
Page 1 of 17

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(4):184 | https://dx.doi.org/10.21037/atm-22-479

Original Article

The prognostic significance of a novel ferroptosis-related gene 
model in breast cancer

Yu-Jie Lu1#, Yang Gong1#, Wen-Jing Li2, Chen-Yi Zhao1, Feng Guo1

1Department of Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China; 2Department 

of Clinical Laboratory, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China

Contributions: (I) Conception and design: YJ Lu, F Guo; (II) Administrative support: F Guo; (III) Provision of study materials or patients: YJ Lu, 

Y Gong; (IV) Collection and assembly of data: YJ Lu, WJ Li, CY Zhao; (V) Data analysis and interpretation: YJ Lu; (VI) Manuscript writing: All 

authors; (VII) Final approval of manuscript: All authors.
#These authors contributed equally to this work.

Correspondence to: Feng Guo. Department of Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, 

26 Daoqian Street, Suzhou 215001, China. Email: 550045590@qq.com.

Background: Breast cancer (BRCA) is the most common malignancy with high heterogeneity in women, 
and the prognostic prediction for BRCA has remained poor. Ferroptosis, a recently identified iron-dependent 
form of programmed cell death, plays a significant role in BRCA treatment. Some BRCA cell lines are 
proven to be sensitive to ferroptosis, and some ferroptosis-related genes have been identified as divers or 
suppressors in the progress of BRCA. This study aimed to explore the prognostic value of ferroptosis-related 
genes in BRCA.
Methods: A ferroptosis-related gene list, messenger RNA (mRNA) gene expression of BRCA patients, and 
corresponding clinicopathological data were collected from public databases. The patients of the Cancer 
Genome Atlas (TCGA) were identified as the training cohort, and the ones of the Gene Expression Omnibus 
(GEO) were looked as the validation cohort. Univariate Cox regression analysis was utilized to identify 
prognostic ferroptosis-related genes, and subsequent multivariate analysis further screened out important 
genes to establish a prognostic model. Receiver operating characteristic (ROC) curves were used to validate 
the model in both internal and external cohorts. Functional analysis was generated to evaluate the potential 
correlation between tumor immunity and ferroptosis-related genes in BRCA.
Results: A ferroptosis-related gene signature stratifying patients into 2 risk score groups was established 
based on the TCGA cohort, and validated in the GEO cohort. Patients with lower risk scores had better 
overall survival (OS) compared to those with higher risk scores (P<0.001, TCGA cohort; P<0.05, GEO 
cohort). The risk score was independently associated with the OS of BRCA patients (P<0.001, TCGA 
cohort; P<0.05, GEO cohort). The area under the curves (AUCs) of the model in the training and validation 
cohorts were all around 0.7. Immune-related biological pathways and immune status were significantly 
different between the 2 divided risk groups.
Conclusions: The novel prognostic model composed of 9 ferroptosis-related genes accurately predicts the 
survival of BRCA patients. It might provide a new sight for ferroptosis-related BRCA therapy.
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Introduction

Breast cancer (BRCA) is the most common malignancy and 
the leading cause of cancer-related death among women 
worldwide (1). It is a highly heterogeneous disease with 
complex and multiple etiologies, including genetic factors, 
hormone levels, lifestyle factors, and so on (2). With the 
advancement of multidisciplinary treatment of BRCA, 
surgery, chemotherapy, radiotherapy, targeted therapy, 
and hormonotherapy have comprised the main treatment 
strategies (3). However, the overall prognosis of BRCA 
has remained unfavorable, especially for advanced-stage  
patients (4). Due to the high level of heterogeneity and 
complex causes, predicting individual prognosis and 
developing precision treatment plans has remained 
challenging. Moreover, exploring the establishment of 
novel prognostic models may provide new insights for the 
treatment of BRCA. 

