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Background: Immune-related genes (IRGs) play an important role in the tumor immune microenvironment 
and affect tumor prognosis. This study aimed to establish a prognostic signature for malignant pleural 
mesothelioma (MPM) patients. 
Methods: We obtained the relevant data of MPM patients in The Cancer Genome Atlas (TCGA), and 
univariate and multivariate Cox regression were used to construct the prediction signature and verify it with 
the external validation dataset GSE2549. A nomogram was then constructed, and its predictive ability was 
evaluated and analyzed the level of immune cell infiltration in different groups in the signature. 
Results: An IRG-related prognostic signature composed of INHBA, CAT, SORT1, TNFSF13B, and 
BIRC5 was constructed, with patients divided into high-risk and low-risk groups according to the risk score. 
The survival time of overall survival (OS), progression-free survival (PFS), disease-free interval (DFI), 
and relapse-free survival (RFS) in low-risk groups was longer than in high-risk groups. Furthermore, the 
signature had high predictive performance, and the receiver operating characteristic (ROC) of 1, 2, and 3 years 
could reach 0.853, 0.881, and 0.914, respectively. The predictive accuracy of the signature was verified by 
using the independent GSE2549 dataset. The levels of activated CD4 T cells, immature dendritic cells, and 
type 2 T helper cells were higher in high-risk patients. The gene set enrichment analysis (GSEA) analysis 
showed that a high concentration and P53 signal pathways were found in high-risk groups. 
Conclusions: This research developed and verified a new type of immune prognostic signature based 
on five IRGs, which can predict the prognosis of tumor patients and provide new ideas for individualized 
treatment.
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Introduction

Malignant pleural mesothelioma (MPM) is a rare malignant 
thoracic cavity cancer closely related to asbestos exposure 
and has an exceedingly poor prognosis with a median 
survival of 9.5 months (1). Cisplatin combined with 
pemetrexed systemic chemotherapy is used as the first-
line treatment for the treatment of advanced MPM, and 
although this extends the median survival of patients who 
cannot undergo surgical resection (2,3), the overall 5-year 
survival rate is lower than 5% (4). While the gold standard 
for diagnosis of MPM is thoracoscopic biopsy, it is not 
suitable for some patients due to weakness, comorbidities, 
or personal choice, and there are currently few methods 
to evaluate and predict the prognosis of the disease. 
Therefore, there is considerable value in establishing novel 
and predictive signatures that can reliably estimate clinical 
outcomes in monitoring personalized prognosis and guiding 
clinical management of MPM patients.

As a promising antitumor strategy, immunotherapy has 
provided new methods for treating solid tumors in the past 
few years and has obtained long-lasting responses and long-
term survival benefits for countless cancer patients (5). 
Immune checkpoints have shown promise as therapeutic 
targets for various types of tumors, and related studies 
have shown that genetic changes in MPM, including 
point mutations, minute deletions, and copy number 
changes, may lead to new antigens. In view of the crosstalk 
between tumor cells and the immune microenvironment 
is indeed closely related to pathogenesis of MPM (6,7), a 
better understanding of this immune microenvironment 
with targeted molecular vulnerabilities is particularly 
associated with the improvement of treatment approaches 
and patient outcomes. Due to the related factors and the 
clonal expansion of tumor-infiltrating T lymphocytes 
support the concept of MPM as an immunogenic disease 
(8-10), and related studies highlighted the prognostic role 
of lymphocytes and the occurrence of immunosuppression 
in the disease (11-13). Therefore, an immune-related 
prognostic model for MPM is worth exploring. Although 
there is a similar study has reported a signature for predicting 
overall survival (OS) of MPM (14), are there other mRNAs 
that affect the prognosis of patients? Compared with 
traditional features (such as stage, T-, N-, M-stage), how 
accurate is the prognosis prediction signature based on 
these mRNAs? These are the questions that our research 
needs to explore.

