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Background and Objective: The ginsenoside compound K [20-o-beta-dglucopyranosyl-20 (S)-
protopanaxadiol; CK] is the main deglycosylated metabolite of ginsenoside. As a rare ginsenoside converted 
from the active substance of ginseng by intestinal bacteria, CK has higher biological activity than other 
ginsenosides. It has demonstrated diverse and intriguing biological activities, including anti-carcinogenic, 
anti-diabetic, anti-inflammation, anti-allergy, anti-angiogenesis, anti-aging, neuroprotective, and 
hepatoprotective effects. The purpose of this review was to elucidate the rich pharmacological activities and 
related mechanisms of ginsenoside CK in vivo and in vitro, as well as the potential therapeutic value of CK as 
a drug in a variety of systemically related diseases.
Methods: The PubMed database was searched for articles published in English from February 2008 
to December 2021 using related keywords such as “Ginsenoside compound K”, “compound K”, and 
“CK”. About 140 research papers and reports written in English were identified. These papers mainly 
concentrated on the pharmacological activities of CK in cancer prevention, immune regulation, diabetic 
improvement, central nervous system (CNS) protection, cardiovascular protection, skin improvement, and 
hepatoprotection.
Key Content and Findings: This paper describes the synthesis, pharmacokinetics, and adverse reactions 
of CK, as well as great detailed summarized of the relevant pharmacological activities. Such diverse 
intriguing biological properties of CK have been found.
Conclusions: On account of CK’s numerous pharmacological activities and anti-carcinogenic, anti-
inflammation, antiallergic, anti-diabetic, anti-angiogenesis, anti-aging, neuroprotective, and hepatoprotective 
effects, strong evidence is available for CK as a preventive or therapeutic agent for various diseases. However, 
further studies are needed to evaluate the safety and effectiveness of CK as a drug and its application in the 
medical field. 
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Introduction

Ginseng is a traditional Chinese herb with a long history 
of use in traditional Chinese medicine (TCM). It has 
powerful tonic effects and is widely used in various 
medicines (1). With the development of extraction 
technology, the most pharmacologically active constituents 
of ginseng have been reported to be ginsenosides, a group 
of triterpene saponins (2). To date, more than 150 active 
constituents have been extracted from the roots, stems, 
leaves, fruits, and flowers of ginseng (3). Studies have 
reported that ginsenosides are not absorbed intact in 
vivo, but need to be metabolized by intestinal microflora 
before being absorbed through the intestinal tract (4-6).  
Other studies have shown that deglycosylation is the 
major metabolic pathway involved in the transformation 
of ginsenosides to deglycosylated ginsenoside, which 
have higher biological activity than ginsenosides (7,8). 
Compound K (CK, 20-o-beta-d-glucopyranosyl-20 (S)-
protopanaxadiol, C36H62O8) is the major deglycosylated 
metabolite of ginsenoside (8). Recent in vivo and in 
vitro studies have reported that CK is involved in 
multiple pharmacological processes and possesses anti-
carcinogenic (9), anti-diabetic (10), anti-inflammatory (11),  
anti-allergic (12), anti-angiogenic (13), anti-aging (14), 
and hepatoprotective effects (15), as well as effects on 
the central nervous system (CNS) (16). In particular, 
many studies have investigated its pharmacological 
effects. However, no study has investigated the complete 
integration of the pharmacological activity of CK. 
Therefore, we reviewed the pharmacological activity and 
associated mechanisms of CK in detail and updated the 
literature in recent years. It is expected to be helpful in 
developing potential agents to treat related diseases.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
atm.amegroups.com/article/view/10.21037/atm-22-501/rc).

Methods

The PubMed database was searched for articles published 
in English from February 2008 to May 2021 using related 
keywords such as “Ginsenoside compound K”, “compound 
K”, and “CK”. The information used to write this paper 
was collected from the sources listed in Table 1.

Biotransformation, pharmacokinetics, and safety 
of CK

The ginsenoside CK belongs to the family of tetracyclic 
dammarane-type triterpenoid saponins. Based on their 
chemical structure, dammarane group ginsenosides are 
classified into two types: protopanaxadiol (PPD), which 
includes Ra1, Ra2, Ra3, Rb1,Rb2, Rb3, Rc, Rd, Rg3, Rh2, 
F2, and CK, and protopanaxatriol (PPT), which includes 
Re, Rf, Rg1, Rg2, Rh1, and F1 (Figure 1) (17,18). 

Japanese researchers originally isolated CK from a 
mixture of Rb1, Rb2, and Rc, which were hydrolyzed 
from ginseng by a soil bacterium (19). Although its 
structure was identified in 1972, the finding that Rb1 
and Rb2 were metabolized into CK by intestinal bacteria 
in rats via a specific pathway was reported 20 years later 
(20,21). Hasegawa et al. (22,23) investigated the specific 
transformation pathway of CK by intestinal microflora 
and speculated that CK was the most likely form of 
protopanaxadiol saponins that underwent intestinal 
absorption. The specific metabolic pathways of Rb1 and 
Rb2 metabolism to CK by intestinal bacteria are shown in 
Figure 2 (23,24). After the oral administration of Rb1 to 
rats, a high concentration of CK, but no Rb1, was found 
to be present in their intestinal contents, plasma, and 
urine (25-27). Researchers have focused on the biological 
functions of CK and methodology for the effective 
production of CK from major ginsenosides.

T h e  b i o a v a i l a b i l i t y  o f  g i n s e n o s i d e s  w i t h o u t 
transformation and modification suggests low absorption 
in the intestinal tract (28,29). After the oral administration 
of ginsenosides, a series of biological transformations 
occur in the intestinal tract, and they are converted into 
deglycosylated metabolites with higher biological activities 
than their precursor compounds (7). Other studies have 
reported that intestinal bacteria or soil fungi around 
ginseng roots as well as some microorganisms hydrolyze 
ginsenosides to form CK (30,31). The various methods for 
microbial conversion are summarized in Table 2 (7). 