Ferroptosis is a newly defined form of programmed 
cell death, which is activated by iron oxidation and lipid 
peroxidation (5,6). Since the discovery that iron-dependent 
nonapoptotic cell death is induced by small compounds (e.g., 
erastin, RSL3) and certain clinical drugs (e.g., sulfasalazine, 
sorafenib, artesunate), the induction of ferroptosis has 
become a potential therapeutic approach for patients that 
do not respond well traditional treatment (7,8). Previous 
studies have reported that ferroptosis has some connections 
to BRCA. Siramesine and lapatinib induce ferroptosis 
in BRCA cell lines by catalyzing the production of iron-
dependent labile iron pool reactive oxygen species (LIP-
ROS) (9). It has also been reported that some triple-
negative breast cancer (TNBC) cell lines are sensitive 
to ferroptosis pathways (10,11). Several genes have 
been identified as drivers or suppressors in the progress 
of BRCA, such as ACSL4, which regulates sensitivity 
to ferroptosis by changing the composition of cellular 
lipid (12), and PROM2, which plays a role in ferroptosis 
resistance of BRCA cells (13). Many clinical-pathological 
and genetic factors are related to the prognosis of BRCA, 
such as tumor size, grade, lymph node metastasis, hormone 
receptors status, BRCA gene mutation, etc. Nevertheless, 
the relationship between ferroptosis-related genes and the 
prognosis of BRCA patients is still largely unclear.

Nowadays, a single treatment did not meet the 
expected therapeutic effect, and a combination of 
chemotherapy, endocrine therapy and immunotherapy 
is be in development. Exploring the ferroptosis-related 
genes in BRCA and their correlation with the immune 

microenvironment may provide a new treatment trend. 
In this study, we aimed to develop a ferroptosis-related 
signature for BRCA by performing bioinformatics analysis. 
Moreover, we tried to explore the association between 
tumor immunity and ferroptosis by gene and functional 
enrichment analysis. 

We present the following article in accordance with the 
Transparent Reporting of a multivariable prediction model 
for Individual Prognosis or Diagnosis (TRIPOD) reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-479/rc).

Methods

Data download

The RNA sequencing (RNA-seq) data of 1,222 human 
breast tissue samples, consisting of 1,109 BRCA samples 
and 113 adjacent normal samples, were derived from The 
Cancer Genome Atlas (TCGA; https://tcga-data.nci.nih.
gov/tcga/). Survival data and clinicopathological information 
of 1,097 BRCA patients were also acquired from TCGA 
database for training data. Another cohort of 327 BRCA 
patients was downloaded from the Gene Expression 
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) 
validation data. The gene expression and clinical data of 
these samples were collected from GSE20685 based on the 
Affymetrix Human Genome U133 Plus 2.0 Array platform 
(Affymetrix, Santa Clara, CA, USA). A total of 259 identified 
ferroptosis-related genes including 90 divers, 55 suppressors, 
86 markers, and 28 multi-annotated genes were obtained 
from the FerrDb database (http://www.zhounan.org/ferrdb/
index.html) (14). All data above is available to the public, 
so the ethical approval of this study was waived by the local 
Ethics Committee. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Differentially expressed ferroptosis-related genes

To identify differentially expressed genes (DEGs) between 
BCRA tissue samples and adjacent normal samples, we used 
the ‘limma’ R package (https://www.r-project.org/), and 
defined genes with fold change (FC) >1.5 as upregulated 
genes and those with FC <0.67 as downregulated genes. 
The false discovery rate (FDR) <0.05 was set as the cut-off 
threshold. By taking the intersection between DEGs from 
TCGA and the ferroptosis-related gene list, ferroptosis-
related DEGs (FeffDEGs) were acquired successfully.

https://atm.amegroups.com/article/view/10.21037/atm-22-479/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-479/rc
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
http://www.zhounan.org/ferrdb/index.html
http://www.zhounan.org/ferrdb/index.html
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Development and validation of the prognostic model