In our study, based on the immune-related genes (IRGs) 
of MPM in The Cancer Genome Atlas (TCGA) database, 

we identified and validated an immune-related 5-gene 
signature and verified the stability of the model through 
the external validator GSE2549. In addition, we analyzed 
the correlation between genes in the model and some 
clinical features and immune cell infiltration. We used 
comprehensive analysis to develop a new marker based 
on cancer immune genomics characteristics to predict 
MPM prognosis and provide targets for its diagnosis and 
prognosis. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
atm.amegroups.com/article/view/10.21037/atm-22-527/rc).

Methods

Data collection 

We obtained the sequencing data and corresponding 
clinical information of MPM in TCGA database (https://
cancergenome.nih.gov/) and acquired the microarray dataset 
GSE2549 (15), GSE51024 (16) from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/
geo/). As all data are publicly available, ethics committee 
approval was not required. After converting the ID in TCGA 
into gene symbols according to the GENCODE file, a list 
of IRGs was obtained from the Immunology Database and 
Analysis Portal (ImmPort) (17). The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Data analyzing and identification of IRGs

Using the “limma” (18) package in R to obtain differential 
expression genes (DEGs) from GSE51024, the cut-off 
criteria for screening DEGs were |log2(fold change)| ≥1 
and P<0.05. Differential expression IRGs (DEIRGs) were 
obtained through the intersection of IRGs and DEGs from 
GSE51204.

Establishment of DEIRGs prognostic signature

We established the DEIRGs signature for predicting 
the prognosis of MPM patients. Firstly, the “survival” R 
package was used to perform univariate Cox analysis to 
screen out genes that were significantly relevant to the 
OS (P<0.05), and multivariate Cox regression analysis was 
then performed to obtain the coefficient. According to the 
multivariate Cox regression analysis results, a prognostic 
signature was established, and the risk score calculated 
based as follows = regression coefficients1 × expression level 

https://atm.amegroups.com/article/view/10.21037/atm-22-527/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-527/rc
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of mRNA1 + regression coefficients2 × expression level of 
mRNA2 +  …  +  regression coefficientsn × expression level 
of mRNAn.

Validation of the prognostic signature

To verify the prediction accuracy of the signature, the risk 
score of MPM patients was obtained from the prognostic 
signature, and patients were divided into high-risk groups 
and low-risk groups according to the median. The receiver 
operating characteristic (ROC) curve and area under the 
ROC curve (AUC value) were performed to evaluate 
the predictive value of the prognostic signature, and the 
external validation dataset GSE2549 was used to validate it.

Validation of the independence of the prognostic signature 
and nomogram analysis

To detect whether the risk score of patients evaluated by 
the prognostic signature of IRGs was independent of the 
clinical characteristics as a prognostic factor of MPM, the 
risk score and clinical characteristics (age, gender, T stage, 
N stage, and clinical stage) were combined. The “pheatmap” 
R package was used to analyze the relationship between 
the molecular characteristics of MPM patients and other 
clinical variables in the high-risk and low-risk groups, and 
the “rms” (19) R package based on the multivariate Cox 
regression analysis was used to construct the nomogram 
based on independent prognostic factors, including risk 
score and M stage. The performance of the nomogram 
was evaluated by using the ROC curve, and the predictive 
accuracy of the signature we constructed was evaluated by 
comparing it with the signature built by previous research 
(20,21).

Analysis of signature and clinicopathological characteristics

To further explore the correlation between the different 
groups and clinicopathological characteristics, patients 
were grouped according to their clinical information and 
the survival status of the high-risk and low-risk patients was 
compared.

Immune cells infiltration analysis

To explore the relationship between genes and immune 
cell infiltration levels in the constructed signature, we used 
the single-sample gene set enrichment analysis (ssGSEA) 

algorithm in the “GSVA” package (22) to quantify the 
relative abundance of 10 immune cell types (23) infiltration 
in MPM. Pearson correlation analysis was used to detect 
the correlation between the gene expression level and the 
infiltration of each immune cell.

