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Introduction

Leukemia is a malignant cancer in which abnormal white 

blood cells (leukemia cells) in bone marrow diffusely 

proliferate. Leukemia cells replace normal bone marrow 
tissue and invade the surrounding blood, resulting in 
changes in the number and quality of peripheral white 
blood cells (1,2). Leukemia is a common malignant disease, 
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especially in children and adolescents. There are various 
methods used to detect leukemia, such as myelomorphology, 
cytochemical staining, and immunophenotyping (3-5). 
Among them, myelomorphology is considered as the gold 
standard for the diagnosis of leukemia. However, due to 
the diverse morphology of bone marrow cells, extensive 
experience and patience are needed for morphological 
examination. At present, there are some bone marrow cell 
image analysis systems that can be applied to morphometric 
analysis, bone marrow cytology inspection reports, and 
chromosome analysis reports, which greatly reduces 
work intensity and error probability, and improves work 
efficiency (6,7). However, advanced work is still needed an 
automatic classification, recognition, and position of bone 
marrow cell images and the classification and recognition 
of bone marrow diseased cells through the comprehensive 
application of image analysis and pattern recognition 
technology (8-10). Thus, constructing blood disease 
diagnosis equipment that integrates artificial intelligence 
(AI) and big data analysis functions can provide support 
for the accurate diagnosis of leukemia and improve the 
effectiveness of the medical service system.

AI uses sophisticated algorithms to learn features from a 
large volume of healthcare data, and then uses the obtained 
insights to assist clinical practice (11-13). Therefore, AI 
has the potential to revolutionize disease diagnosis and 
management by performing classification and reviewing 
of huge amounts of images rapidly. Deep convolutional 
neural network (CNN) has allowed for significant gains 
in the ability to classify images and detect objects in 
images (14-16). Based on this, Kermany et al. established a 
diagnostic tool for the screening of patients with common 
treatable blinding retinal diseases, which demonstrated 
comparable classification performance to that of human 
experts (17). Using CNN, mapping of the relationships 
between the image of bone marrow cells and classification 
can be established to realize the effective recognition of 
bone marrow morphology (18-20). Thus, establishing an 
efficient algorithm and training through a large number 
of images can break the dependence of bone marrow cell 
morphology analysis on human recognition and realize 
intelligent recognition. Recently, some pioneer works have 
been proposed to use deep learning algorithm to perform 
bone marrow cells detection on whole-slide images (21). 
Our work is to detect bone marrow cells on the field 
of view images under the microscope and successfully 
integrate the model into the software and hardware system 
of the augmented reality microscope. We present the 

following article in accordance with the MDAR reporting 
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-486/rc).

Methods

Data collection

The study was conducted in accordance with  the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by Ethics Committee Of Seventh Medical Center 
of Chinese PLA General Hospital (No. 2022-25) and 
informed consent was taken from all individual participants.

We collected and labeled real bone marrow cell images 
under the microscope, stored the data and labeling 
information in a unified format, and randomly divided 
the training set and testing set. In this embodiment, 
4,451 real images of bone marrow cells on the Hyde star 
HDS-BFS high-speed micro scanning image system were 
collected, with a resolution of 4,000×3,000. The labeling 
tool is used to mark the rectangular boxes of all cells in 
the picture, generate the coordinates of the vertices at 
the upper left corner and the lower right corner of the 
rectangular box in the pixel coordinate system, and label 
the corresponding categories. Labeling file generated by 
the label tool, where each<object></object> represents a 
target, that is, a cell, and <name></name> represents the 
category of the target, <xmin></xmin>, <ymin></ymin> 
represent the x-axis coordinates and y-axis coordinates 
of the vertices at the upper left corner, <xmax></xmax> 
and <ymax></ymax>represent the x-axis coordinates and 
y-axis coordinates of the vertices at the upper left corner, 
respectively.

Data preprocessing

During the preprocessing stage, we filtered the samples of 
the training set, removed the samples without labeling and 
non-labeled categories, and used categories with number 
of cell samples greater than 100 to construct the dataset. 
A total of 20 classification categories were obtained and 
summarized in Table 1, which were as follows: eosinophilic 
lobulated neutrophils, promyelocytes, primordial plasma 
cells, promyelocytes, megaloblastic erythrocytes, heterotypic 
lymphocytes, megaloblastic erythrocytes, neutrophils, 
neutrophils, neutrophils, immature lymphocytes, immature 
plasma cells,  immature monocytes,  late immature 
erythrocytes, primordial lymphocytes, mature lymphocytes, 

https://atm.amegroups.com/article/view/10.21037/atm-22-486/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-486/rc
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primordial granulocytes, abnormal promyelocytes, 
primordial monocytes. The training dataset was augmented 
by 5 data enhancement methods: image horizontal flip, 
vertical flip, image rotation, image translation, and image 
adding Gaussian noise.

