical significance threshold of enrichment analysis was 
P<0.05 and adjusted P<0.05. The top 20 enriched terms 
were shown on a chord plot if exist.

AS-target molecular docking

After taking the intersection of genes in the whole network 
and involved in the KEGG pathways, the top 9 targets 
(ranked by their degree values) were chosen for molecular 
docking analysis. In detail, the 9 targets and AS were used 
as receptors and ligands, respectively. The 3D structure 
of these targets was obtained from the Protein Data Bank 
(PDB) database (https://www.rcsb.org/). AutoDock 1.5.6 
(https://autodock.scripps.edu/) was used to remove the 
water molecules, add the nonpolar hydrogen, isolate 
proteins, calculate Gasteiger charges for the structure, and 
perform molecular docking using local search parameters. 

https://www.genecards.org/
https://www.genecards.org/
https://www.omim.org/
https://cn.string-db.org/cgi/input.pl
https://metascape.org/gp/index.html#/main/
https://www.rcsb.org/
https://autodock.scripps.edu/
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The generated conformation with the best affinity was then 
selected and visualized in Pymol 2.3 (https://pymol.org/2/).

Statistical analysis

The cutoff of the PPI confidence score was 0.4 by 
STRING. GO analysis was performed by Metascape 
and KEGG pathway analysis was conducted using R as 
mentioned above. The statistical significance threshold 
of enrichment analysis was P<0.05 and adjusted P<0.05. 
Molecular docking was carried out using local search 
parameters. The generated conformation with the best 
affinity was then selected and visualized in Pymol.

Results

Screening of potential drug-disease targets

As shown in Table 1, 97 potential targets for AS action were 
mined. Additionally, a total of 7,415 COVID-19 associated 
genes were acquired from the CTD, GeneCards, and 
OMIM databases (online available: https://cdn.amegroups.
cn/static/public/atm-22-51-01.pdf). The mapping of the AS 
targets with the COVID-19 targets yielded 58 genes, which 
were the possible targets of the AS action in treating the 
disease (Figure 2 and Table 2).

PPI network of the co-targets

To understand the mechanism of AS in treating COVID-19, 
it was necessary to determine the interactive effect of the 
co-target proteins. By overlapping the AS targets with 
those involved in COVID-19, 58 potential co-targets were 
identified and fed into the STRING database to obtain the 
interlaced network containing correlations among targets. 
After hiding the disconnected nodes, 45 targets were 
presented in the whole network (Figure 3A and Table 3).  
The top 30 targets are shown in Figure 3B, which were 
expected as the core targets in the PPI network. They 
probably participate in the treatment mechanism of AS for 
COVID-19. It was assumed that AS carries out its medicinal 
effect and treats COVID-19 by acting on these core targets.

The construction of the disease-target-drug network

After taking the intersection of drug-disease co-targets and 
PPI targets, we condensed the disease-target-drug network 
containing 47 nodes (including AS, COVID-19, and  

45 genes) and 233 edges (Figure 3C). A larger node reflected 
greater importance. Interestingly, the genes in the network 
were precisely consistent with those in PPI, which illustrated 
the accuracy of the analysis results. The top 16 genes with a 
degree above 9 were involved in transcription 3 (STAT3), jun 
proto-oncogene (JUN), mitogen-activated protein kinase 14 
(MAPK14), mechanistic target of rapamycin (mTOR), brain-
derived neurotrophic factor (BDNF), catalase (CAT), matrix 
metallopeptidase 2 (MMP2), BCL2 like 1 (BCL2L1), nerve 
growth factor (NGF), heat shock protein 90 alpha family 
class a member 1 (HSP90AA1), MAPK9, Bruton tyrosine 
kinase (BTK), nuclear factor of activated T cells 1 (NFATC1), 
interferon regulatory factor 4 (IRF4), MMP1, and nuclear 
receptor coactivator 3 (NCOA3).

GO enrichment analysis

Currently, a problem exists in most GO analyses. The 
redundancies in ontologies and descriptors can sometimes 
complicate the interpretation of the output. For instance, 
ontology terms found in GO form a hierarchical structure of 
increasing granularity, which makes the terms unnecessarily 
redundant. Besides, terms from different ontology sources 
can be closely related. As the functional enrichment analysis 
can identify overlapping or related terms, it is not effortless 
to extract non-redundant and representative processes to 
report in the analysis output. To further understand the 
core genes in different GO terms, Metascape, which could 
cluster the redundant terms, was used to perform GO 
enrichment analysis. The GO chord plots which could 
represent the core targets related to GO annotations were 
constructed.