GSEA enrichment analysis

Pathway differences between the high-risk and low-risk 
groups were investigated by GSEA enrichment analysis 
(24,25). mRNA expression microarray in the high- and low-
risk groups in MPM patients was taken as the expression 
dataset, and c2.cp.kegg.v7.4.symbols.gmt was selected as 
the enrichment analysis gene set to run GSEA software. 
Displacement test times were set as 1,000, and a gene 
set with false discovery rate (FDR) <0.25 was considered 
significant enrichment.

Statistical analyses

All statistical analyses and related visualization were 
conducted to determine independent prognostic factors 
using the R package (R software version 3.6.3) and Perl 
(5.30.1) software.

Results

Identification of IRGs

MPM data in TCGA has only tumor patients and lacks 
normal tissues for comparison. Therefore, GSE51024 
was analyzed by using the “limma” package in R, and by 
setting the criterion of |log2(fold change)| >1 and P<0.05 
and comparing the tumor tissue with normal tissue, a total 
of 1,212 DEGs were obtained. We then intersected the  
1,811 IRGs downloaded from the Immport database with 
the 1,212 DEGs to obtain 101 differentially expressed IRGs 
(DEIRGs) (Figure S1, Table 1). Relevant information of 
patients is shown in Table 2.

Development and validation of DEIRGs signature

The prognos t i c  va lue  o f  DEIRGs  in  MPM was 
discussed according to their prominent role in the 
tumor microenvironment. We performed univariable 
Cox regression to analyze the 101 DEIRGs and survival 
data from 82 patients, and based on the univariable Cox 
regression, obtained 21 prognosis-related DEIRGs. 

https://cdn.amegroups.cn/static/public/ATM-22-527-Supplementary.pdf
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Subsequently, based on multivariate Cox regression 
analysis, we finally obtained five DEIRGs; BIRC5, SORT1, 
CAT, INHBA, and TNFSF13B, to construct a prognostic 
signature. Based on the regression coefficients, risk score 
= (0.0889 × expression of BIRC5) + (0.0523 × expression 
of SORT1) + (−0.0358 × expression of CAT) + (0.0446 
× expression of INHBA) + (−0.0222 × expression of 
TNFSF13B). According to the median value of the risk 
score, all patients were grouped into the high-risk and low-
risk groups. By drawing the survival curve, the OS of the 
high-risk group was significantly lower than the low-risk 
group (Figure 1A). According to Liu’s research (26), we 
found that in multiple clinical evaluation indicators such as 
relapse-free survival (RFS), progression-free survival (PFS), 
and disease-free interval (DFI), patients with high-risk 
groups had shorter survival time compared to patients with 
low-risk groups (Figure 1B-1D). The ROC curve used to 
evaluate the predictive value of the signature showed good 
accuracy with 1 year (AUC =0.853), 2 years (AUC =0.881), 
and 3 years (AUC =0.914) (Figure 1E). The heatmap shows 
and compares the expression characteristics of the five genes 
signature between high-risk groups and low-risk groups 
(Figure 1F), and the death sample survival time decreased 
with an increase in the risk score are illustrated in Figure 
1G,1H. The results show the constructed signature in the 
independent validation set GSE2549 and demonstrate 
patients in the high-risk group had shorter OS compared 
with low-risk groups (Figure 1I). The GSE2549 dataset 
was also used to evaluate the performance of the DEIRGs 
signature (Figure 1J-1L), and each patient’s risk score was 
calculated with a signature. 