The enzyme β-glucosidase, with a molecular weight 
of 320 kDa and 4 identical subunits (80 kDa), is a key 
enzyme in the hydrolysis of Rb1 into CK (45) and was 
initially purified from metabolizing bacteria isolated from 
human intestinal feces (46). Subsequently, β-glucosidase 
that promoted more specific and effective transformation 

https://atm.amegroups.com/article/view/10.21037/atm-22-501/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-501/rc
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Table 1 The search strategy summary

Items Specification

Date of search 30, July 2021

Database and other sources searched PubMed

Search terms used Ginsenoside compound K [all fields] OR compound K [all fields] OR CK [all fields] OR G-CK [all 
fields]

Timeframe 1990-December 2021

Inclusion and exclusion criteria All study type will be included

Selection process Study selection will be performed by Tao Liu and Lu Zhu independently. Any disagreement about 
the inclusion of studies will be resolved through discussion

Figure 1 Chemical structures of ginsenosides.

was found and purified in the soil of ginseng fields (47,48). 
Later, researchers extracted β-glycosidase from Sulfolobus 
solfataricus and other acid-resistant hot microbiota, and its 
degree of transformation and efficiency were higher than 
those previously reported (49-51). Subsequent studies 
focused on the activity and conversion efficiency associated 
with the design and modification of enzymes (45,52,53). 
Shin et al. (45) designed W361f, a variant of β-glycosidase, 
which had 4.2 times the activity of Rd, and 3.7 times higher 
catalytic efficiency and 3.1 times lower binding energy than 
the wild-type enzyme. They also found that semi-rational 
design was a useful tool to enhance the hydrolytic activity 
of β-glycosidase. Therefore, it is important to discover and 

modify catalytic enzymes to improve the utilization and 
production efficiency of CK (54).

As  in tes t ina l  micro f lora  i s  important  for  the 
biotransformation and pharmacological activity of CK, it 
is necessary to study the metabolic pathways that regulate 
intestinal microflora. Recent studies have indicated that 
western dietary habits and NUTRIOSE (ROQUETTE 
Frères, Lestrem, France) were more likely to improve the 
concentration level of CK (55,56). Furthermore, a study of 
human metabolism found that a high-fat diet significantly 
accelerated and increased the absorption of CK, and 
that the concentration level of CK in women was higher 
than that in men (57). A randomized double-blind study 
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reported the gender- and food-related impacts on CK 
pharmacokinetics (58).

Another pharmacokinetic study of CK reported the 
drug levels in blood samples of 10 healthy men 36 hours 
after the administration of Korean ginseng extract (59). 
The mean maximum plasma concentration (Cmax) of CK 
was significantly higher than the level of Rb1 (8.35±3.19 
vs. 3.94±1.97 ng/mL) and the mean time to reach the Cmax 

(Tmax) of CK was longer than that of Rb1 (12.20±1.81 
vs. 8.70±2.63 h). The delay in the absorption of CK 
supports the idea that intestinal microflora transforms 
Rb1 to CK. The plasma half-life (t1/2) of CK was 7 times 
shorter than that of Rb1. These results indicate that 
the pharmacokinetics of CK are significantly different 
from those of Rb1. In another study (58), 76 participants 
received CK or placebo in 7 single oral doses (25, 50, 100, 
200, 400, 600, 800 mg) while fasting; the time range to 
reach Tmax was 1.5–6.0 h, and the exposure to CK increased 
linearly in the range of 100 to 400 mg. The steady-
state was reached after the seventh administration and 
no severe adverse events (AEs) were observed. The most 
reported AEs were watery stool (diarrhea) and bellyache, 
and all AEs were mild or moderate, most of them were 
disappeared or reversible without any treatment (57,58). 
These results indicated that CK was safe and well-
tolerated over the treatment period. 

In a toxicity study, the oral administration of CK to rats 
and mice did not cause death or toxicity at the maximum 

doses of 8 and 10 g/kg, respectively (60). In a 26-week 
toxicity study, rats were administered CK at doses of 
13, 40, or 120 mg/kg and observed at 26 weeks and at 
4-week recovery periods. Compared with the control 
group, asthenia, fur-loss, hypoactivity and body weight 
reduction were observed in 120 mg/kg male rat group, the 
hepatotoxicity and nephrotoxicity including elevated serum 
ALT and ALP, higher liver relative weight with similar 
histological changes to the 90-day sub-chronic intravenous 
CK in rat, and higher kidney relative weight with no 
histological changes were also showed in 120 mg/kg male 
rat group, but the toxicity were reversible after 4-week 
recovery. No abnormalities in routine activity, laboratory 
markers, and histopathological examination were found in 
the 13 and 40 mg/kg CK groups (60). In addition, the no 
observed harmful effect level was 40 mg/kg in males and 
120 mg/kg in female rats. In a beagle toxicity study, animals 
in the 36 mg/kg group showed reversible hepatotoxicity 
and significant weight loss during the study period. Animals 
in the 4 and 12 mg/kg groups did not show any significant 
toxicity (61).

CK has been shown to be safe and well tolerated in 
animal and human subjects. These preclinical results 
suggest that the liver may be a toxic organ for CK. 
Although the relative weight of the kidney was high, there 
was no histological change, but nephrotoxicity should be 
noted. CK-related AEs in clinical trials were diarrhea and 
abdominal pain. Drug-related AEs is common for drug-
induced diarrhea. There are few clinical trials on CK and 
few reports on CK-related AEs. Therefore, further studies 
are needed to investigate the mechanisms of CK-induced 
toxicity, especially hepatotoxicity, and GCK-induced 
gastrointestinal tract.

Pharmacological properties of CK

The numerous pharmacological effects of CK, including 
cancer prevention (62) ,  immune regulat ion (63) ,  
diabetic improvement (64),  CNS protection (65), 
cardiovascular protection (66), skin improvement (67), and 
hepatoprotection (68) have been demonstrated in vitro and 
in vivo using animal models. The detailed pharmacological 
effects of CK are discussed below. The major functions and 
action targets of CK are summarized in Tables 3,4.

Anticarcinogenic effects of CK

The number of cancer patients is increasing annually; 

Figure 2 Biotransformation of major PPD-type ginsenosides to 
CK. PPD, protopanaxadiol; CK, 20-o-beta-d-glucopyranosyl-20 
(S)-protopanaxadiol.
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however, an effective cancer treatment is still lacking and no 
specific drug can cure cancer (138). Thus, the identification 
of new therapeutic drugs for cancer is urgent. The anti-
tumor effects of CK are different in vivo and in vitro. 
Several studies have reported the cytotoxic and growth-
inhibiting effects of CK on tumor cells, whereas other 
studies have reported that CK inhibits tumor cell metastasis 
and tumor growth (70,79,87,88,90,139). Therefore, CK 
may be a potentially important anticancer drug. 