Genes with a P value <0.05 were considered to be 
associated with the outcome of patients in the univariate 
Cox model, and prognostic ferroptosis-related ones were 
acquired from the overlapping area of survival-related 
genes and FeffDEGs. The protein-protein interaction 
(PPI) network of prognostic FeffDEGs was analyzed based 
on the Search Tool for the Retrieval of Interacting Genes/
Proteins database (STRING; (https://string-db.org/). 
To better display the correlation coefficients intuitively 
between different candidate genes, the ‘igraph’ and ‘reshape’ 
R packages were also used to construct the network. 
Multivariate Cox analysis forward stepwise regression was 
used to further screen variables and obtain the best gene 
model. The regression coefficients (coef) and expression of 
each gene in a multivariate Cox model was used to calculate 
the risk score of each BRCA patient based on the following 
formula: risk score = Σ (expression of gene) × coef. Then, 
patients were evenly divided into 2 groups with the median 
risk score as the cut-off value. Principal component analysis 
(PCA) was performed by the ‘stats’ R package to evaluate 
gene expression distribution between different groups (15). 
As another dimensionality reduction tool, t-distributed 
stochastic neighbor embedding (t-SNE) was carried out by 
the ‘Rtsne’ R package (16). Kaplan-Meier survival analysis 
was carried out using the ‘survival’ and ‘survminer’ R 
packages. Receiver operating characteristic (ROC) curves 
were drawn using the ‘survivalROC’ R package to evaluate 
the accuracy of the prognostic model (17). The area under 
the curve (AUC) values range 0 to 1, with a value larger 
than 0.7 representing moderately accurate. The above 
validations were both performed in the TCGA and GEO 
datasets. Moreover, the protein expression levels of the 
selected genes in normal and tumor tissues were confirmed 
by the Human Protein Atlas database (HPA; https://www.
proteinatlas.org/) to further verify the gene signature (18).

Construction of a nomogram model

Univariate and multivariate Cox regression analyses were 
performed to explore independent factors for the outcome 
of BRCA patients. The nomograms of the TCGA and 
GEO datasets were established based on the independent 
variables by the ‘rms’ R package. The calibration curves 
were plotted to show the models’ predictive performance 
concerning BRCA patients’ survival.

Functional enrichment analysis

Gene ontology (GO) annotation and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment 
analyses between 2 the groups of patients were performed 
with the ‘clusterProfiler’ R package (19). An FDR <0.05 
and |log2FC| ≥1 were set as the cut-off values. Single 
sample gene set enrichment analysis (ssGSEA) was used 
to quantify the infiltrating level of immune cells and the 
activity of immune pathways for every gene set (20). To 
explore the relationship between immune status and risk 
score, ssGSEA analysis was utilized based on the ‘gsva’ R 
package.

Statistical analysis

We adjusted P values with Benjamini and Hochberg 
correction. The Mann-Whitney test method was carried 
out in ssGSEA analysis. The statistical software R version 
4.0.2 (The R Foundation for Statistical Computing, Vienna, 
Austria) and SPSS version 26.0 (IBM Corp., Armonk, NY, 
USA) were utilized for all statistical analyses. A two-tailed  
P value <0.05 indicated statistical significance.

Results

Patients

A total of 1,424 BRCA patients, consisting of 1,097 
cases from the TCGA database and 327 cases from the 
GEO database were included in this study. The detailed 
clinicopathological information is shown in Table 1. A 
simple flowchart of this study is shown in Figure 1.

Identification of prognostic FeffDEGs

Through comparison of the expression of ferroptosis-
related genes of tumor tissues and normal tissues, a total 
of 111 genes were identified as differentially expressed, 
including 49 down-regulated genes and 62 up-regulated 
genes. After univariate Cox regression analysis, there were 
30 ferroptosis-related genes associated with OS. Therefore, 
we obtained 14 prognostic FeffDEGs based on the Venn 
diagram (Figure 2A), and a heatmap was created (Figure 2B).  
A PPI network was constructed based on the STRING 
database (Figure 2C). A correlation network of these genes 
quantifying the correlation coefficients through color depth 
is also shown in Figure 2D.

https://string-db.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Table 1 Clinicopathological characteristics of BRCA patients

Characteristics Training cohort, TCGA (n=1,097) Validation cohort, GSE (n=327)

Age (median ± SD, years) 58±13.22 46±1.69

Gender, n (%)

Female 1,085 (98.9) NA

Male 12 (1.1) NA

T stage, n (%)

T1 281 (25.6) 101 (30.9)