Object detection model

The object detection model is based on the Faster Region-
Convolutional Neural Network (R-CNN). Faster R-CNN 
is composed of the region proposal network (RPN) and 
Fast R-CNN, in which RPN is used to select candidate 
target boxes and Fast R-CNN is used for accurate target 
classification and regression.

The loss function of the classification task is as follows:

( )
1

1 log
N

cls i
i

L p
N =

= − ∑ 	 [1]

The classification task is a binary classification task, that 
is, the probability that the current prediction region belongs 
to the foreground or background.

The loss function of the regression task is as follows:
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The regression task uses the loss of smoothL1 function, 
where x,y,w,h are the coordinates of the center point of the 
candidate rectangular box and the length and width of the 
rectangular box.In order to ensure the translation invariance 
and the consistency of the length and width of coordinates, 
it is parameterized to generate 4-dimensional vectors t. The 
specific calculation method is as follows:
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Where subscripta indicates the template box, and the 
superscript * indicates the real rectangular box.

The complete loss function of the RPN is the weighted 
sum of the above 2 task loss functions, which is expressed as 
follows:

{ } { }( ) ( ) ( )1 1, , ,i i cls i i i reg i i
i icls reg

L p t L p p p L t t
N N

λ∗ ∗ ∗= +∑ ∑  [8]

In the Fast R-CNN part, the Fast R-CNN uses the 
candidate bounding box predicted by the RPN to sample the 
features of the same size under the region of interest (ROI) 
pooling, specifically 7es. After flattening the feature map, 
the prediction results are obtained through a series of full 
connection layers. Classification prediction and regression 
prediction are carried out for the obtained feature vectors. 
Thetwoparts are similar to the classification regression task 

Table 1 Summary of the number of different types of cells

Cell type
Training 
(count of 

cells)

Testing 
(count of 

cells)

Eosinophilic lobulated nuclei 168 55

Basophilic normoblast 185 52

Protoplasma cell 331 101

Promyelocyte 398 124

Megalocytocytes 464 146

Lymphocyte atypia 472 126

Neutrophils 629 200

Polychromatic erythroblast 720 213

Neutrophilic metamyelocyte 942 283

Neutrophilic myelocyte 982 279

Naive lymphocyte 1,090 368

Naive plasma cell 1,095 334

Neutrophilic granulocyte band form 1,104 347

Naive monocyte 1,259 359

Metarubricyte 1,378 427

Protolymphocyte 1,531 365

Mature lymphocyte 1,605 465

Myeloblast 2,137 638

Abnormal promyelocytic granulocytes 2,528 667

Protomonocyte 2,784 830

Sum 21,820 6,379
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calculation method of the RPN. The classification task 
in the invention is a two-class classification task, that is, 
foreground cell and background. The regression task is the 
same as the method of calculating 4-dimensional regression 
parameters by the RPN.The specific loss function is 
expressed as follows:

( ) ( ) ( ), , , , [ 1] ,u u
cls locL p u t v L p u u L t vλ= + ≥ 	 [9]

Where pis the softmax probability distribution 
predicted by the classifier, u is the real classification label 
corresponding to the target, tu is the corresponding category 
predicted by the regressor corresponding to the candidate 
boundingboxu, ( ), , ,u u u u

x y w ht t t t  are regression parameters, and 
v is the regression parameter corresponding to the real 
bounding box (vx, vy, vw, vh).

Both the RPN and Fast R-CNN need to use the CNN 
to extract image features. In the structure of Fast R-CNN, 
these two parts share a feature extraction network.

Generalized average precision loss

Due to the difference in the occurrence frequency of 
different categories of bone marrow-like cells, we proposed 
a general score ranking loss to evaluate the positive and 
negative samples through the classification probability value, 
rather than using the heuristic sampling training method, 
which is more conducive to solving the problem of long tail 
data distribution. In the traditional ranking loss, the positive 
samples are generally ranked before the negative samples, 
without considering the ranking relationship between the 
two kinds of samples. There are twotasks to sort losses 
using scores. In the scoring task, the positive and negative 
samples are divided according to the threshold, and the 
model aims to make the classification probability value of 
the positive samples greater than the negative samples. The 
sorting task is constrained within the positive samples to 
make the positive samples with high confidence have a large 
classification probability value.

Firstly, specify that the Intersection-of-Union (IOU) 
of the prediction box and GTBox exceeds the threshold 
as a positive sample, otherwise it is a negative sample. 
Define the negative sample set as N and the positive sample  
set as P.

