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Introduction

In recent years, the problem of carbapenem-resistant organisms 
(CROs) has become increasingly prominent. According to the 
data from the China Antimicrobial Resistance Surveillance 
System (CARSS) (1), the resistance rate of CROs increased 
year by year from 2014 to 2019, the resistance rate of 
Klebsiella pneumoniae to carbapenems increased more than 
one fold, and the resistance rate of Acinetobacter baumannii to 

carbapenems was as high as 54.4–59.8%. Due to their narrow 
antibacterial spectrum and significant side effects, polymyxins 
were replaced by new antimicrobial agents after they entered 
the market in the 1850s. However, due to growing pressure 
related to CROs infection, polymyxins have re-captured the 
attention of clinical experts due to their above-mentioned 
strong susceptibility to resistant bacteria. Thus, polymyxins 
have become the last line of defense for the treatment of 
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CROs (2,3).
Among the 5 known polymyxin subtypes, polymyxin B 

(PMB) has direct antibacterial activity, and the treatment 
regimen has a low degree of dependence on renal function 
and is widely used in clinical treatment in China. PMB is 
a sulfate preparation formed by more than 30 peptides, of 
which PMB1 and PMB2 sulfate are the main components, 
and account for about 85% of PMB sulfate, and the 
rest include PMB3 and PMBI-1 (see Figure 1) (4). PMB 
can be administered intravascularly, intrathecally, or by 
nebulization, with a steady-state volume of distribution of 
approximately 12.7–34.3 L and a half-life of approximately 
9–11.5 h after intravenous administration (5-7). The 
elimination mechanisms involve both renal and non-renal 
routes (5-7). Numerous studies have shown that the urinary 
recovery of PMB is low (<5%) in both animals and humans; 
thus non-renal clearance is considered the major route of 
clearance for PMB (5-7). Selective uptake and retention are 
present in PMB tubular epithelial cells and preferentially 
accumulate in renal tissue (7,8). In non-renal clearance, 
there is a certain proportion of biliary excretion (6), and 
other routes require further study.

PMB is a concentration-dependent antibiotic with a short 
post-antibiotic effect, and bacteria can grow and multiply 
quickly when the PMB concentration is reduced below the 
effective inhibitory concentration. Further, neurotoxicity and 
PMB-induced nephrotoxicity are mainly characterized by 
acute kidney injury (AKI) and acute tubular necrosis, while 
PMB-induced neurotoxicity is characterized by paresthesia 
and respiratory depression. In 2019, several international 
institutions and academic organizations jointly issued 

the international consensus guidelines for optimal use of 
polymyxins (9). These guidelines recommend an area under 
the curve at steady state (AUCss,0–24 h) of 50–100 mg·h/L  
for the therapeutic drug concentration of PMB, which is 
equivalent to a steady-state plasma concentration (Css) of  
2–4 mg/L. If PMB exceeds this range, the incidence and 
severity of AKI increase significantly.

In 2016, the American Society of Infectious Diseases and 
the American Thoracic Society jointly issued the guidelines 
for nosocomial pneumonia and ventilator-associated  
pneumonia (10), in which they emphasized that antibacterial 
drugs should be used according to pharmacokinetics/
pharmacodynamics (PK/PD). Under the current increasingly 
severe epidemic of CROs, the clinical application of PK/
PD theory is a powerful means for ensuring the maximum 
therapeutic benefit of PMB. However, the process of 
antibacterial drug disposition differs between patients with 
severe infections and patients from special populations 
and healthy individuals (11-13). In order to fully study the 
pharmacokinetic differences due to physiological, pathological, 
and genetic factors and adjust the dose and improve the 
effect of drug treatment, population pharmacokinetics (PPK) 
has emerged. The medication method can be optimized to 
achieve individualized dosing by combining PPK model-PD 
metrics with Bayesian methods (14).

Over the last decades, several PPK studies on PMB have 
been conducted. This review systematically compared the 
published PMB PPK models and explored the covariates 
that have been shown to affect PMB PK models.

We present the following article in accordance with 
the PRISMA reporting checklist (available at https://atm.

Figure 1 Molecular structural formula of PMB. PMB1: R = -CH2CH3, R’ = -CH3; PMB2: R = -CH3, R’ = -CH3; PMB3: R = -CH3, R’ = 
-CH2CH3. PMB, polymyxin B.
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amegroups.com/article/view/10.21037/atm-22-236/rc).