In the right panel of Figure 4 (P<0.05), the color 
transition from red to purple represents the increasing P 
value and the decreasing significance of a term. In the left 
panel, the genes from top to bottom implies the descending 
degree and importance of the core genes. As shown in 
Figure 4A (P<0.05), the 20 top-ranking terms about BP 
were chosen. The positive regulation of transferase activity, 
response to acid chemical, reactive oxygen species metabolic 
process, muscle cell proliferation, positive regulation of CC 
biogenesis, leukocyte activation, and so on, were included. 
Based on CC enrichment analysis, the targets contained 
serine/threonine protein kinase complex, presynapse, 
perinuclear region of cytoplasm, Golgi lumen, and ficolin-1-
rich granule lumen, RNA polymerase II transcription factor 
complex, and mitochondrial matrix (Figure 4B; P<0.05). 
Simultaneously, MF terms mainly contained protein kinase 

https://pymol.org/2/
https://cdn.amegroups.cn/static/public/atm-22-51-01.pdf
https://cdn.amegroups.cn/static/public/atm-22-51-01.pdf
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Table 1 Target prediction result for AS

Symbol Source

RARG PharmMapper

NF2 PharmMapper

CSDE1 PharmMapper

PRPS1 PharmMapper

MAPK9 PharmMapper

UAP1 PharmMapper

PCNA PharmMapper

CCNE1 PharmMapper

NUDT18 PharmMapper

FES PharmMapper

ZEB2 PharmMapper

MUC1 PharmMapper

ITPKC PharmMapper

IQUB PharmMapper

TIMM9 PharmMapper

HBEGF PharmMapper

ARHGAP5 PharmMapper

MSN PharmMapper

TRIM21 PharmMapper

NAGK PharmMapper

RND1 PharmMapper

BTK PharmMapper

FABP2 PharmMapper

RARB PharmMapper

VAV2 PharmMapper

HSCB PharmMapper

IGHV4-59 PharmMapper

GALM PharmMapper

KYNU PharmMapper

SULT2A1 PharmMapper

ACADVL PharmMapper

NR1I3 PharmMapper

NR3C2 PharmMapper

NR3C2 PharmMapper

MAP3K3 PharmMapper

Table 1 (continued)

Table 1 (continued)

Symbol Source

AOC3 PharmMapper

HBB PharmMapper

MAPKAPK2 PharmMapper

PDK3 PharmMapper

MYSM1 PharmMapper

NEO1 PharmMapper

PDK2 PharmMapper

HIBCH PharmMapper

HFE PharmMapper

GALK1 PharmMapper

DTYMK PharmMapper

ACVR2B PharmMapper

ASAP1 PharmMapper

NFATC1 PharmMapper

NAE1 PharmMapper

CUX2 PharmMapper

HSP90AA1 PharmMapper

TUT1 PharmMapper

CDK5R1 PharmMapper

MAGEA4 PharmMapper

NMRK1 PharmMapper

RRM1 PharmMapper

MMP2 PharmMapper

HLA-E PharmMapper

RAN PharmMapper

MAPK6 PharmMapper

POU2F1 PharmMapper

PAH PharmMapper

HMGCS1 PharmMapper

IRF4 PharmMapper

MMP1 PharmMapper

FCGR2A PharmMapper

NCOA3 PharmMapper

PRPSAP2 PharmMapper

Table 1 (continued)
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binding, transcription factor binding, kinase activity, MAPK 

binding, lipid binding, oxygen binding, nuclear receptor 

activity, protein homodimerization activity, growth factor 

activity, protein tyrosine kinase binding, protein domain 

specific binding, protein phosphatase binding, and serine-

type endopeptidase activity (Figure 4C; P<0.05).

KEGG enrichment analyze

To comprehensively clarify the numerous mechanisms 
of AS on COVID-19, KEGG pathway enrichment 
analyses were conducted using org.Hs.eg.db and the 
clusterProfiler package of R. The primary pathology of 
COVID-19 is viral pneumonia with patchy inflammatory 
cel lular infi l trat ion and pulmonary edema. From 
the results of the 20 top-ranking pathways that were 
screened out (Figure 4D; P<0.05), those were enriched in: 
(I) immune- and inflammation-related signaling pathways 
such as T cell receptor signaling pathway, T helper 17 
(Th17) cell differentiation, and interleukin-17 (IL-17) 
signaling pathway. (II) Cancer related pathways included 
proteoglycans in cancer, programmed death-ligand 1 
(PD-L1), and programmed cell death protein 1 (PD-1)  
checkpoint pathway in cancer. (III) Virus infection-
related pathways included hepatitis B, measles, herpes 
virus infection-associated with Kaposi sarcoma, and even 
directedly targeting COVID-19. Beyond that, as shown in 
Table 4, the Epstein-Barr virus infection, Yersinia infection, 
Th1 and Th2 cell differentiation, relaxin signaling pathway, 
human T-cell leukemia virus 1 infection, apoptosis, tumor 
necrosis factor (TNF) signaling pathway, MAPK signaling 
pathway, PI3K-Akt signaling pathway, and so on, were also 
significantly enriched.