The score difference between the two prediction frames 
is calculated by:
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Where s is the score of the rectangular box, and we 
define the step function:
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The ranking of general scores is as follows:
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It is divided into two parts: the sorting loss of the original 
sequence and the sorting loss within the positive sample.

For the original sorting sequence, the sorting loss is:
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Where r is the sorting position, λ is the weighting 
coefficient, H is the step function, and y is the IOU value of 
the prediction box and GTbox.

For the internal loss of positive samples (sorted loss), 
since there are no negative samples, the score loss is 0. The 
sort loss is that:
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Where H is the step function and y is the IOU value 
of the prediction box and GTBox. It can be seen from the 
above formula that for positive samples with no change 
in relative ranking position, the original ranking loss is 
the same as that sorted by ranking, which will offset each 
other in the final loss calculation. It will weaken the impact 
on the correctly ranked positive samples. However, the 
positive samples whose original ranking is after the negative 
samples have a large score loss, which promotes the model 
to enhance the detection ability of these positive samples. 
The rank sort loss (22) proposed here is a special case of the 
generalized loss where λ=1, and in our model we set λ=0.5 
through hyperparameter search.

Training details

During training, the momentum algorithm is selected as 
the gradient descent method, where momentum =0.9, the 
learning rate is initialized by 0.001, the weight attenuation 
is 0.0001, and batch size =1 for each iteration. The learning 
rate attenuation adopts linear attenuation, and the learning 
rate attenuation every 4 rounds is 0.3 times that of the 
original, with model iterative training of 20 rounds.
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After training, the test set is preprocessed with the same 
augmentation method. The predicted target category and 
the coordinates of the upper left and lower right corners 
of the rectangular box of the target will be obtained and 
displayed in the image sample in a visual manner.

Statistical analysis

We compute the metrics over all types of cells and take 
their average as the final performance. Recall, Precision, 
F1-score is adopted as the clinical evaluation metrics for 
cell classification. AP@50 is adopted as the computer vision 
evaluation metric for cell detection.

Hardware devices

The hardware devices include an optical microscope 
(collecting the field of view under the microscope), digital 
equipment (camera, transforming optical images into 
electronic signals, i.e., digital images), and host (used to 
install and execute programs and models for cell recognition).

Microscope
Bone marrow smear specimens can be directly observed by 
the eyepiece after optical magnification of the microscope.

Image digitizing equipment
This equipment adopts a high-definition digital camera and is 
connected to the computer through USB interface. The digital 
microscope integrates the optical microscope and the image 
digitizing device to directly output digital microscope images.

Mainframe
The computer completes the functions of digital image 
processing, storage, diagnosis report generation, analysis, 
and statistics in the medical micro image processing system. 
It is the core of the medical micro image processing system.

Peripherals
The image of the system and the results of processing and 
analysis can be displayed on the display, or printed on the 
report form through a color image printer. The process is 
described below:

(I)	 Place the bone marrow specimen on the stage of 
the optical microscope, and adjust the focal length 
to achieve a clear image effect;

(II)	 The optical signal is transformed into a color 
digital image through the camera for further 

processing. The white balance, exposure, and other 
parameters of the camera can be adjusted to make 
the digital image clear and recognizable;

(III)	 The mathematical  model  of  bone marrow 
morphological pattern classification is established 
based on deep learning technology. Through the 
constructed recognition model, the cells entering 
the field of vision are classified and detected;

(IV)	 Combined with the expert diagnosis indexes of 
clinical bone marrow morphology, the system test 
is carried out, and the digital bone marrow image 
database based on deep learning is established to 
realize computer-aided diagnosis;

(V)	 Through the above hardware device, combined 
with neural network and bone marrow cell 
morphology, a bone marrow morphology detection 
system based on deep learning can be constructed 
to realize the automatic detection and recognition 
of bone marrow cells.

Results

Workflow

The bone marrow specimens of 70 patients with leukemia 
from the Hematology Department of The Seventh Medical 
Center of Chinese PLA General Hospital after examination 
were used for digital scanning of whole slides, a database of 
bone marrow morphological characteristics was established, 
and data collection of the image database was realized. We 
randomly selected 80% of the images as the training set 
and the remaining 20% of images as the testing set. We 
filtered the categories of cells and kept those cell categories 
with number of cell samples greater than 100. A total of 
20 classification categories were obtained. To handle the 
diversity of feature distributions, we enriched the data 
augmentation process by combining5 data enhancement 
methods: image horizontal flip, vertical flip, image rotation, 
image translation, and image adding Gaussian noise. As 
shown in Figure 1, we developed our model based on the 
Faster R-CNN. In view of the decline of recognition 
accuracy caused by many types of bone marrow cell 
images and unbalanced sample distribution, a generalized 
average precision loss (G-AP loss) was designed so that 
the model could decrease negative samples effectively in 
training. Finally, combined with the diagnosis indicators 
of clinical bone marrow morphology experts, the results 
were systematically verified and tested, and a new type of 
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hematological disease diagnosis model was established.