Methods

Search strategy

Data for this review were identified by the systemic review 
of publications listed in the PubMed and Embase databases 
from the inception of the databases to August 2021 
using the following search terms: “Polymyxin B” AND 
(“populationpharmacokinetic” OR “pharmacometrics” 
OR “pharmacokineticmodel” OR “popPK” OR “popPK” 
OR “PPK” OR “nonlinear mixed effect model” OR 
“NONMEM”). Additional publications were identified by 
reviewing the reference lists of the articles identified in the 
search.

Inclusion/exclusion criteria

Original studies describing PPK models for PMB were 
included in the review. Reviews, methodological articles, 
in-vitro and animal studies, studies that used previously 
described pharmacokinetic models and those that involved 
non-compartmental analyses were excluded. The selection 

process is described in Figure 2.

Data extraction

Data extraction was carried by two authors independently, 
and discrepancies were solved by discussion. The following 
information was recorded from the identified: first author, 
year of publication, patient numbers and characteristics, 
treatment regimen and determination method of PMB, 
structural and statistical models, tested and retained 
covariates, and model evaluation method.

Results

Literature search

Eighty-six relevant articles were initially retrieved, and  
42 duplicates were removed. After screening the titles and 
abstracts, 10 articles published between 2008 and 2021 
were ultimately included in the review. Figure 2 shows 
the selection process. The following data were extracted 
from the included articles the publication year, sample 
size, patient characteristics, dosing regimen, test objects, 
and methods (see Table 1). Three hundred and twenty-

Records removed before screening:
	Duplicate records removed (n=42)
	Records marked as ineligible by 

automation tools (n=37)

Reports excluded:
	Studies used previously PPK model 

(n=3)

Search on 11 August 2021
	PubMed (n=42) 
	Embase (n=44)

Records screened 
(n=44)

Reports sought for retrieval 
(n=14)

Reports assessed for eligibility 
(n=13)

Records excluded 
(n=30)

Reports not retrieved 
(n=1)

Studies included in review 
(n=10)
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Figure 2 The selection process of the studies included in the systematic review.
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nine patients (range, 9–70; median, 33.5) were included in 
the review. The patients’ ages ranged from 16–94 years; 
only 1 patient was aged 16 years old; the others were adult 
patients aged 18 years and older. The characteristics of the 
study subjects included infections caused by multi-drug-
resistant bacteria, such as respiratory tract infections, sepsis, 
and abdominal infections. Most studies excluded patients 
receiving continuous renal replacement therapy (CRRT) 
and extracorporeal membrane oxygenation (ECMO) 
support. Only 1 study included 2 patients receiving CRRT.

Analytical methods used in pharmacokinetic model 
development

In relation to the test specimens collected, blood was 
collected in all studies, and urine was also collected in  
2 studies for the study of renal excretion recovery. In 
relation to the test methods, LC-MS/MS was used in 
all studies. In relation to the blood samples, plasma was 
collected in most studies, and serum was collected for 
PMB testing in 1 study. Most of the studies quantitatively 
calculated PMB concentration as the sum of PMB1 and 
PMB2, but 1 study only used PMB1 as the concentration of 
PMB, and 1 study used the sum of PMB1, PMB2, PMB3, 
and PMB I-1.

The dosing regimen for patients was complex. In  
7 studies, clinicians administered loading doses or directly 
administered maintenance doses based on clinical experience 
and instructions or guidelines. In these 7 studies, the 
dosing regimen was 0.13–3.45 mg/kg/day. While 3 studies 
administered fixed doses, with maintenance doses of  
50–100 mg twice a day, and 1 of the three study administered 
a loading dose of 100–150 mg. The number of measured 
concentrations ranged from 19 to 462 (median, 136.5), and 
an average of 4.9 samples was measured per patient. The 
fitting software included NONMEM, PhoenxiNLME, 
ADAPT5, Pmetrics, Monolix, and S-ADAPT.