Inhibition of tumor growth by CK
In an in vivo study, CK significantly inhibited the growth 
of nasopharyngeal carcinoma (HK-1) tumors (91). On 
the 5th day after treatment, the tumor size in the CK 
treated group was 25.6% smaller than that in the control 

group (91). Also, CK dose-dependently reduced the 
tumor growth of colorectal cancer (HCT-116) (79) and 
significantly inhibited tumor growth in an athymic nude 
mouse xenograft model of colorectal cancer cells (HCT-
116, SW-480, HT-29). At 3 weeks after CK treatment; 
the high-dose group (30 mg/kg) had a stronger antitumor 
effect compared with low-dose group (15 mg/kg), which 
was dose- and time-dependent (77). These studies 
suggested that CK might prevent or treat colorectal  
cancer (77). Furthermore, CK inhibited the growth and 
colony formation of cancer cells in mice transplanted with 
human liver cancer cells and boosted the anti-tumor effect 
of gamma rays in a nude mouse xenograft human lung 
cancer cell (NCI-H460) model, indicating that it might be 
an adjuvant of radiotherapy for tumor treatment (71,74). 

Table 2 Production of CK by microbial conversion

Microorganism classification Transformation pathways Source
Processing 
condition 

Reference

Bifidobacterium K-103 and  
Eubacterium A-44

Rc → Rd → CK Human feces 37 ℃, pH 7.0 Bae et al. (32)

Bifidobacterium K-506 and  
Bacteroides HJ-15

Rc →Mb → CK Human feces 37 ℃, pH 7.0 Bae et al. (32)

Bifidobacterium sp. Int57, Bif. sp. SJ32, 
Aspergillus niger, and A. usamii

Rb1 → Rd and F2 → CK Human feces 37 ℃, pH 5.0 Chi et al. (31)

Bifidobacterium sp. Int57and SJ32 Rb2 and Rc → Rd and F2 → CK Human feces 37 ℃, pH 5.0 Chi et al. (30)

Aspergillus niger Rb2→ Compound O and Compound  
Y→ CK; Rc → Mc → CK

– 37 ℃, pH 5.0 Chi et al. (30)

Esteya vermicola CNU120806 Rd → F2 → CK Nematodes in 
forest soil 

50 ℃, pH 5.0 Hou et al. (33)
 

Paecilomyces bainier sp. 229 P. notoginseng saponins → CK Soil around 
ginseng roots

28 ℃, pH 6.0 Zhou et al. (34)

Fusarium sacchari P. notoginseng saponins → CK Soil around 
ginseng roots 

30 ℃, pH 5.5 Han et al. (35,36)

Fusarium moniliforme P. notoginseng saponins → CK – – Yang et al. (37)

Cladosporium cladosporioides Rb1→Rd or gypenoside XVII → F2 → CK – 30 ℃, pH 7.0 Wu et al. (38)

Acremonium strictum Rb1→CK Soil around 
ginseng roots 

– Chen et al. (39)

Aspergillus niger g.848 Rb1→Rd→ F2 → CK Chinese koji 30 ℃, pH 5.0 Liu et al. (40)

Aspergillus niger P. notoginseng saponins → CK – – Zhou et al. (41)

Leuconostoc citreum LH1 Rb1→CK Kimchi 30 ℃, pH 6.0 Quan et al. (42)

Leuconostoc mesenteroides DC102 Rb1→Rd or gypenoside XVII→ F2 → CK Kimchi 30 ℃, pH 7.0 Quan et al. (43)

Lactobacillus paralimentarius LH4 Rb1→Rd or gypenoside XVII→ F2 → CK Kimchi 30 ℃, pH 6.0 Quan et al. (44)

“–” indicates not mentioned. CK, 20-o-beta-d-glucopyranosyl-20 (S)-protopanaxadiol.
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Table 3 Anticarcinogenic effects of CK

Cancer type Cell lines Mode of action Ref.

Lung cancer A549, H1975 CK induced apoptosis and autophagy via AMPK-mTOR and JNK pathways (69)

CK inhibited growth via HIF-1α-mediated glucose metabolism (70)

HCI-H460 CK induced apoptosis via ROS (71)

Liver cancer MHCC97-H CK induced apoptosis via Fas and mitochondria mediated caspase-dependent pathway (72)

HIT CK attenuated metastatic growth via translocation of NF-κB p65 and reduction of MMP-2/9 (73)

HepG2, SMMC-7721 CK induced ER stress and apoptosis by regulating STAT3 (74)

Colon cancer HCT-116, HT-29 CK blocked cell cycle at the G1 phase and had antiproliferative effects (75)

CK enhanced sensitivity to TRAIL-induced apoptosis via autophagy-dependent and 
-independent DR5 upregulation

(76)

HCT-116 CK induced apoptosis and cycle arrest via down-regulation of CDC25A, CDK4/6, cyclin 
D1/3, and up-regulation of p53/p21, FoxO3a-p27/p15, and Smad3

(77)

CK induced autophagy and apoptosis via generation of reactive oxygen species and 
activation of JNK

(78)

CK enhanced the effects of fluorouracil (79)

HT-29 CK induced mitochondria-dependent and caspase-dependent apoptosis via the generation 
of ROS

(80)

CK inhibited growth and inducing apoptosis via inhibition of histone deacetylase activity (81)

CK induced apoptosis via CAMK-IV/AMPK pathways (82)

SW-480 CK induced apoptosis and cycle arrest (83)

Brain tumors U87MG, U373MG CK inhibited growth, migration, and stemness via PI3K/ Akt/mTOR pathway (84)

CK suppressed phorbol ester-induced MMP-9 expression by inhibiting AP-1 and MAPK 
signaling pathways

(85)

U251MG, U87MG CK suppressed viability via down-regulation of cell adhesion proteins and cell-cycle arrest (86)

SK-N-BE(2), SH-SY5Y CK induced ROS-mediated apoptosis and autophagic inhibition (87)

C6 CK attenuated SDF-1-induced migration (88)

Gastric 
carcinoma

BGC823, SGC7901 CK inhibited growth via the Bid-mediated mitochondrial pathway (89)

Osteosarcoma MG-63 CK inhibited migration and invasion via the PI3K/mTOR/p70S6K1 signaling pathway (90)