T2 635 (57.9) 188 (57.5)

T3 138 (12.6) 26 (8.0)

T4 40 (3.6) 12 (3.7)

Unknown 3 (<0.1) 0 (0.0)

N stage, n (%)

N0 516 (47.0) 137 (41.9)

N1 364 (33.2) 87 (26.6)

N2 120 (10.9) 63 (19.3)

N3 77 (7.0) 40 (12.2)

Unknown 20 (1.8) 0 (0.0)

M stage, n (%)

M0 912 (83.1) 319 (97.6)

M1 22 (0.2) 8 (2.4)

Unknown 163 (14.9) 0 (0.0)

PR, n (%)

Negative 344 (31.4) NA

Positive 699 (63.7) NA

Unknown 54 (4.9) NA

ER, n (%)

Negative 238 (21.7) NA

Positive 808 (73.7) NA

Unknown 51 (4.6) NA

HER-2, n (%)

Negative 919 (83.8) NA

Positive 79 (7.2) NA

Unknown 99 (9.0) NA

BRCA, breast cancer; TCGA, The Cancer Genome Atlas; SD, standard deviation; T, tumor; N, node; M, metastasis; PR, progesterone 
receptor; ER, estrogen receptor; HER-2, human epidermal growth factor receptor-2; NA, not applicable.



Annals of Translational Medicine, Vol 10, No 4 February 2022 Page 5 of 17

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(4):184 | https://dx.doi.org/10.21037/atm-22-479

TCGA (training cohort)

Survival-related ferroptpsis DEGs

Construction prognostic model

FerrDb data

Functional analysis Survival analysis

GEO (validation cohort)

Clinicopathological dataRNA expression data

Ferroptosis-related DEGs Survival-related genes

Figure 1 Flow diagram of the study design and analysis. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; DEGs, 
differentially expressed genes.
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Figure 2 Identification of prognostic ferroptosis-related genes in the training cohort. (A) Venn diagram showing overlap of the  
survival-related DEGs and the ferroptosis-related ones; (B) heatmap of candidate ferroptosis-related genes; (C) PPI network of candidate 
ferroptosis-related genes; (D) the correlation network containing visualized correlation coefficients. DEGs, differentially expressed genes; 
PPI, protein-protein interaction. 
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Construction and internal validation of a prognostic model

All of the 14 prognostic FeffDEGs were put into a 
multivariate Cox regression analysis, and eventually,  
9 genes were identified as statistically significant (P<0.05) 
(Table 2). The staining intensity of G6PD, PROM2, NGB, 
IFNG and SLC1A4 in BRCA tissues were all higher than 
those in normal breast tissues, while the staining intensity 
of PIK3CA, ANO6 and TP63 were low in tumor tissues. 
Regrettably, the immunohistochemical analysis of FLT3 
was unavailable (Figure 3). The risk score of each patient 
= 0.250256 × expression level of G6PD + 0.385493 × 
expression level of PIK3CA − 0.22191 × expression level of 
FLT3 − 0.62006 × expression level of IFNG + 0.457144 × 
expression level of ANO6 − 0.28589 × expression level of 
TP63 + 0.244391 × expression level of PROM2 − 0.28949 
× SLC1A4 + 0.379179 × NGB. All patients were equally 
divided into a lower risk score group and a higher risk score 
group based on the median value of risk score. The risk 
score distribution and outcome status showed that more 
deaths happened in higher risk score groups (Figure 4A,4B). 
Also, PCA and t-SNE graphical analyses both displayed that 
this risk model divided patients into 2 opposite directions 
(Figure 4C,4D). The Kaplan-Meier curves illustrated that 
patients with lower risk scores had better survival than 
those with higher scores (Figure 4E). The AUC was 0.713 
at 3 years, 0.713 at 5 years, and 0.684 at 10 years, which 
suggested the model had good predictive power (Figure 4F).  
Additionally, we explored the relationship between the 
ferroptosis risk score and the clinical characteristics of 
BCRA patients (Figure 5). The boxplot graphs showed the 
risk scores of patients with T4 tumor were significantly 

higher than those with T1, T2, or T3 tumors. Hormone 
receptor (HR)-positive BCRA patients had a lower risk 
score than HR-negative patents [progesterone receptor 
(PR): P<0.001, estrogen receptor (ER): P<0.001]. 