Independent prognostic factor analysis and construction of 
nomogram 

To evaluate the role of the DEIRGs signature in some 

Table 1 Interaction of DEGs from GSE51024 and immune-related genes

Differential expression immune-related genes

EDN1, IGF1, CXCL3, FGR, CXCL13, A2M, TEK, BIRC5, C3, SORT1, KL, THRB, EDNRA, PPBP, OXTR, FGFR3, IL6R, ADRB1, CTSB, 
SEMA3G, PDGFD, SPP1, SFTPD, PTGS2, AGER, IL20RA, IL18, BMP2, TNFRSF19, FGFR4, AREG, CXCL17, NR3C2, CRABP2, IL17RD, 
SCG2, CXCL2, WFDC2, FABP6, TGFBR3, CAT, LYZ, MARCO, CLEC11A, S100A12, BMP5, AGTR2, PROCR, PTGER3, CXCL14, PLAU, 
S100P, CLDN4, PLA2G2A, PLTP, HBEGF, TNFSF10, SLC40A1, IL1RL1, SDC4, S100A14, CSF3, EDNRB, CCL20, ARRB1, SCGB3A1, 
ADRB2, MUC4, S100A8, FGF14, ANGPT1, DUOX1, PDGFRL, RORA, TNFSF4, INHBA, LIFR, DMBT1, S1PR1, FGF9, SDC1, CDH1, 
TNFSF13B, AZGP1, CX3CL1, ICAM1, CALCRL, FGF18, LTF, CXCL1, DKK1, IL7R, VCAM1, ROBO2, IL33, PGC, CXCL5, FABP4, KITLG, 
VIPR1, SEMA3C 

DEGs, differential expression genes.

Table 2 Clinical features of the MPM patients involved in this study

Variables TCGA GSE2549

Number of patients 84 39

Age (years), median [range] 64 [28–82] NA

Gender 

Female 15 NA

Male 69 NA

Status 

Alive 12 8

Dead 72 31

Clinical stage 

1 10 NA

2 15 NA

3 43 NA

4 16 NA

T stage 

T1 14 NA

T2 24 NA

T3 31 NA

T4 13 NA

Unknow 2 NA

N stage

N0 43 NA

N1 10 NA

N2 25 NA

N3 3 NA

Unknown 3 NA

M stage

M0 77 NA

M1 7 NA

MPM, malignant pleural mesothelioma; TCGA, The Cancer 
Genome Atlas; NA, not available.
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common clinicopathological features such as age, sex, T 
stage, N stage, M stage, and tumor stage, univariate and 
multivariate Cox regression analyses were performed, and 
the results confirm that the risk score was an independent 
prognostic indicator of the TCGA cohort (Figure 2A,2B). 
Taking into account the significance of the clinical utility 
we constructed, we drew the decision curve analysis (DCA) 
curve, and as shown in Figure 2C, the signature combined 
with the risk was more beneficial than other factors 
(age, gender, stage). Further, based on multivariate Cox 
regression analysis results, we established a novel nomogram 
incorporating two independent factors to predict the 1-, 

2-, and 3-year survival rates of MPM patients (Figure 2D), 
and the AUC values for OS were 0.852, 0.875, and 0.878, 
respectively (Figure 2E-2G). In comparing the prediction 
performance of multiple signatures, these results show the 
prediction performance of our signature is superior to those 
previously published (Figure 3).

Subgroup analysis of DEIRGs signature for survival 
prediction

Subgroup analysis was performed to assess the prognostic 
va lue  of  the  DEIRGs s ignature  within the same 
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Figure 1 Construction of DEIRGs signature and verification. (A-D) Kaplan-Meier curves for patients in the high-risk group and low-risk 
group in the TCGA cohort: (A) Kaplan-Meier curves for the OS of patients; (B) Kaplan-Meier curves for the RFS of patients; (C) Kaplan-
Meier curves for the PFS of patients; (D) Kaplan-Meier curves for the DFI of patients. (E) ROC curve for the prediction of MPM survival 
for 1, 2, and 3 years. (F) Heatmap showing the prognostic DEIRGs signature in the TCGA cohort. (G) Overall survival time of MPM 
patients in TCGA cohort. (H) The risk score distribution in TCGA cohort. (I) Kaplan-Meier curves for the OS of patients in the high-risk 
and low-risk groups in GSE51024. (J) Heatmap showing the prognostic DEIRGs signature in the GSE51024. (K) Overall survival time of 
MPM patients in GSE51024. (L) The risk score distribution in GSE51024. DEIRGs, differential expression immune-related genes; TCGA, 
The Cancer Genome Atlas; OS, overall survival; RFS, relapse-free survival; PFS, progression-free survival; DFI, disease-free interval; ROC, 
receiver operating characteristic; MPM, malignant pleural mesothelioma.
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clinicopathological risk factors by assigning patients into 
different subgroups, including a younger group (age  
≤65 years), an elder group (age >65 years), a male group, an 
advanced-stage group (stage III & IV), a group with patients 
of T1 & T2, a group with patients of T3 & T4, and a group 
with patients of M0. Subgroup analysis demonstrated the 
DEIRGs signature could still distinguish patients into 
different survival groups within all subgroups with statistically 
significant prognostic ability (Figure 4). 