Results of molecular docking

The intersection of the top 16 genes in the disease-target-
drug network and the top 16 genes in the KEGG pathways 
were taken for molecular docking. The result showed that 
AS had a strong affinity with the chosen proteins STAT3, 
JUN, MAPK14, MTOR, MMP2, HSP90AA1, MAPK9, 
BTK, and NFATC1. As shown in Figure 5, the drug and 
target proteins could form a stable complex by binding 
different hydrogen bonds with the residues at very close 
distance.

Discussion

The COVID-19 pandemic is a public health emergency 
causing worldwide concern, which has had an enormous 
impact on the global health economy (32). The pathogenesis 
of COVID-19 is extremely complicated. Patients who are 
susceptible to this pathogenic coronavirus face a risk of 

Table 1 (continued)

Symbol Source

ZCWPW1 PharmMapper

BCL2L1 SwissTargetPrediction

HSD11B2 SwissTargetPrediction

HSD11B1 SwissTargetPrediction

JUN SwissTargetPrediction

PTPA SwissTargetPrediction

GLI1 SwissTargetPrediction

F2 SwissTargetPrediction

GLRA1 SwissTargetPrediction

GLRA2 SwissTargetPrediction

PTAFR SwissTargetPrediction

STAT3 SwissTargetPrediction

RORC SwissTargetPrediction

FDFT1 SwissTargetPrediction

PTPN1 SwissTargetPrediction

BDNF CTD

NGF CTD

PDPK1 CTD

CAT CTD

CYP2C19 CTD

CYP3A4 CTD

MAPK14 CTD

MTOR CTD

PEBP1 CTD

PIK3R6 CTD

SLC18A2 CTD

STX1A CTD

SYNJ1 CTD

TH CTD

AS, asiaticoside; CTD, Comparative Toxicogenomics Database.
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developing many fatal complications, such as organ failure, 
pulmonary edema, septic shock, severe pneumonia, and 
ARDS (33,34). However, a drug that can effectively treat 
COVID-19 has not yet been identified.

When exposed to human coronaviruses pathogens, the 
host immune system reacts immediately by triggering related 
defense mechanisms to achieve a more efficacious shield. This 
process can be characterized by the increase of inflammatory 
cytokines and chemokines (35). The deteriorated clinical 
presentation of COVID-19 is also associated with arrantly 
elevated pro-inflammatory cytokines, including IL-1β, IL-
6, IL-8, and IL-17 (36). As reported, Chinese medicine with 
anti-inflammatory function has exhibited a tremendous 
beneficial effect in treating COVID-19 by markedly relieving 
primary symptoms like fever and cough, and could accelerate 
recovery (7). For example, Lian Hua Qing Wen notably 
inhibited the replication of SARS-CoV-2 in Vero E6 cells as 
well as reduced pro-inflammatory cytokine TNF-α and IL-6 
expression at the messenger RNA (mRNA) level (37). Shen 
Fu injection has been shown to reduce the lung inflammation 

and decrease the expression levels of IL-1β and IL-6 in 
COVID-19 patients (9).

AS, which is well tolerated with minimal side effects 
and superior efficacy as many other herbal medicines, has a 
broad-spectrum anti-inflammatory and anti-oxidant effect 
and has the functions of clearing heat, detoxifying dampness, 
and relieving asthma (11,12,15). Moreover, it is likely to 
have value as a potential intervention for ARDS (38).