External validation and independent prognostic value of 
the model

We used BRCA patients from GSE20685 as an external 
validation cohort to further test the performance of the 
above model. Based on the same formula obtained in 
the training cohort, cases of the validation cohort were 
also categorized into a lower or higher risk score. The 
association between the outcome of patients and risk score 
groups is visualized in Figure 6A,6B. The PCA and t-SNE 
analyses showed that different distribution directions 
occurred between different risk score groups, which was 
similar to the above results (Figure 6C,6D). Patients from 
the GEO dataset with higher risk scores had a better 
outcome for OS (Figure 6E). The ROC analysis curve also 
certified the prognostic signature had a good predictive 
capability (Figure 6F). Additionally, to explore the clinical 
prognostic value of the 9-gene signature, the risk score had 
been looked at as a novel variable of each patient. Either 
in the TCGA cohort or the GEO cohort, the risk score 
was independently related to the OS of BCRA patients 
after univariate and multivariate Cox analyses (Table 3). 
Moreover, age and node (N) stage were also independently 
associated with outcome in TGCA cohort, and tumor (T) 
stage and N stage were identified as independent prognostic 
factors in the GEO cohort.

Table 2 The 9-gene signature model

Gene Coef HR (95% CI) P value

G6PD 0.250256 1.29 (1.05–1.56) 0.012985

PIK3CA 0.385493 1.47 (1.07–2.01) 0.016308

FLT3 −0.22191 0.80 (0.66–0.98) 0.027936

IFNG −0.62006 0.54 (0.34–0.84) 0.006603

ANO6 0.457144 1.58 (1.14–2.18) 0.005618

TP63 −0.28589 0.75 (0.63–0.90) 0.002007

PROM2 0.244391 1.27 (1.03–1.58) 0.02628

SLC1A4 −0.28949 0.75 (0.62–0.91) 0.002991

NGB 0.379179 1.46 (1.05–2.03) 0.023989

HR, hazard ratio; CI, confidence interval.
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Figure 3 The protein expression levels of G6PD (A), PROM2 (B), NGB (C), IFNG (D), SLC1A4 (E), PIK3CA (F), ANO6 (G) and TP63 (H) 
in HPA database based on immunohistochemistry analysis. HPA, Human Protein Atlas. 
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Establishment and validation of the nomograms

To provide clinicians with more intuitive and easy-to-use 
prognostic models, nomograms were established based on 
independent factors. In the TCGA cohort, a nomogram 
with variables including age, N stage, and risk score, is 
shown in Figure 7A. As the calibration plots showed, the 
nomogram predicted 3-, 5-, and 10-year OS precisely, 

respectively (Figure 7B-7D). The nomogram using the 
independent variables in the GEO dataset, such as T stage, 
N stage, and risk score, showed excellent performance in 3-, 
5-, and 10-year OS prediction (Figure 7E-7H).

Functional enrichment analysis

To determine the association between the risk score and GO 
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or biological pathways, gene functional enrichment analysis 
was used on DEGs between the different risk score groups 
of the TCGA cohort or GEO cohort. Cell component 
annotation analysis of the TCGA cohort showed that 
the DEGs were most significantly enriched in the 
mitochondrial matrix whose micro-structure would change 
when ferroptosis occurred. Immunoglobulin receptor 
binding, which is an immune-related molecular function 
was also significantly enriched (Figure 8A). Interestingly, 5 
immune-related molecular functions were enriched in the 
GEO cohort, including immune receptor activity, antigen 
binding, cytokine receptor activity, major histocompatibility 
complex (MHC) protein compel binding, and MHC class 

II receptor activity. Besides, there were also many biological 
processes associated with immunity (Figure 8B). Some 
KEGG pathways, such as the chemokine signaling pathway, 
Th17 cell differentiation, T cell receptor signaling pathway, 
Th1 and Th2 cell differentiation, and programmed death-
ligand 1 (PD-L1) expression and programmed cell death 
protein 1 (PD-1) checkpoint pathway in cancer, were both 
significantly enriched in both cohorts (Figure 8C,8D).