Signature associated with clinical characteristics

The heatmap revealed the levels of genes in the high-
risk group and low-risk groups in the TCGA MPM 
cohort were different. However, the association between 
the high-risk and low-risk groups and T, N, M, stage, 
and other clinicopathological characteristics were not 
statistically significant (Figure 5A). Through survival 
analysis of the genes in the signature, we found that the 
high expression of BIRC5, SORT1, and INHBA was related 
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to poor prognosis in MPM, while the high expression of 
CAT and TNFSF13B was closely related to a better OS 
(Figure 5B-5F). In addition, compared with patients with 
lymph node metastasis (Nx), the expression level of CAT 
in patients without lymph node metastasis (N0) was lower, 
and the expression level of SORT1 in patients without 
distant metastasis was higher than in patients with distant 
metastasis. BIRC5, INHBA, and risk score had higher 
expression levels in patients who died than in those who 
survived (Figure 5G-5K).

Immune infiltration analysis

By analyzing the data of immune infiltration results 
downloaded from TIMER, we found that, according to 
the difference of high- and low-risk, the different types of 
immune cells calculated by algorithms in different databases 
(TIMER, QUANTISEQ, MCPCOUNTER, XCELL, and 
EPIC) were also different (Figure 6A). To further explore 
the correlation between the DEIRG signature and the level 

of immune infiltration, ssGSEA was used to calculate ten 
immune cell infiltration scores. The high-risk group was 
positively correlated with the scores of three immune cells, 
including activated CD4 T cells, immature dendritic cells, 
and type 2 T helper cells, and negatively associated with 
natural killer cell (P<0.05, Figure 6B). We further explored 
the correlation between the expression level of genes in the 
signature and the level of immune cell infiltration, and the 
results showed that the gene in the signature had a significant 
correlation with natural killer cells and immature dendritic 
cells except for CAT. In addition, the correlation between 
BIRC5 and type 2 T helper cells was as high as 0.93, and 
there was a negative correlation between CAT and activated 
CD4 T cell and type 2 T helper cells (Figure 6C-6G).

GSEA analysis between high-risk and low-risk groups

We also performed GSEA to explore the biological signal 
pathway between the high-risk and low-risk groups. The 
results showed that the significantly enriched pathways in 
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Figure 3 Comparing the prediction performance of multiple signatures. (A-C) Time-dependent ROC analysis of the signature for 
predicting the OS of patients. (D-F) Clinical-related ROC analysis of the signature. (A,D) The signature in this study. (B,E) The signature 
of Bai’s research (20). (C,F) The signature of Zhou’s research (21). ROC, receiver operating characteristic; OS, overall survival; AUC, area 
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Figure 4 Subgroup analysis for the DEIRGs signature. Patients were stratified into seven subgroups for survival analysis based on age ≤65 
years (A), age >65 years (B), patients with M0 (C), gender (male) (D), stage III and IV (E), T1 and T2 (F), T3 and T4 (G). Group 1: low-risk 
group; Group 2: high-risk group. DEIRGs, differential expression immune-related genes.
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the high-risk group involved cell cycle, DNA replication, 
extracellular matrix (ECM) receptor interaction, focal 
adhesion, homogeneous recombination, the P53 signaling 
pathway, regulation of actin cytoskeleton, and the 
transforming growth factor-β (TGF-β) signaling pathway 
(FDR <0.01) (Figure 7).