Nasopharyngeal 
carcinoma

HK-1 CK induced apoptosis via activation of apoptosis-inducing factor (91)

Bladder cancer T24 CK induced apoptosis via the ROS-mediated p38 MAPK pathway (92)

Leukemia HL-60 CK induced apoptosis via the caspase-8-dependent pathway (9)

U937 CK induced G1 phase arrest of the cell cycle via up-regulation of p12 and activation of 
JNK

(58)

Kasumi-1, MV4-11 CK inhibited growth via inhibition of synthesis (93)

Breast cancer MCF-7 CK induced programmed necrosis via GSK3β (94)

Myeloma U266 CK induced apoptosis via inhibition of JAK1/STAT3 signaling (95)

CK, Ginsenoside compound K; AMPK, adenosine monophosphate protein kinase; mTOR, mammalian target of rapamycin; JNK, c-Jun 
N-terminal kinase; ROS, reactive oxygen species; MMP, metalloproteinase; HIF, hypoxia inducible factor; STAT, signal transducer and 
activator of transcription; TRAIL, related apoptosis-inducing ligand; DR5, death receptor; CDC, recombinant cell division cycle protein; 
CDK, cyclin-dependent kinases; FoxO3a, Forkhead box O3; Smad3, drosophila mothers against decapentaplegic; CAMK-IV, calmodulin-
activated protein kinase; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; AP-1, activated protein-1; MAPK, mitogen-activated 
protein kinase; SDF-1, stromal cell derived factors-1; GSK3β, glycogen synthase kinase; JAK, janus kinase.
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Table 4 Pharmacology of CK

Biological activities Models Targets Description Ref.

Anti-inflammatory 
and anti-allergic 
effects

LPS-induced RAW264.7 
and HEK293

iNOS, COX-2 CK inhibited the production of NO and PGE2 (11)

Dectin-1,ROS CK inhibited the production of systemic inflammatory 
cytokines

(96)

IRAK-1, IKK-β, NF-κB CK inhibited the production of proinflammatory cytokines (97)

AKT1 CK inhibited the production of IL-1β, IFN-β, and TNF-α (98)

Oxazolone-induced 
mouse dermatitis

COX-2, Th cells CK inhibited the production of IFN-γ, and IL-4 (12)

LPS-induced lethal shock TLR4/LPS,  
NF-κB, MAPK

CK reduced the levels of systemic inflammatory cytokines in 
mice and reversed the fatal sequelae of sepsis

(99)

Collagen-induced arthritis CCL21/CCR7 CK suppressed T-cell priming (100)

β-arrestin1, AP2 CK inhibited the activity of B cells (101)

β-arrestin2, Gαi,  
TLR4, NF-κB

CK regulated macrophage function (102)

TCR, CD28,  
CTLA-4, PD-1

CK suppressed the abnormal activation of T lymphocytes (103)

Adjuvant-induced  
arthritis

memory B cells, T cells CK downregulated memory B cells (104)

TNF-α, TNFR 2, GR CK inhibited proliferation, migration, and secretion of FLS (105)

T cells CK suppressed T cell activation (T cell proliferation, CD25 
and IL-2)

(106)

B cells, macrophages CK affected the function of immune cells and effector cells 
(FLS) to attenuate inflammatory responses

(107)

DSS-induced colitis rats PXR/NF-κB CK targeted PXR/NF-κB interactions to cause anti-
inflammatory effects without damaging PXR function in 
healthy rats

(108)

NF-κB CK promoted the recovery of the progression of colitis and 
inhibited pro-inflammatory cytokine production 

(109)

IMQ-induced psoriasis 
mice

REG3A/RegIIIγ CK inhibited keratinocyte proliferation and ameliorated 
psoriasis-like hyperkeratosis

(110)

TNF-α-induced astroglial 
cells

NF-κB, JNK CK inhibited the production of VCAM-1 induced by TNF-α (111)

U937, RAW264.7 cells NF-κB, AP-1 CK had an immunomodulatory role in innate immune 
responses 

(63)

Table 4 (continued)
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Table 4 (continued)

Biological activities Models Targets Description Ref.

Anti-diabetic 
effects

db/db mice plasma adiponectin CK enhanced insulin secretion (10,112)

MIN6 pancreatic β-cells GLUT2 CK enhanced insulin secretion (113)

HFD/STZ-induced  
T2DM, HepG2

PEPCK, G6Pase CK suppressed gluconeogenesis (114)

PI3K/Akt CK suppressed insulin resistance (115)

AMPK CK suppressed gluconeogenesis (116)

High glucose-induced 
3T3 adipocytes

ER stress, NLRP3 
inflammasome

CK improved insulin signaling (117)

3T3-L1 adipocytes GLUT4, AMPK, PI3K CK stimulated glucose uptake (118)

Palmitate-induced 
damage of MIN6 cells

AMPK/JNK CK protected pancreatic islet cells against apoptosis (119)

NCI-H716 bile acid receptor,  
GLP-1, TGR5

CK stimulated GLP-1 secretion (120)

High-fat diet/
streptozotocin-induced 

diabetic mice

NLRP3 inflammasome, 
NF-κB/p38

CK had a protective effect on diabetic nephropathy (121)

Neuroprotective 
effects

LPS-induced microglia, 
Sepsis and cerebral 

ischemia mouse models

NF-κB /AP1 CK reduced the volume of ischemic cerebral infarction and 
inhibited microglial cell activation

(16)

CCH rats pser9-gsk-3,  
IDE PKB/Akt

CK attenuated cognitive deficits (122)

Primary astrocytes mTOR CK enhanced autophagy to promote Aβ-clearance (123)

Scopolamine 
hydrobromide-induced 

memory impaired mouse

Nrf2/Keap1, Aβ CK reduced oxidative damage to neurons, inhibited neuronal 
apoptosis, and improved memory function 

(65)

HT22 cells GLUT, ATP CK adjusted energy metabolism to inhibit neuronal damage (124)

Behavioral despair model 
and CUMS model in mice 

or rats

5-HT, DA,  
BDNF, NGF

CK enhanced antioxidant capacity and increased 
neurotrophic protein expression

(125)

CA3 pyramidal neurons GABA CK inhibited the transmission of CA3 pyramidal neurons, 
affected hippocampal mediated physiological functions

(27)

African xenopus oocytes GABAC Receptor CK inhibited GABA-induced introverted peak current (IGABA) (126)

Pentylenetetrazole or 
lithium chloride-rutin-
induced epilepsy rats

GABA, GABAAR CK promoted the release of GABA and enhanced GABAA-
mediated inhibitory synaptic transmission 

(127)

Menopausal depressive-
like state in female mice

5-HT2A CK improved depressive-like state (128)

Table 4 (continued)
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Table 4 (continued)

Biological activities Models Targets Description Ref.