Structural pharmacokinetic models

The reported model structure, pharmacokinetic parameters, 
and covariates, and final model are summarized in Table 2.  
Of the 10 studies included in the review, 5 used a 
1-compartment model, and 5 used a 2-compartment 
model, and all followed a 0-order input, first-order linear 
elimination. The median values of total clearance (CL) 
and corresponding inter-individual variability (IIV) were 
2.43 L/h (1.58–4.3 L/h) and 29.80% (13.0–53.63%), T
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Table 2 A summary of published population pharmacokinetic studies of PMB

Study Sampling schedule
N  

(subject/samples)
Structure 

model
Pharmacokinetic parameters Covariates

2021 Yu (15) Sparse sampling 32/112 1-CMT CL =1.59 L/h, IIV =13.0%;  
CL (L/h) = 1.59 × (CrCL/80)0.408; V =20.5 L;  
RV (CV%) =40.5%

CrCL

2021 Crass (16) Intensive sampling 9/45 1-CMT CL =2.09 L/h, IIV =21.5%;  
V (L) = 12.7 × (TBW/58)0.784; RV (CV%) =18.8%

TBW

2021 Wang (17) Intensive sampling 70/462 2-CMT Normal renal function: CrCL ≥80 mL/min;  
CL =2.19 L/h, IIV =22%; Vc =6.87 L, IIV =78%; 
Vp =11.97 L, IIV =32%; Q =13.83 L/h, IIV =68%; 
RV (SD) =0.13

CrCL

Renal insufficiency: CrCL <80 mL/min;  
CL =1.58 L/h, IIV =26%; Vc =6.98 L, IIV =38%; 
Vp =10.57 L, IIV =74%;  
Q =10.28 L/h; RV (SD) =0.10

2020 Wang (18) Intensive sampling 46/331 2-CMT CL =1.79 L/h, IIV =20.8%;  
CL (L/h) = 1.79 × (CrCL/105.9)0.362;  
Vc =6.22 L, IIV =31.8%; Vp =11.92 L, IIV =69%;  
Q =13.52 L/h, IIV =150.8%; RV (SD) =0.11

CrCL

2018 Manchandani (19) Sparse sampling 35/139 1-CMT CL =2.5 L/h, IIV =43.8%; V=34.3 L, IIV =47.8% –

2018 Miglis (20) Sparse sampling 52/156 2-CMT CL =2.63 L/h, IIV =53.63%;  
Vc =33.77 L, IIV =45.03%;  
Vp =78.20 L, IIV =47.90%; Q =2.32 L/h,  
IIV =57.41%; CL (L/h) = 2.63 × (TBW/75)0.75;  
RV (SD) =0.1; RV (CV%) =15%

TBW

2018 Kubin (21) Sparse sampling 43/134 1-CMT CL =2.37 L/h, IIV =37.7%;  
V =34.4 L, IIV =15.7%; RV (SD) =0.00693;  
RV (CV%) =23.3%

–

2018 Avedissian (22) Sparse sampling 9/33 2-CMT CLmax =8.65 L/h, IIV =35.74%;  
CLnon-renal =0.07 L/h, IIV =31.35%;  
CrCL50 (mL/min) =141.24, IIV =25.56;  
CL (L/h) = CLnon-renal + CLmax × CrCLH/ 
(CrCL50

H + CrCLH); Vc =20.39 L, IIV =20.62%;  
Vp =174.69 L, IIV =20.56%; Q =2.85 L/h,  
IIV =85.08%; H =7.84, IIV =29.44%

CrCL

2013 Sandri (23) Intensive sampling 24/192 2-CMT CL =0.0276 L/h/kg, IIV =32.4%;  
Vc =0.0939 L/kg, IIV =73.3%; Vp =0.330 L/kg, 
IIV =70.1%; Q =0.146 L/h/kg, IIV =50.4%;  
RV (SD) =0.0392; RV (CV%) =9.59%

TBW

2008 Kwa (24) Sparse sampling 9/19 1-CMT Ke =0.051 h−1; V =47.2 L –

CV, coefficient of variation; Vc, volume of distribution in the central compartment; CL, total body clearance; IIV, inter-individual variability; Q, 
intercompartmental flow; Vp, volume of distribution in the peripheral compartment; CLmax, maximum PMB clearance; CLnon-renal, non-renal 
clearance; H, Hill coefficient; CrCL50, creatinine clearance at the 50% maximal rate of PMB clearance; Ke, elimination rate constant; TBW, 
total body weight; 1-CMT, one-compartment model; 2-CMT, two-compartment model; RV, residual variability; PMB, polymyxin B.
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respectively. In the review, the median (range) estimated 
value of the distribution volume (V) and corresponding 
IIV using 1-compartment model was 29.8 L (12.7–47.2 L) 
and 41.4% (15.7–60.8%), respectively. The median (rang) 
estimated value of the central compartment distribution 
volume, peripheral compartment distribution volume, and 
distribution clearance were 13.4 L (6.2–33.8 L), 51.6 L 
(10.6–174.7 L), and 8.78 L/h (2.32–13.83 L/h), respectively. 
All the models were internally validated by a visual 
predictive check (15,17), normalized prediction distribution 
error (15,21), diagnostic plots (16,18,20-24), boot-strap 
analysis (17,18), and the prediction error test (19). Mo 
model was externally tested.