Model performance

The testing set contained 798 images with 6,847 labeled 
cells. We performed ablation studies and reported the 
results of 4 models: baseline (the original Faster R-CNN 
model), ranksort [Faster R-CNN with original ranksort 
(λ=0.5), and our methods (rank sort λ=0.5 + enriched 
data augmentation). We summarized the recall and 
precision values in Table 2, and the AP@50 and F1-score 
values in Table 3. The results showed that our method 
consistently  improved performance when adding 
ranksort, data augmentation, and generalized ranksort 
to the baseline. Compared to the baseline, although 
our method resulted in a slight drop of recall (~4%), 
it improved the precision by 26.4%, the F1-score by 
12.1%, and the AP@50 by 3%. Our model achieves a 
recall of 0.710, precision of 0.496, AP@50 of 0.533, F1-
score of 0.575. 

We also drew the average precision (AP) curve to 
demonstrate the superiority of our methods. As shown 
in Figure 2, our approach demonstrates better AP values 
among all thresholds compared to the baseline and 
baseline with original rank sort loss. We also present the 
visualization results in Figure 3. Our method effectively 
reduces the missed detected targets and is thus more precise 
compared to the baseline.

Augmented reality microscope

Finally, we integrated the software into the microscope 
system to build an augmented reality system. As shown 
in Figure 4, the system includes an optical microscope 
(collecting the field of view under the microscope), 
digital equipment (camera, transforming optical images 
into electronic signals, i.e., digital images), and host 
(used to install and execute programs and models for cell 
recognition). The deep learning model is established on the 
host for computer-aided diagnosis. Clinical tests showed that 
with assistance from the newly developed diagnosis system, 
we could finish 200 fields of analysis within 16 minutes,  
4.8 s for each image. As a reference, a well-trained expert 
needs around 40–50 s to perform a diagnosis for each field.

Discussion

We developed a new morphological diagnosis system 
for bone marrow cells. The model is based on the Faster 
R-CNN. To deal with the diversity of feature distributions, 
we enriched the data augmentation process by combining 
5 data enhancement methods: image horizontal flip, 
vertical flip, image rotation, image translation, and image 
adding Gaussian noise. Due to the highly imbalanced data 
distribution, we designed the generalized rank loss, which 
provided extra optimization to make positive samples 
with larger prediction score. Our model has successfully 
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Table 2 Precision and recall of different types of bone marrow cells

Cell type
Recall Precision

Baseline Ranksort Our method Baseline Ranksort Our method

Eosinophilic lobulated nuclei 0.673 0.764 0.818 0.319 0.477 0.523

Basophilic normoblast 0.615 0.558 0.596 0.215 0.349 0.425

Protoplasma cell 0.604 0.505 0.535 0.293 0.389 0.47

Promyelocyte 0.71 0.96 0.935 0.247 0.358 0.497

Megalocytocytes 0.863 0.678 0.664 0.448 0.553 0.522

Lymphocyte atypia 0.913 0.738 0.738 0.4675 0.567 0.633

Neutrophils 0.745 0.61 0.67 0.423 0.502 0.51

Polychromatic erythroblast 0.662 0.577 0.606 0.399 0.438 0.473

Neutrophilic metamyelocyte 0.643 0.534 0.562 0.301 0.385 0.375

Neutrophilic myelocyte 0.699 0.573 0.649 0.327 0.429 0.464

Naive lymphocyte 0.851 0.766 0.793 0.543 0.526 0.649

Naive plasma cell 0.838 0.731 0.769 0.456 0.451 0.479

Neutrophilic granulocyte band form 0.758 0.686 0.761 0.468 0.476 0.521

Naive monocyte 0.624 0.538 0.524 0.265 0.337 0.366

Metarubricyte 0.778 0.74 0.803 0.543 0.57 0.579

Protolymphocyte 0.8 0.822 0.833 0.468 0.53 0.554

Mature lymphocyte 0.68 0.712 0.753 0.398 0.397 0.395

Myeloblast 0.668 0.611 0.66 0.376 0.453 0.43

Abnormal promyelocytic granulocytes 0.841 0.849 0.877 0.512 0.41 0.489

Protomonocyte 0.81 0.711 0.725 0.462 0.502 0.493

Mean 0.740 0.680 0.710 0.393 0.457 0.496

integrate the model into the software and hardware system 
of the augmented reality microscope, which has a significant 
potential values in clinical usage. 