Anti-angiogenesis 
effects

bFGF-induced HUVECs p38, AKT CK inhibited bFGF-induced angiogenesis (13)

S1P-induced HUVECs SPHK1, MMP CK inhibited HUVECs migration (129)

TNF-α-induced 
monocyte-endothelial 

cells

VCAM-1, NF-κB CK blocked leukocyte endothelial interactions and transport. (130)

ox-LDL-induced injury in 
HUVECs

NF-κB,  
p38MAPK, JNK 

CK prevented inflammation and apoptosis (131)

PDGF-BB-induced 
VSMC

CDK2, CDK4, cyclinE, 
cyclinD1, MMP-2, 

MMP-9

CK inhibited abnormal VSMC proliferation and migration (132)

I/R-induced mice Akt/PI3K, eNOS CK induced cardiac protection (133)

I/R-induced H9C2 cells PI3K/Akt CK inhibited autophagy-mediated apoptosis (134)

Anti-aging effects HaCaT cells, hairless 
mice

HAS2 CK increased the production of HA (14)

TNF-α-stimulated dermal 
fibroblasts

MMP-1, c-Src,  
ERK, AP-1

CK inhibited collagen degradation (135)

UV- irradiated HaCaT 
cells

XPC, ERCC1 CK suppressed apoptosis by inducing DNA repair (136)

UVB- irradiated NIH3T3 
cell

MMP-1, COX-2,  
HAS-1 and -2

CK increased the production of HA and type I procollagen (67)

UVA-irradiated fibroblasts MMP-1 CK up-regulated the production of type I procollagen (137)

Hepatoprotective 
effects

APAP-induced liver injury 
in rats

JNK CK alleviated hepatotoxicity (15)

SVP-induced 
hepatotoxicity in rats

sHE,  
iron homeostasis

CK alleviated hepatotoxicity (68)

CK, Ginsenoside compound K; TNF, tumor necrosis factor; iNOS, inducible nitric-oxide synthase; COX-2, cyclooxygenase; AKT, Serine/
threonine protein kinase; IRAK, interleukin-1 receptor-related kinase; IKK-β, inhibitor of nuclear factor kappa-B kinase; TLR, toll like 
receptor; CCL, CC chemokine ligand; CCR7, chemokine receptor; AP2, adaptor protein 2; LPS, lipopolysaccharide; IL, interleukin; IFN, 
interferon; Gαi, guanine nucleotide-binding protein subunit alpha; TCR, T cell receptor; CTLA-4, cytotoxic T-lymphocyte-associated protein 
4; CD28, cluster of differentiation 28; PD-1, programmed cell death protein 1; TNFR 2, tumor necrosis factor receptor; GR, glucocorticoid 
receptor; FLS, fibroblast-like synovial; PXR, progesterone X receptor; GLUT2, glucose transporter protein 2; PEPCK, phosphoenolpyruvate 
carboxy kinase; G6Pase, glucose 6-phosphatase; ER stress, endoplasmic reticulum stress; NLRP3, NOD-like receptors; GLP-1, glucagon-
like peptide-1; TGR5, G protein-coupled receptor 5; Nrf2, nuclear factor E2-related factor 2; Keap1, Keleh-like ECH-associated protein 
l; GABA, gamma-aminobutyric acid; 5-HT, serotonin; GABAAR, gamma-aminobutyric acid-A receptor; S1P, sphingosine-1-phosphate; 
Ox-LDL, oxidized low density lipoprotein; PDGF-BB, platelet-derived growth factor; SPHK1, sphingosine kinase 1; VCAM-1, vascular 
cell adhesion molecule 1; HA, hyaluronic acid; HAS, hyaluronic acid synthase; XPC, Xeroderma pigmentosum-C; ERCC1, excision repair 
cross-complementation group 1; APAP, acetaminophen; SVP, sodium valproate.

Cytotoxicity of CK 
Studies have been conducted to investigate the cytotoxicity 
of CK against mouse high-metastatic melanoma (B16-
BL6), human hepatoma (HepG2), human myeloid leukemia 
(K562), human high-metastasis lung carcinoma (95-D),  

human leukemia (HL-60), and human colon cancer cell 
lines (9,41,80). The mean concentrations of CK that 
inhibited cell proliferation by 50% (IC50) were 12.7, 11.4, 
8.5, 9.7, 14, and 32 μmol/L, respectively, and the effect was 
time-dependent (9,41,80). 
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The anti-proliferative effects of CK 
In another experiment, CK exhibited significant anti-
proliferative effects against human colorectal cancer 
cell lines (HCT-116 and SW-480) at concentrations 
of 30–50 μM, indicating that it might be an effective 
anti-carcinogenic medicine (83). Similarly, the anti-
proliferative effects of CK on human and animal tumor 
cell lines have been demonstrated in many studies 
(9,41,80). Furthermore, CK significantly induced cell 
cycle arrest during the G1 phase in non-small cell lung 
cancer cells (A549, H1975) (69), human colorectal cancer 
cells (HCT-116, HT-29) (75,77,81), glioblastoma cells 
(U87MG, U373MG) (84), human glioblastoma cells (U251 
MG, U87-MG) (86), human monocytes (U937) (140), and 
acute myeloid leukemia cells (93), which was dose- and/
or time-dependent. The major regulatory targets of CK 
were found to be cyclin-dependent inhibitors, including 
p21, p27, p15, and cyclin D (75,77,81). Furthermore, CK 
blocked the cell cycle at the G2 phase in human gastric 
cancer cells (BGC823 and SGC7901) to exert an anti-
proliferative effect (89).