Covariates

Many factors were investigated in the process of modeling, 
such as age, gender, total body weight (TBW), ideal body 
weight, plasma albumin concentration, creatinine clearance 
(CrCL), and APACHEII score. Four studies included 
CrCL calculated by the Cockcroft-Gault (C-G) equation 
as a covariate, and CrCL was positively correlated with 
clearance. Three studies included TBW as a covariate, and 
TBW was positively correlated with clearance too.

Discussion

The estimation methods of population pharmacokinetic 
modeling parameters mainly include the parametric 
method, non-parametric method, and Bayesian method. 
The main difference between the parametric method 
and non-parametric method is that the former assumes 
that the parameter and error distribution obey normal 
distribution or log-normal distribution, while the latter 
does not make any assumption on the shape of the basic 
parameter distribution. To date, published studies have 
used both parametric and non-parametric methods to 
establish population pharmacokinetic models of PMB. 
First-order conditional estimation (17,18), first-order 
conditional estimation with inter- and intra-subject 
variability interaction (15,16), and Monte-Carlo parametric 
expectation maximization (23) are involved in the 
parametric method. While the maximum-likelihood method 
(19,21) and non-parametric adaptive grid (20,22,24) are 
involved in the non-parametric method. It is not yet known 
which method is more suitable for the treatment of PMB in 
specific populations. Thus, more studies comparing these  
2 major classes of methods are necessary.

The published studies draw different conclusions about 
which compartment model is more suitable for PMB. Five 
of the 10 studies concluded that the 1-compartment model 
was more appropriate, and 5 studies concluded that the 
2-compartment model better described the pharmacokinetic 
curve of PMB. Five studies used a 2-compartment model 
and 3 studies used an intensive sampling strategy to 
collect 6–8 blood samples during 1 treatment cycle. In the 
study by Sandri (23), 8 blood samples were collected in  
1  t rea tment  cyc le ,  and  the  f i t s  o f  the  1 ,  2 ,  and  
3 compartment models were compared, and the prediction 
results of the 2-compartment model were found to be better 
than the 1- or 3- compartment models. The sampling points 
of the five studies used a 1-compartment model were sparse, 
normally contains only random steady-state concentration, 
or trough/peak concentrations of PMB, which may be 
related to the insufficient sample information provided by 
these studies to detect the 2-compartment model of PMB.

There was little difference in clearance between the 
different studies (see Figure 3), which may be due to: (I) 
the similarity of the types of patients included in the study. 
Almost all the studies excluding the patient with ECMO, 
CRRT, or other conditions that caused significant fluctuations 
in creatinine. With the exception of Avedissian’s (22)  
study that included 9 patients with cystic fibrosis (CF), the 
other 9 studies all included critically ill patients without CF; 
(II) the extensiveness of the PMB excretion pathways. The 
proportion of PMB eliminated by the kidneys is very low, 
and some PMB is excreted unchanged in the bile (6), but 
other pathways require further study; and (III) the unified 
sample methods and determinations between the studies; 
the plasma samples were collected and detected by liquid-
mass spectrometer. The clearance of PMB in patients with 
CF was similar to that of other populations, and as the results 
of previous studies (25) have shown the pharmacokinetic 
parameters of most drugs in patients with fibrosis do not 
differ significantly to those in other patient populations.

In relation to the covariates, the relationship between 
renal function and the PK parameters of PMB was 
uncertain. The proportion of PMB excreted by the kidneys 
is very low and theoretically independent of clearance. 
Nine of the included studies compared the pharmacokinetic 
effects of renal function-related parameters, such as serum 
creatinine values and CrCL (the C-G equation) on PMB. 
5 studies (15,17-19,22) included CrCL as a covariate. 
Yu (15) concluded that there is a significant relationship 
between CrCL and clearance, and that the dose should 
be reduced in patients with renal insufficiency, which is 
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consistent with the dosing recommendations in the FDA-
approved PMB package insert. However, this study had 
some limitations, such as the small sample size of the 
included patients (32 patients), of whom only 3 had CrCL 
<20 mL/min. In the remaining 4 studies that included 
CrCL as a covariate, CrCL was statistically correlated with 
the clearance of PMB, but the effect on the AUC may not 
have been sufficient to be clinically meaningful. Sandri 
(23,26) included 2 patients receiving CRRT with a CL of 
2.17 and 6.66 L/h, respectively, and continuous venovenous 
hemofiltration (CVVH) provided clearance of 0.26 and  
0.37 L/h. In future studies, more patients with abnormal 
renal function and measures of renal function need to be 
included as covariates.