Although experiments demonstrate the significant 
performance improvement of our proposed methods over 
most of the metrics, there are still some limitations of our 
current system. Firstly, our model is trained on a dataset 
from only 70 patients with 4,451 fields. Thus, a variety of 
bone marrow cell types are not included in the training 
set. Secondly, these cell types are only from a single 
center, meaning that our model may be biased towards the 
particular population and machines from the center dataset. 
Thirdly, our model cannot effectively learn rare samples, 
therefore we had to eliminate cell types with numbers of 
samples less than 100 before training. 

Our hardware devices also need to be improved. Firstly, 
due to manual operation issues, different areas of the 
glass slide have different thicknesses, so it is necessary to 
constantly adjust the focal length of the microscope in the 
process of observation to keep the field of vision clear, and 
focusing will take some time. It also takes time to find the 
right view during initial adjustment. In addition, as some 
cells are not correctly detected, it requires technicians to 
spend some time to correct the wrong predictions to record 
the results.

In the future, we will continue to improve the model 
by involving more specimens and multi-center datasets for 
training and design few-shot learning methods to learn rare 
samples. We will also introduce an autofocus microscope to 
improve the system’s efficiency further.
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Table 3 AP@50 and F1-scores of different types of bone marrow cells

Cell type
AP@50 F1-score

Baseline Ranksort Our method Baseline Ranksort Our method

Eosinophilic lobulated nuclei 0.498 0.644 0.692 0.4330 0.587 0.638

Basophilic normoblast 0.358 0.308 0.468 0.3180 0.43 0.496

Protoplasma cell 0.381 0.334 0.367 0.3950 0.44 0.5

Promyelocyte 0.431 0.431 0.458 0.3670 0.445 0.535

Megalocytocytes 0.626 0.526 0.504 0.5900 0.609 0.584

Lymphocyte atypia 0.775 0.643 0.653 0.6180 0.641 0.681

Neutrophils 0.496 0.445 0.51 0.5400 0.551 0.579

Polychromatic erythroblast 0.442 0.374 0.409 0.4980 0.498 0.531

Neutrophilic metamyelocyte 0.356 0.33 0.394 0.4100 0.447 0.45

Neutrophilic myelocyte 0.416 0.398 0.478 0.4450 0.491 0.541

Naive lymphocyte 0.730 0.625 0.691 0.6630 0.624 0.714

Naive plasma cell 0.604 0.525 0.571 0.5910 0.558 0.59

Neutrophilic granulocyte band form 0.508 0.482 0.586 0.5790 0.562 0.618

Naive monocyte 0.323 0.323 0.336 0.3720 0.414 0.431

Metarubricyte 0.591 0.582 0.68 0.6400 0.644 0.673

Protolymphocyte 0.628 0.657 0.669 0.5900 0.644 0.665

Mature lymphocyte 0.437 0.468 0.488 0.5020 0.51 0.518

Myeloblast 0.435 0.438 0.489 0.4810 0.521 0.521

Abnormal promyelocytic granulocytes 0.709 0.685 0.699 0.6370 0.553 0.628

Protomonocyte 0.527 0.483 0.528 0.5880 0.589 0.587

Mean 0.517 0.485 0.533 0.513 0.539 0.575
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Figure 2 AP curves of different methods. X-axis is the recall value and y-axis is the precision value of cell detections under develop 
thresholds. AP, average prevision.
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Figure 3 Comparison of visualization results for different methods. Both type and prediction scores are shown (Wright’s stain, ×1,000). GT, 
ground truth.

GT

Baseline

Our method

GT

Baseline

Our method

Conclusions

In this article, we establish a new morphological diagnosis 
system of bone marrow cells based on the deep learning 
object detection framework. The model is based on 
the Faster R-CNN (23), and we proposed a general 
score ranking loss to solve the problem of long tail data 
distribution. We also verified this system with 70 bone 
marrow specimens of leukemia patients, containing 4,451 

bone marrow fields, which proved that it can realize 
intelligent recognition with high efficiency. The software 
is finally integrated into the microscope system to build an 
augmented reality system, with clinical test show that the 
newly developed diagnosis system can respond more rapidly 
comparing with a well-trained expert for diagnosis. Thus, 
establishing an efficient algorithm and training through a 
large number of images can break the dependence of bone 
marrow cell morphology analysis on human recognition and 
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realize intelligent recognition.
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