The apoptotic effects of CK
Apoptosis was shown to be significantly induced by CK in 
A549 (69), H1975 (69), and HL-60 (9) cell lines, human 
colorectal cancer cells (HCT-116, HT-29) (75-78,80-82),  
glioblastoma cells (U87MG, U373MG) (84), human 
glioblastoma cells (U251 MG, U87-MG) (86), human 
monocytes (U937) (140), acute myeloid leukemia cells (93),  
human gastric cancer cells (BGC823 and SGC7901) (89),  
h u m a n  h e p a t o c e l l u l a r  c a r c i n o m a  ( H C C )  c e l l s 
(MHCC97-H) (72), and bladder cancer cells (T24) (92). 

It was also shown to induce apoptosis in cancer cells via 
a caspase-dependent pathway at a concentration that had 
low toxicity to normal cells (72). The induction of apoptosis 
in HT-29 and HCT-116 cells by CK was mediated 
by mitochondrial-dependent and caspase-dependent 
mechanisms via the generation of reactive oxygen species 
(ROS), and the mitogen-activated protein kinase (MAPK), 
the calmodulin-activated protein kinase/adenosine 
monophosphate protein kinase (AMPK) pathway, and the 
tumor necrosis factor (TNF)-related apoptosis-inducing 
ligand-mediated death receptor pathways (76,78,80,82). 
The transcriptional activation of multiple tumor-promoting 
pathways in CRC was inhibited by CK, indicating that it 
might prevent or treat CRC (77). Morphological changes 
were induced in HL-60 cells by CK, leading to cell 
apoptosis, as indicated by typical characteristics such as 

DNA fragmentation (9).
Autophagy leads to cell adaptation, cell survival, or cell 

death (87). The regulation of autophagy is increasingly 
being regarded as a promising cancer treatment (87). 
A study showed that CK induced the ROS-mediated 
inhibition of autophagy flux, which inhibited the 
proliferation of neuroblastoma cells and promoted cell 
apoptosis (87). In non-small cell lung cancer cells (A549, 
H1975), CK promoted autophagy to induce cell apoptosis 
through the AMPK-mTOR and c-Jun N-terminal kinase 
(JNK) signaling pathways (69). In addition, CK induced 
the apoptosis of colon cancer cell lines (HT-29, HCT-116) 
through autophagy via ROS production and JNK activation 
(76,78).

Inhibition of tumor cell invasion and metastasis by CK
The invasion and metastasis of tumor cells are important for 
the prognosis of cancer patients and are therapeutic targets 
of tumor therapy. CK Significant reductions in the colony 
formation, adhesion, and invasion of HCC cells were exerted 
by CK in vitro, and it inhibited metastasis and growth of 
HCC in vivo related to the nuclear export of nuclear factor-
kappa B (NF-κB) p65 nuclear export and the reduction of 
metalloproteinase 2/9 (MMP-2/9) expression (73). It was 
also shown that CK reduced glioblastoma cell markers 
(CD133, Nanog, Oct4, and Sox2) to inhibit their growth, 
metastasis, and invasion potential (84). The migration 
and invasiveness of C6 glioma and astroglioma cells was 
inhibited by CK, suggesting it might control the growth 
and invasiveness of brain tumors (85,88). Osteosarcoma is 
a malignant bone tumor, and CK was shown to inhibit the 
migration and invasion of osteosarcoma cells via the PI3K/
mTOR/p70S6K1 signaling pathway (90).

Myelosuppression of CK
In a study of the effects of CK on myelosuppression in 
mice induced by cyclophosphamide (CTX), CK could 
increase the thymus index, the yields of colony formation 
units-granulocyte monocyte and colony formation units-
megakaryocytic. CK could control apoptosis and promote 
cells to enter the normal cell cycle by the bcl-2/bax 
signaling pathway and MEK/ERK signaling pathway. It 
suggested that CK can improve the hematopoietic function 
of myelosuppression among mice (141).

Anti-inflammatory and anti-allergic effects of CK

Inflammation, including the sustained production of 
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nitric oxide (NO) and prostaglandins (PGs), is important 
in the pathophysiological changes of rheumatic diseases 
and other inflammatory diseases (142). Recent studies 
have shown that the anti-inflammatory activities of CK 
on lipopolysaccharide (LPS)-induced mononuclear 
macrophages (RAW264.7), and reported that CK down-
regulated inducible nitric-oxide synthase (iNOS) levels, 
ROS, and cyclooxygenase-2 proteins by inhibiting nuclear 
factor-κB (NF-κB) and MAPK activation, which suppressed 
NO and prostaglandin E2 (PGE2) production (IC50 =0.012 
and 0.004 mM, respectively) (11,143). It also could inhibit 
the migration of RAW264.7 by blocking the activation 
of NF-κB and up-regulating the expression of PPARγ 
and, indicating that CK could inhibit the activation of 
inflammatory macrophages and increase the expression of 
anti-inflammatory macrophages (144). It had a negative 
regulatory effect on the production of proinflammatory 
cytokines, and the activation of inflammatory pathways 
in LPS- or zymosan-induced mononuclear macrophages 
at non-cytotoxic concentrations, indicating that CK is 
involved in the regulation of inflammation (96-99). When 
administered in vivo, CK inhibited the production of 
systemic inflammatory cytokines and reduced the mortality 
rate of inflammatory shock in mice (99). Therefore, CK 
might control excessive lethal inflammation (96-99). 

In a collagen-induced arthritis (CIA) model, CK inhibited 
the abnormal activation and differentiation of T cells and 
B cells and improved the outcome of CIA by reducing the 
proportion of M1 and M2 macrophages (100-102). C-K 
could promote TLR4-Gαs coupling and inhibit TLR4-Gαi 
coupling through β-arrestin2 regulation in macrophages, 
leading to the function inhibition of immune cells including 
macrophage polarization and phagocytosis (102). Several 
studies using complete Freund’s adjuvant-induced adjuvant-
arthritis rats models have reported that CK reduced disease 
severity, foot-pad swelling, and the degree of pathology 
in the joints by inhibiting the proliferation of B cells, T 
cells, and fibroblast-like synoviocytes, and the level of 
autoantibodies, macrophage phagocytosis, and the secretion 
of proinflammatory cytokines (104-107).