The relationship between body weight and the PK 
parameters of PMB was also uncertain. Theoretically, 
obesity leads to physiological changes, such as an increase 
the in glomerular filtration rate that accelerates the renal 
excretion of PMB. Additionally, body weight may affect the 
non-renal excretion of PMB, such as the size of body weight 
to the liver, the ability to excrete bile, and the extent to 
which PMB is bound to tissues or released into serum. 9 of 
the included studies compared the pharmacokinetic effects 
of body weight indicators, such as TBW and ideal body 
weight, on PB. Three studies (16,18,23) included TBW as 
a covariate. Among these 3 studies, Sandri (23) suggested 
that inter-individual differences in CL and V in the 
population, which included extremely obese patients, were 
better described by TBW, and loading and maintenance 

doses of PB were calculated based on TBW; however, only 
2 patients with extreme body weights (41 and 250 kg) were 
included in the study. The other 2 studies also found that 
TBW affected clearance, but the way of dosing in total 
weight proportion was not ideal, but dosing by body weight 
interval or only loading dose by body weight, maintenance 
dose fixed dose. The body weight ranges of the included 
populations were 38.3–70.4 and 30–122 kg, respectively. 
In one study (20), in which the body weight distribution of 
the included population was good, a significant relationship 
between overall weight and clearance was still not found, 
as an allometric weight scale model was used to adjust the 
dosing regimen according to body weight. This regimen 
remains the current clinical practice and is the FDA-
approved dosing strategy. Some studies have shown that the 
total dose of PB is highly associated with the risk of AKI 
development and is independent of patient weight. Weight-
based dosing strategies may increase the risk of AKI in 
high-weight patients. Future studies need to be conducted 
to specifically examine the effects of body weight on the PK 
parameters of PB to address clinical real-world application 
issues.

Sandri (23) used rapid equilibrium dialysis and found that 
the plasma protein binding of PMB in critically ill infected 
patients was 58%, and its corresponding unbound fraction 
(fu) was 42%. For drugs with moderate plasma protein 
binding rates, when patients present with hypoproteinemia 
which has little effect on the concentration of the free drug. 
In animal experiments, PMB plasma concentrations ranged 

2021 Xu-Ben Yu 

2021 Ryan L. Crass-CF 

2021 Peile Wang-NRF 

2021 Peile Wang-Rl 

2020 Peile Wang 

2018 Pooja Manchandani 

2018 Cristina Miglis 

2018 Christine J. Kubin 

2018 Sean N. Avedissian-CF 

2018 Sean N. Avedissian-NCF 

2013 Ana M. Sandri 

2008 Andrea L. H. Kwa

0                 2                 4                 6                 8                10
Polymyxin B clearance, L∙h−1

Figure 3 PMB clearance and between-subject variability of the included studies. PMB, polymyxin B.
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from 0.9–37 mg/L, and fu showed no change. Six of the 
studies included plasma albumin as a potential covariate, 
but none of them were included in the PPK model. Thus, 
plasma albumin levels are likely to have a weak effect on the 
PK of PMB.

Compared to internal validation, the external assessment 
of a model is considered the most rigorous validation 
method of model testing. Five of the 10 studies were 
externally validated by Tam (27). At the individual patient 
level, the correlation between the observed and predicted 
AUC values was poor (r2<0.2). The Sandri model (23) was 
the least biased and the Kubin model (21) was the most 
precise, with significant inter-patient variability. These 5 
models had no common demographic variables that could 
be used to measure PMB exposure at the individual patient 
level regardless of the structure. The poor correlation 
between predicted PMB exposure and observed values may 
be related to the fact that the main metabolic excretion 
pathways of PMB in the body are unknown.

PMB has the irreplaceable position in the treatment of 
CROs infection. At present, the metabolic and excretion 
processes of PMB in the body are still poorly understood. 
The establishment of any population kinetic model is based 
on the pharmacological, pharmaceutical, physiopathological 
knowledge of the drug, the screening and evaluation 
of various potential covariates, and the construction of 
covariate models. In the future, on the one hand, the in vivo 
metabolic excretion process of PMB will be deeply studied, 
and on the other hand, the kinetic characteristics of PMB 
in patients supported by CRRT and ECMO will be further 
studied.
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