In this study, 45 potential co-targets (Table 3) and 67 
significantly enriched signaling pathways (Table 4) were 
identified by network pharmacology in treating COVID-19 
with AS, among which many were involved in the cytokine 
storms and ARDS. The results of the PPI network showed 
that AS might weaken cytokine storms by regulating 
STAT3, JUN, MAPK14, mTOR, MMP2, HSP90AA1, 
MAPK9, BTK, NFATC1, and other genes (Figure 3). Among 
them, mTOR is a critical factor elevated during a cytokine 
storm of COVID-19 and participates in cell metabolism 
and proliferation (39). As reported, AS has an influence on 
the treatment of H5N1/H1N1 by inhibiting the mTOR 

OH

OH
OHOH

OHOH
OH

HO

HO

HO

HO

HO O

O
O

O

O
OO

O

AsiaticosideCOVID-19

7,357 58 39

A B

Figure 2 The structure of AS obtained from TCMSP system (A) and venn diagram for the targets of COVID-19 and AS (B). (The detailed 
are listed in Table 2). AS, asiaticoside; TCMSP, Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform; 
COVID-19, coronavirus disease 2019.

Table 2 Co-targeted genes for AS and COVID-19

Symbol

NF2, CSDE1, MAPK9, PCNA, CCNE1, NUDT18, ZEB2, MUC1, ITPKC, TIMM9

HBEGF, MSN, TRIM21, RND1, BTK, FABP2, RARB, VAV2, GALM, ACADVL

NR3C2, HBB, PDK3, PDK2, HFE, ACVR2B, ASAP1, NFATC1, NAE1, HSP90AA1

TUT1, CDK5R1, MMP2, POU2F1, HMGCS1, IRF4, MMP1, NCOA3, PRPSAP2, BCL2L1

HSD11B2, HSD11B1, JUN, F2, GLRA1, PTAFR, STAT3, PTPN1, BDNF, NGF

CAT, CYP2C19, CYP3A4, MAPK14, MTOR, PEBP1, SLC18A2, TH

AS, asiaticoside; COVID-19, coronavirus disease 2019.
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pathway (17), which shows the potential of AS in treating 
COVID-19 by inhibition of mTOR.

The KEGG enrichment analysis indicated that the core 
targets were mostly enriched in inflammation- and immune-
related signaling pathways: Th17 cell differentiation, IL-17, 
TNF, MAPK, and the PI3K-Akt signaling pathway. Previous 
studies have demonstrated that the MAPK signaling 
pathway contributes to the development of ARDS (40).  
Currently, the MAPK signaling pathway is considered to 

be deeply involved in the COVID-19 pathogenesis (41). 
Our analysis showed the hub genes of JUN, MAPK14, and 
MAPK9 were involved in the MAPK signaling pathway. It 
was reported AS exhibited extraordinary anti-inflammatory 
activity by inhibiting the MAPK pathways (42). The results 
indicated that the synergistic therapy of AS inhibited 
COVID-19 partly by suppressing the MAPK pathways. The 
STAT3 gene plays a significant part in inflammation control 
and immunity (43). In cells infected by SARS-CoV-2, 
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Figure 3 An association network of AS-targeted proteins associated with COVID-19. (A) The PPI network of overlapping targets of 
COVID-19 and AS. (B) The top 30 co-target proteins (ranked by their degree values). (C) Interaction between COVID-19, AS and  
co-targets (constructed using Cytoscape). The proteins were ranked by their degree values, and the larger 16 hub nodes in the inner ring 
represent greater importance. AS, asiaticoside; COVID-19, coronavirus disease 2019; PPI, protein-protein interaction.
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increasing STAT3 induced the secretion of pro-inflammatory 
cytokines and chemokines, which results in the infection 
of regional endothelial cells (44). It has been reported that 
AS attenuates neonatal hypoxic-ischemic brain damage by 
suppressing the STAT3 pathway (45), which indicates that 
AS could silence COVID-19 by attenuating the STAT3 
signaling pathway. In the process of cytokine storm, the 
up-regulation of Th17 and Th17 cell cytokine IL-17A is 
mainly responsible for the immunopathology of COVID-19 
and ARDS (36). Also, the activation of STAT3 leads to 
the deposition of IL-17 (46). Growing evidence indicates 
that the host Th17 inflammatory responses contribute 
to the severe lung pathology and induce the mortality of 
lower airway infection of coronaviruses (47). Researchers 
have suggested targeting IL-17A signaling to manage 
COVID-19 patients by effectively inhibiting cytokine storm 
syndrome (48). Our network analysis demonstrated that 
AS could regulate Th17 and the IL-17A signaling pathway 
to exert a therapeutically beneficial effect on COVID-19. 
The PI3K/Akt signaling pathway regulates the release of 
inflammatory transmitters in inflammatory response in the 
lungs and airways (49). The latest studies demonstrated 
that during the SARS-CoV-2 infection, the PI3K/Akt/
mTOR pathway was activated in a dose-dependent manner 
which activated cell apoptosis process (50). A previous study 
found that AS was beneficial to the treatment of diabetes-
associated cognitive deficits through inhibiting the PI3K/
Akt/NF-κB pathway (51). We conjectured that AS regulates 
the PI3K-Akt signaling pathway to potentiate the healing 
of COVID-19 (52). Severe oxidative stress triggered by 