Other  s tud i e s  u s ing  dex t r an  sod ium su l f a t e -
induced colitis mouse models showed that CK relieved 
histopathological injury in mild and severe colitis. In 
these studies, CK targeted the progesterone X receptor 
(PXR)/NF-κB interactions to improve myeloperoxidase 
(MPO) activity, reduce the production of proinflammatory 
cytokines (TNF-α, IL-1β, and IL-6), and increase the anti-
inflammatory cytokines (108,109). In addition, CK also 

could as a drug candidate for IgA nephropathy through 
inhibiting the activation of NLRP3 inflammasome in renal 
tissues, macrophages and bone marrow-derived dendritic 
cells, enhancing the induction of autophagy through 
increased SIRT1 expression, and eliciting autophagy-
mediated NLRP3 inflammasome inhibition (145).

Anti-diabetic effects of CK

Diabetes mellitus, caused by a deficiency in insulin secretion 
and action, often leads to chronic progressive disease, 
functional decline, and failure of multiple tissues and organs 
due to metabolic disorders (146). At present, there are no 
effective drugs to treat diabetes. Current treatments focus 
on stimulating insulin production, increasing the sensitivity 
of peripheral tissues to insulin, and inhibiting liver glucose 
output using insulin-like preparations (146). Importantly, 
CK also promotes these functions.

In vitro studies using HIT-T15 cells and primary 
cultured islet cells have shown that CK enhances insulin 
secretion in a dose-dependent manner, which may be related 
to adenosine triphosphate (ATP)-sensitive K+ channels (10). 
Similar to sulfonylurea, CK stimulated insulin secretion 
and enhanced the anti-diabetic effect of metformin in db/
db mice. Thus, CK has potential applications for diabetic 
therapy when used in combination with sulfonylurea (112). 
A study using MIN6 pancreatic β-cells reported that CK 
significantly enhanced insulin secretion by up-regulating 
the expression of glucose transporter protein 2 (113,117).

In a long-term study of db/db mice, CK enhanced plasma 
adiponectin production, changed glucose metabolism in 
the liver from glucose production to glucose utilization, 
which improved insulin sensitivity, induced hypoglycemic 
effects, and improved glucose tolerance (10). After feeding 
diabetic model mice with CK 30 mg/kg/day for 4 weeks, 
hypoglycemic and insulin sensitivity of type 2 diabetes was 
improved by reducing phosphoenolpyruvate carboxy kinase 
and glucose 6-phosphatase expression in the liver (114). 
Hyperglycemia and insulin resistance in diabetic rats was 
improved by CK via enhancement of insulin sensitivity and 
insulin signaling and inhibiting inflammation (115,117). 

Anti-diabetic effects were induced by CK by reducing 
the expression of key gluconeogenic enzymes in the liver 
and hepatic gluconeogenesis was inhibited by enhancement 
of AMPK activity (116). Furthermore, CK promoted the 
uptake of glucose by adipocytes, indicating it might have 
hypoglycemic properties and insulin-like activity, which is 
important for its potential used in diabetes (118). Treatment 



Liu et al. Review of CKPage 12 of 20

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(4):234 | https://dx.doi.org/10.21037/atm-22-501

with CK prevented pancreatic islet destruction and retained 
more insulin in db/db mice (10). These anti-diabetes 
effects of CK were mediated by inhibiting the AMPK-JNK 
pathway and preventing apoptosis of pancreatic islet cells  
in vitro and in vivo (119).

Glucagon-like peptide-1 inhibits pancreatic β-cell 
apoptosis and stimulates glucose-stimulated insulin 
secretion (147).  Studies showed that CK induced 
hypoglycemic effects by stimulating the secretion of 
glucagon-like peptide-1 in NCI-H716 cells via bile acid 
receptor activation (120) (125) and protected against 
diabetic nephropathy by inhibiting NLRP3 inflammasome 
activation and NF-κB/p38 signaling pathway (121,126).

Effects of CK on the CNS

Many studies have reported that CK improves the cognition 
of neurological diseases, has a neuroprotective effect (122), 
and protects neurotransmission (27).

Cognition and neuroprotection effects of CK
Amyloid-β (Aβ) peptide is a biomarker of Alzheimer’s 
disease (AD) (148). It has been shown that CK promotes 
the clearance of Aβ by enhancing autophagy in primary 
astrocytes  and improves memory in scopolamine 
hydrobromide-injured mice by inhibiting Aβ accumulation 
and activating the Nrf2/Keap1 signaling pathway (123). 
In addition, CK reduced oxidative damage to neurons 
and inhibited neuron apoptosis (65). In a slow cerebral 
hypoperfusion (CCH) rat model, CK inhibited CCH-
induced neuron injury and Aβ accumulation. Furthermore, 
CK attenuated cognitive deficits in vascular dementia 
rats (122). When HT22 cells were incubated with CK 
and exposed to Aβ, neuronal damage caused by Aβ was 
inhibited by activating the energy metabolism signaling 
pathway (124). Therefore, CK might be a useful preventive 
or therapeutic agent for AD (65,122-124). When treating 
nervous system disease, chemotherapy often leads to 
neurocognitive impairment, including learning and 
memory. Thus, permanently repairing and improving 
cognitive impairment are important for the patient (149). 
Treatment with 10 mg/kg CK alleviated the reduction of 
hippocampal neurogenesis caused by cyclophosphamide 
indicating CK might improve or repair the side-effects 
caused by chemotherapy agents (108,112,131,149).

Microglia activation is important in the pathogenesis of 
various neurological diseases. The anti-inflammatory and 
neuroprotective effects of CK have been demonstrated in 

brain disease models of sepsis (systemic inflammation) and 
brain ischemia in mice. It was shown to reduce the infarct 
volume of ischemic brains induced by middle cerebral 
artery occlusion and suppress microglial activation in 
the ischemic cortex as well as inhibiting the activities of 
ROS, MAPKs, and NF-κB/activator protein to suppress 
microglial activation in LPS-induced BV2 cells and primary 
cultured microglial cells (16). The expressions of brain-
derived neurotrophic factor and nerve growth factor 
were increased in rats treated with CK, indicating that it 
promotes neurotrophic protection of the CNS (125).

The proliferation and differentiation of Schwann cells 
are critical for the remyelination of injured peripheral nerve. 
It was shown that CK induced cell proliferation, migration 
and differentiation via the activation of MEK/ERK1/2 and 
PI3K/AKT pathways in cultured primary Schwann cells 
(133,150).