Discussion

MPM is a very rare malignant tumor, for which current 
treatments of surgery, chemotherapy, and radiotherapy 
provide limited clinical efficacy and a poor prognosis. As 
exploring molecular biomarkers is of great significance to 
the early diagnosis, prognosis prediction, and treatment 
strategies of MPM, we constructed a prognostic signature 
in this study consisting of five immune genes (INHBA, CAT, 
SORT1, TNFSF13B, and BIRC5).

Based on the relevant data of MPM in TCGA, we used 
univariate and multivariate cox regression analysis to build 
a prognostic signature by five genes, including INHBA, 
CAT, SORT1, TNFSF13B, and BIRC5. In this signature, 
the ROC values of 1, 2, and 3 years were 0.853, 0.881, and 

0.914, respectively, showing good accuracy. In comparing 
the prediction performance of multiple signatures, these 
results show the prediction performance of our signature 
is superior to those previously published. Furthermore, 
low-risk patients had better OS than those in the high-
risk group, and compared with high-risk patients, low-risk 
patients also showed the advantage of longer survival in 
RFS, PFS, and DFI. We also used an independent GEO 
dataset to verify the predictability of the signature, and a 
nomogram was drawn to provide a personalized estimate of 
the potential survival rate and contribute to the personalized 
management of MPM. Tumor-infiltrating cells have been 
proven to have vital functions in cancer, and we analyzed 
the immune infiltration levels of patients in different risk 
groups. This showed they were in activated CD4 T cells, 
immature dendritic cells, and type 2 T helper cells, and the 
fraction of the high-risk group was higher than that of the 
low-risk group. In natural killer T cells, the fraction of the 
low-risk group was higher than that of the high-risk group, 
while GSEA revealed that patients in high-risk and low-
risk groups had different levels of enrichment pathways. 
Compared with the prognostic characteristics of MPM 
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Figure 5 Clinical evaluation by the risk assessment signature. (A) Heatmaps of various clinicopathological characteristics in high- and low-
risk groups. (B-F) Kaplan-Meier survival curves of five genes in the signature: (B) BIRC5; (C) SORT1; (D) CAT; (E) INHBA; (F) TNFSF13B. 
(G-K) Gene expression in different groups: (G) CAT with N; (H) SORT1 with M; (I) BIRC5 with survival state; (J) INHBA with survival 
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previously constructed, the signature established in this 
study had higher predictive performance.

Furthermore, in this prognostic signature, five genes 
(INHBA, CAT, SORT1, TNFSF13B, and BIRC5) were 
selected as crucial genes. SORT1 is a protein of the sortilin 
family, and according to existing reports, has different roles 
in different types of cancer. Targeted SORT1 has been 
reported to inhibit tumor metastasis and promotes tumor 
apoptosis in breast (27) and ovarian (28) cancer, while high 
expression of SORT1 may promote tumor progression 
in gastric cancer (29) and lung cancer (30). TNFSF13B 