Differences of immune of status between patients with 
lower and higher risk scores

Through quantifying the infiltration levels of 16 immune 
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gender (B), T stage (C), N stage (D), M stage (E), PR status (F), ER status (G), HER-2 status (H). T, tumor; N, node; M, metastasis; PR, 
progesterone receptor; ER, estrogen receptor; HER-2, human epidermal growth factor receptor-2. 
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cells, we found that either innate immune cells [dendritic 
cells (DC) and natural killer (NK) cells] or adaptive 
immune cells (B cells and kinds of T cells) infiltrated more 
in patients with lower risk score than those with higher risk 
score in both TCGA and GEO cohorts (Figure 9A,9B). 

Interestingly, the scores of some immune-related pathways, 
like antigen presentation process, chemokine receptor, 
checkpoint, T cell co-inhibition, and T cell co-stimulation 
were significantly different in lower and higher risk score 
patients, which were consistent with the results of KEGG 
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pathway analyses (Figure 9C,9D).

Data availability statement

All data of this study is openly available in The Cancer 
Genome Atlas (TCGA; https://tcga-data.nci.nih.gov/tcga/) 
database, Gene Expression Omnibus (GEO; https://www.

ncbi.nlm.nih.gov/geo/) database, FerrDb database (http://
www.zhounan.org/ferrdb/index.html), and the Human 
Protein Atlas (HPA; http://www.proteinatlas.org/) database. 

Discussion

In this study, a ferroptosis-related signature that efficaciously 

Table 3 Univariate and multivariate Cox analyses in the TCGA and GEO cohorts

Characteristics

Training cohort Validation cohort

Univariate Multivariate Univariate Multivariate

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Age (median) 1.773  
(1.158–2.713)

0.008 1.914  
(1.231–2.975)

0.004 0.761  
(0.492–1.177)

0.219

Gender (female/male) 1.088  
(1.151–7.841)

0.933 NA

T

T1 Ref Ref Ref Ref

T2 1.388  
(0.806–2.392)

0.237 1.233  
(0.696–2.183)

0.473 1.136  
(0.664–1.943)

0.643 0.763  
(0.432–1.350)

0.353

T3 1.663  
(0.813–3.405)

0.164 0.934  
(0.423–2.066)

0.867 4.777  
(2.431–9.386)

<0.001 2.352  
(1.085–5.096)

0.030

T4 4.862  
(2.208–10.705)

<0.001 2.351  
(0.975–5.674)

0.057 4.377  
(1.923–9.960)

<0.001 1.520  
(0.485–4.762)

0.472

N

N0 Ref Ref Ref

N1 1.350  
(0.813–2.241)

0.246 1.145  
(0.662–1.982)

0.627 2.400  
(1.236–4.568)

0.010 2.417  
(1.229–4.753)

0.011

N2 2.696  
(1.471–4.944)

0.001 2.931  
(1.507–5.703)

0.002 5.078  
(2.728–9.450)

<0.001 4.254  
(2.173–8.330)

<0.001

N3 4.925  
(2.513–9.655)

<0.001 3.026  
(1.326–6.907)

0.009 5.088  
(2.538–10.201)

<0.001 3.605  
(1.662–7.819)

0.001

M (M0/M1) 4.428  
(2.313–8.476)

<0.001 1.665  
(0.793–3.496)

0.178 5.106  
(2.345–11.121)

<0.001 1.304  
(0.425–4.003)

0.643

PR (negative/positive) 0.665  
(0.435–1.017)

0.060 NA

ER (negative/positive) 0.653  
(0.416–1.026)

0.064 NA

HER-2 (negative/positive) 1.903  
(1.090–3.325)

0.024 1.251  
(0.686–2.281)

0.465 NA

Risk (low/high) 2.474  
(1.589–3.853)

<0.001 2.315  
(1.468–3.648)

<0.001 1.871  
(1.197–2.926)