Neurotransmission modulation by CK
At a dose of 10 μmol/L, CK increased the spontaneous 
release of gamma-aminobutyric acid (GABA) by promoting 
the release of Ca2+ from presynaptic Ca2+ stores and 
inhibited the transmission of hippocampal CA3 pyramidal 
neurons in rats and the physiological functions mediated 
by the hippocampus (27). It also inhibited GABA-induced 
inward peak current (IGABA) by inhibiting GABA receptor C  
(GABAC) (IC50 value of 52.1±2.3 μmol/L) (126). This 
suggests that CK may regulate GABAC receptor channel 
activity in the brain. An imbalance between GABA-
mediated inhibition and glutamate-mediated excitation is 
a major pathological mechanism of epilepsy and therefore 
GABA and glutamate neurotransmission have become 
important targets for epilepsy control (127). By promoting 
the release of GABA in the hippocampus and enhancing 
GABA-mediated inhibitory synaptic transmission, CK 
exerted an antiepileptic effect.

Yamada et al. (128) found that CK had a beneficial 
effect in a mouse model of depression-like state induced by 
ovariectomy by preventing postoperative prolonged fixation, 
which was mediated by the serotonin (5-HT) receptor in 
a dose-dependent manner. Song et al. (125) established a 
chronic unpredictable mild stress model in rats, and found 
that CK alleviated depression-like behavior, increased 
the levels of 5-HT, dopamine, and their metabolites in 
the prefrontal cortex and hippocampus, and reversed 
monoamine oxidase B overexpression in the prefrontal 
cortex and hippocampus. These results suggest CK has 
an antidepressant effect in rodents, which is related to the 
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regulation of monoamine neurotransmitter concentrations.

Anti-angiogenesis effects of CK

Few studies have investigated the cardiovascular effects 
of CK, although it has a protective effect on vascular 
endothelial cells and smooth muscle cells (13,132).

It has been shown that CK attenuates the expression 
of cyclin D1 and significantly inhibits the proliferation, 
migration, and lumen formation of basic fibroblast growth 
factor (bFGF)-induced human umbilical vein endothelial 
cells (HUVECs), and prevents bFGF-induced angiogenesis 
in mice (13,129).

The adhesion of leukocytes to endothelial cells and 
leukocyte transport are involved in the early stage of 
atherosclerosis (130). Anti-atherogenic effects were exerted 
by CK by negatively regulating NF-κB signaling and 
blocking leukocytes transport by inhibiting interactions 
between leukocytes and endothelial cells (130). It also 
reduced HUVEC inflammation and apoptosis induced by 
oxidized low-density lipoprotein by inhibiting the nuclear 
translocation of NF-κB and phosphorylation of p38MAPK 
and JNK (131). Furthermore, CK significantly inhibited 
the proliferation of vascular smooth muscle cells stimulated 
by platelet-derived growth factor BB in vitro by a dose-
dependent mechanism involving the blockade of cells in the 
G1 phase (132). Formation of the angiogenic intima was 
significantly inhibited in vivo by CK indicating it might be a 
candidate therapeutic agent for atherosclerosis (132).

In a mouse model of myocardial ischemia-reperfusion 
(I/R) injury, CK protected the myocardium, reduced 
the infarct area, and inhibited myocardial cell apoptosis, 
indicating that it has a protective effect on the heart 
damaged caused by I/R (133,134).

Anti-aging effects of CK

The local application of CK to the skin of hairless mice 
increased the hyaluronic acid content in the epidermis and 
papillary dermis by up-regulating hyaluronic acid synthase 
2 (14). Therefore, the local use of CK may prevent or 
improve xerosis and wrinkles in the skin (14). It suppressed 
MMP-1 secretion and increased type I procollagen 
secretion in TNF-α-stimulated human skin fibroblasts 
(HS68 cells), which inhibited collagen degradation in 
human fibroblasts (135). It also down-regulated MMP-
1 activity, cyclooxygenase-2 production, and restored the 
production of type I collagen in ultraviolet (UV) A/UVB-

irradiated fibroblasts and protected UV-irradiated HaCaT 
cells from apoptosis by inducing DNA repair (67,136,137). 
These studies indicate that CK has anti-aging and hydrating 
effects and could be used in cosmetic products to protect 
skin from UV and increase skin moisture levels (137).

Hepatoprotective effects of CK

Studies have shown that CK has hepatoprotective activity. 
It inhibited liver injury induced by acetaminophen in vivo 
and significantly reduced aspartic aminotransferase and 
alanine aminotransferase concentrations by inhibiting 
JNK signaling in HepG2 cells (15). It also significantly 
reversed liver injury induced by sodium valproate (SVP) 
and had a marked hepatoprotective effect on SVP-induced 
hepatotoxicity via antioxidant effects including regulation 
of the peroxisome pathway, downregulating soluble epoxide 
hydrolase (sHE, UniProt ID P80299) and regulating iron 
homeostasis dependent on hepcidin upregulation (68).

Conclusions

As rare ginsenoside, CK does not exist in natural 
ginsenoside but can be produced effectively with the advent 
of modern enzyme technology. It is generally agreed 
that compound K is more bioavailable than the parent 
ginsenosides, including Rb1, Rb2, and Rc, and is the major 
contributing factor to the health benefits of ginseng. It 
has a wide range of pharmacological functions, especially 
anticancer effects. The application of CK provides a new 
perspective for the development of anticancer agents. 
Similarly, CK has important roles in many physiological 
processes and could be used as a preventive or therapeutic 
agent for various diseases. 

Although it is possible that new mechanisms not 
mentioned in this article in the foreseeable future, many 
mechanisms of CK remain unknown. Firstly, most of 
understanding of various systemic diseases pharmacological 
effects of CK and its precursor are derived from animal 
and cell models, the results cannot be directly translated 
to the healthy normal population, further experiment 
verification about human in vitro are necessary. Secondly, 
more experiments need to be carried out to corroborate the 
specific role of CK in related systemic diseases and related 
mechanisms. Thirdly, further clinical trials are requirement 
for investigating the safety and efficacy of CK. Fourthly, 
ginseng and ginsenosides have been proved to have a variety 
of pharmacological effects, further research is required to 



Liu et al. Review of CKPage 14 of 20

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(4):234 | https://dx.doi.org/10.21037/atm-22-501

establish whether CK is the major component of ginseng 
responsible for its pharmacological activities. 

In conclusion, we need to carry out more studies to 
improve the relevant mechanisms of CK, so as to better 
provide help for the clinical application of CK.
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