is a member of the TNF ligands family and has been 
shown to play an important role in the proliferation and 
differentiation of B cells (31). While previous research on 
the TNFSF13B mainly focused on the immune system 
and hematological tumors, one study showed that as a 
B cell-activating cytokine, TNFSF13B could regulate T 
cell function by increasing T cell activation and TH1 
polarization, enhancing the expression of pro-inflammatory 
leukocyte trafficking chemokine CCR6 and promoting 
memory phenotype, thereby enhancing antitumor 
immunity. Furthermore, TNFSF13B also has an apparent 
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Figure 6 Estimation of tumor-infiltrating cells by signature. (A) Heatmap for immune responses based on CIBERSORT, ESTIMATE, 
MCPcounter, ssGSEA, and TIMER algorithms among high- and low-risk groups. (B) ssGSEA scores in the high- and low-risk patients in the 
TCGA cohort. (C-G). Correlation between genes and immune infiltrating cells: (C) BIRC5; (D) INHBA; (E) CAT; (F) SORT1; (G) TNFSF13B. *, 
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immune regulation function, promoting CD4+Foxp3+ spleen 
and Treg in the tumor microenvironment (32). In this study, 
TNFSF13B was used as a protective factor in MPM, and 
in the TISIDB database (33), we found that belimumab is 
an intravenous immunosuppressant for adjuvant treatment 
of systemic lupus erythematosus by acting on the target 
of TNFSF13B, which also provides new ideas for treating 
the disease. BIRC5, also known as survivin, is a negative 
regulatory protein that prevents apoptosis (34) and can 
regulate cancer development by inhibiting cell apoptosis 
and inducing cell proliferation (35). The abnormal 
amplification of BIRC5 has been observed in a variety of 
malignant tumors, and its overexpression is closely related 
to tumor occurrence and development, radiotherapy 
and chemotherapy resistance, and the poor prognosis of 
cancer patients (36-38). Recently, BIRC5 has attracted 
much attention as a molecular target for cancer therapy. 
CAT (catalase) is a key enzyme for H2O2 metabolism, and 
its expression and localization changes significantly in  
tumors (39). It can also ameliorate this hypoxic environment 
and reverse the malignant phenotype of tumor cells (40). 
INHBA is a member of the TGF-β superfamily of the gene 
encoding protein, and increasing reports have demonstrated 
it is a crucial factor in some solid malignant tumors, 

including prostate cancer (41), esophagus squamous cell 
carcinoma (42), and bladder cancer (43). Chen’s study found 
that knocking down the expression of INHBA could inhibit 
gastric cancer progression through the TGF-β signaling 
pathway (44), and another study found that interfering with 
the expression of INHBA could significantly reduce the 
degree of cell proliferation, invasion, and migration of colon 
cancer (45). In this study, we found a high expression of 
INHBA was related to the poor prognosis of MPM patients, 
which raises the question of whether reducing its expression 
could prolong their survival. 

The GSEA showed patients in the high-risk group 
concentrated on the P53 signaling pathway, which is 
probably the most commonly inactivated protein in cancer 
(46,47), and TP53 mutations are associated with poor  
OS (48). Related study has shown that miR-320a is 
significantly inhibited in MPM samples, P53 can target 
PD-L1 by mediating miR-320a (49), and PD-L1 is highly 
expressed in mesothelioma and tumor stroma. P53 is 
associated with poor survival (50-52), providing a new 
direction for treating MPM. In addition, microRNA-215-
5p can be used to suppress the progression of mesothelioma 
through the MDM2-p53-signal axis (53).

Inevitably, this study has some limitations. Firstly, the 
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Figure 7 GSEA analysis in the TCGA based on the high-risk and low-risk groups. GSEA, gene set enrichment analysis; TCGA, The 
Cancer Genome Atlas.
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prognostic model proposed was established and verified 
using data from public databases and requires verification in 
clinical trials. Secondly, there remains a need for in vivo and 
in vitro experiments to further understand the biological 
function of the role of the DEIRG signature in MPM.

Conclusions

We constructed a prognostic signature and nomogram 
of MPM patients which can predict the prognosis of 
individual cases. Moreover, exploring the relationship 
between high and low-risk group immune cell infiltration 
and clinicopathologic features provides a new direction for 
guiding individualized and accurate treatment.
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Supplementary
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Figure S1 Acquisition of DEGs. (A) Venn diagram for the intersections between DEGs from GSE51024 and IRGs. (B) Volcanic map of 
GSE51024. DEGs, differentially expressed genes; IRGs, immune-related genes.
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