0.006 1.629  
(1.020–2.600)

0.041

TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; HR, hazard ratio; CI, confidence interval; T, tumor; N, node; M, 
metastasis; PR, progesterone receptor; ER, estrogen receptor; HER-2, human epidermal growth factor receptor-2; NA, not applicable.

https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.zhounan.org/ferrdb/index.html
http://www.zhounan.org/ferrdb/index.html
http://www.proteinatlas.org/
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Figure 7 Nomograms of the prognostic model. (A) The nomogram consisting of age, N stage and risk score for the prediction in the training 
cohort. Calibration curves for the 3-year (B), 5-year (C) and 10-year (D) OS. (E) The nomogram using T stage, N stage and risk score in the 
validation cohort. Calibration plots for the 3-year (F), 5-year (G) and 10-year (H) outcome. T, tumor; N, node; OS, overall survival. 
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stratified BRCA patients and predicted survival was 
successfully established based on the FerrDb and TCGA 
datasets. This predictive model exhibited excellent predictive 
ability in internal and external cohorts. Besides, we also 
confirmed that many immune cells and pathways were 
significantly different between different risk score patients 

classified by the model, and this might provide a new 
predictor for immunotherapy of BRCA.

Increasing numbers of genes have been demonstrated 
to be associated with the progress of ferroptosis in 
various carcinomas, and recently a well-curated database 
containing all ferroptosis-related genes identified so 

Figure 8 GO and KEGG pathway analyses. The most representative results of GO enrichment in the TCGA (A) and GEO (B) cohorts. 
The most 10 significant KEGG pathways in the TCGA (C) and GEO (D) cohorts. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes. 
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far was constructed (14). Some previous studies have 
suggested that PROM2 promotes ferroptosis resistance in 
BRCA cells through the PROM2-multiessiuclr bodies-
exosome pathway and ACSL4 has a positive correlation to 
ferroptosis of human BRCA cell lines (12,13). However, 
the potential relationship between ferroptosis-related genes 
and the outcome of BRCA patients has remained unclear. 

Surprisingly, there were 30 ferroptosis-related genes 
identified as connected to the OS of BRCA patients in our 
study, among which ACSL4 was not included, and was thus 
not included in further analyses. 

The proposed prognostic model comprises 9 genes, 
including PROM2, ANO6, FLT3, G6PD, IFNG, NGB, 
PIK3CA, SLC1A4, and TP63. As a pentaspanin protein 
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Figure 9 Differences of ssGSEA scores between patients with lower and higher risk scores in both cohorts. Comparison of the 16 immune 
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implicated in regulating lipid dynamics, PROM2 facilitates 
resistance against ferroptosis in mammary epithelial and 
BRCA cells (13). The activation of ANO6 is an important 
component of ferroptotic cell death induced by RSL3/
erastin (21). As a Ca2+-activated Cl− channel, ANO6 has 
an impact on cancer cell migration and a relationship 
with poor prognosis according to recent research (22). In 
this study, ANO6 was related to poor outcome in BRCA 
patients, but it was down-regulated in tumor tissues, and 
the underlying mechanisms require further analysis. As a 
class III receptor tyrosine kinase, FLT3 acts as an inhibitor 
in the blockade of ferroptotic cell death by reducing 
oxidative glutamate toxicity (23). In our research, FLT3 was 
related to poor survival while down-regulated in BRCA 
samples, which is consistent with the results in a previous 
study (24). As an integral part of the PI3K pathway, 
PIK3CA is one of the most recurrently mutated genes in 
BRCA (25). Both FLT3 and PIK3CA inhibitors have been 
shown to be potent protectors against glutamate toxicity 
that involves a combination of ferroptosis and apoptosis-
inducing factor-dependent apoptosis through preventing 
ROS generation and lipid peroxidation (23). Glucose-6-
phosphate dehydrogenase (G6PD), has been reported as 
overexpressed in BRCA and to promote migration through 
the G6PD/HIF-1α/Notch1 axis (26,27). Knocking down 
G6PD in non-small cell lung cancer cells can prevent cells 
from erastin-induced ferroptosis (5). The IFNG gene is 
a potent activator of macrophages that promotes tumor 
ferroptosis by downregulating the expression of subunits 
of the glutamate-cystine antiporter system Xc- (28). In 
this study, the high expression of IFNG was related to 
a better outcome of BRCA patients, which is similar to 
the finding of Yeong et al.’s research (29). As an oxygen-
binding protein that can provide protection under hypoxic/
ischemic conditions, NGB has endogenous neuroprotective 
effects to ferroptosis, with the evidence of 0.68 fold less cell 
death in erastin-stressed human neuroglobin-EGFP cells 
detected (30). In terms of TP63, it inhibits ferroptosis in 
human squamous cell lung cancer, in which it is frequently 
amplified (31). Solute carrier family 1 member 4 (SLC1A4) 
was significantly upregulated in cells resistant to ferroptosis 
and could act as a marker of ferroptosis (32). The specific 
underlying mechanisms of SLC1A4 in the process of 
ferroptosis remain poorly understood. In total, 5 of the 
genes (ANO6, FLT3, G6PD, IFNG, PIK3CA) are drivers in 
the progress of ferroptosis, while 2 of them (PROM2, TP63) 
are suppressors, and the other 2 genes (NGB, SLC1A4) 
act as markers. It is worth noting that only PROM2 was 