Table 3 The information for the core targets

Target Degree

STAT3 24

JUN 22

MAPK14 18

MTOR 16

BDNF 15

CAT 15

MMP2 14

BCL2L1 13

HSP90AA1 11

NGF 11

MAPK9 10

BTK 8

IRF4 7

MMP1 7

NCOA3 7

NFATC1 7

CCNE1 5

CYP3A4 5

HBEGF 5

NR3C2 5

TH 5

F2 4

ITPKC 4

MUC1 4

PTAFR 4

PTPN1 4

NF2 3

PEBP1 3

TRIM21 3

VAV2 3

ACVR2B 2

CDK5R1 2

HSD11B1 2

PCNA 2

PDK2 2

Table 3 (continued)

Table 3 (continued)

Target Degree

POU2F1 2

RARB 2

SLC18A2 2

ZEB2 2

CYP2C19 1

GLRA1 1

HSD11B2 1

MSN 1

PDK3 1

RND1 1
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SARS-CoV-2 can aggravate the severity of COVID-19 (53).  
Previous studies have demonstrated the anti-oxidation 
and anti-inflammatory effect of a homologous agent of AS 
by increasing the expression level of anti-oxidant factors 
and decreasing inflammatory factors IL-6 and IL-17 (54). 
Such findings might imply AS participates in the treatment 
of COVID-19 through its anti-inflammation and anti-
oxidant abilities. The TNF signaling pathway is a critical 
pathway in the inflammatory response, which could also 
induce apoptosis and oxidative stress (55). Additionally, AS 
could promote cell growth and attenuate cell apoptosis by 
inhibiting the TNF signaling pathway (56).

Furthermore, clinical data indicate that SARS-CoV-2 
infection is related to neurological and neuropsychiatric 
disease, including encephalopathies, encephalitis, acute 

disseminated encephalomyelitis, and inflammatory central 
nervous system (CNS) syndromes (57). It has been found 
that AS protects against neurotoxicity and accelerates nerve 
regeneration (58). It has been applied as a psychoactive drug 
for memory enhancement and in India for a long time (59). 
As shown in Figure 4, AS has a potential neuroprotective 
effect in COVID-19 by regulating the neurotrophin 
signaling pathway. Human coronaviruses could regulate 
numerous cellular processes such as apoptosis (60). In our 
research, the co-target genes enriched in the apoptosis 
pathway indicated that AS could exert a regulatory effect 
on COVID-19 through this pathway. Moreover, AS could 
even directedly act on the coronavirus disease-COVID-19 
pathway. These features indicate that AS is an attractive 
potential drug for COVID-19 treatment.

Positive regulation of transferase activity
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Regulation of cellular protein localization

Reactive oxygen species metabolic process
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Muscle cell proliferation

Eye development
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Figure 4 The enrichment analysis of the core targets. GO enrichment analysis of the core targets belonging to BP (A), MF (B) and CC (C). 
Term is on the right side of the chord plot circle, the gene is on the left side. The corresponding color of the gene ribbon is consistent with 
the color of Term, indicating that this gene is enriched in this term. (D) KEGG enrichment analysis of the core targets. Pathway is on the 
right side of the chord plot circle, the gene is on the left side. The corresponding color of the gene ribbon is consistent with the color of 
Term, indicating that this gene is enriched in this term. Terms and pathway are ordered according to the P value. GO, Gene Ontology; BP, 
biological process; MF, molecular function; CC, cellular component; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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In molecular docking, AS showed a strong affinity with 
these co-core proteins, indicating that AS might indeed 
exert a potent role in treating SARS-CoV-2 by effectively 
targeting the core proteins and the corresponding pathway 
involved. This study has presented a comprehensive 
and systematic understanding of the potential curative 
mechanism of AS in the treatment of COVID-19.

Conclusions

This study systematically explored the potential mechanism 
of AS and found it has the possibility to treat COVID-19 
through numerous targets and pathways, mainly associated 
with immune regulation and the inflammatory response. 
However, there are limitations of network pharmacology 
concerning its prediction. These potential targets and 
pathways predicted by network pharmacology tools and 

bioinformatic techniques need to be confirmed by further 
experimental evidence.
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