certified to promote resistance to ferroptosis of BRCA 
cancer cells among these genes, while whether the other 
genes promote or inhibit tumorigenesis and progression in 
BRCA through playing a role in ferroptosis of tumor cells 
still needs exploration.

Since Professor Dixon proposed that ferroptosis is a 
novel programmed cell death (33), the mechanisms of 
ferroptosis in various kinds of tumors has emerged as 
one of the currently most popular research directions. 
However, the potential link between ferroptosis and 
tumor immunity has remained poorly understood. In this 
study, we surprisingly found a lot of immune-related cells 
and biological pathways were significantly enriched by 
performing ssGSEA analyses for DEGs between the lower 
and higher risk score groups. Interestingly, higher-risk 
patients with worse survival had lower scores of immune 
cell infiltration, which was probably caused by weakening 
antitumor immunity in BRCA patients with higher risk 
scores. As the innate immune cells, DC and NK cells play 
an important role in cancer immunosurveillance (34), 
and infiltrated less in higher-risk patients. Meanwhile, T 
cells, which infiltrated more in lower risk samples, were 
abundantly enriched in breast tumor issues (35), and CD8+ 
T cells were certified to inhibit metastasis of BRCA and 
have a positive impact on survival in recent studies (36,37). 
Besides, the levels of antigen presentation process co-
inhibition and co-stimulation were different between the 2 
risk score groups, and the reason might be that ferroptosis 
would lead to the release of lipid mediators and the 
aggregation of antigen presentation cells (38). Additionally, 
lower risk scores were related to a high level of check point 
pathway, and this may be due to the high level of T cells in 
lower-risk patients. Therefore, it is reasonable to speculate 
that there is a close relationship between tumor immunity 
and ferroptosis, but the detailed connection requires further 
exploration.

Some limitations existed in this study. First, both the 
construction and validation of the prognostic model were 
based on retrospective public data, so more prospective 
studies are required to verify its accuracy and utility. 
Second, as an inevitable disadvantage of using a single 
marker to establish a prognostic signature, some remarkable 
prognostic genes for BRCA may have been missed. 
Meanwhile, some environmental and genetic factors closely 
related to the occurrence of BRCA are inevitably missed. 
Finally, some functional experimental analyses regarding 
the links between immunity and ferroptosis-related risk 
score should be further performed.
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Conclusions

To sum up, a novel ferroptosis-related prognostic model 
for BRCA was defined in this study. The model exhibited 
excellent predictive ability in both internal and external 
validations, and the risk score calculated using the model 
was verified as an independent factor for the OS of BRCA 
patients. Immune status and related pathways were different 
between the 2 risk groups, which might provide a new 
research angle for ferroptosis-related cancer therapy, but 
potential underlying mechanisms between tumor immunity 
and ferroptosis in BRCA require further exploration.
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